

Aalborg Universitet

SmartExchange

Decentralised Trustless Cryptocurrency Exchange

Adamik, Filip; Kosta, Sokol

Published in:
Business Information Systems Workshops

DOI (link to publication from Publisher):
10.1007/978-3-030-04849-5_32

Creative Commons License
CC BY 4.0

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Adamik, F., & Kosta, S. (2019). SmartExchange: Decentralised Trustless Cryptocurrency Exchange. In W.
Abramowicz, & A. Paschke (Eds.), Business Information Systems Workshops: BIS 2018 International
Workshops, Berlin, Germany, July 18–20, 2018, Revised Papers (pp. 356-367). Springer.
https://doi.org/10.1007/978-3-030-04849-5_32

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 26, 2024

https://doi.org/10.1007/978-3-030-04849-5_32
https://vbn.aau.dk/en/publications/961e5d51-03df-47f0-9f31-ad2ea8fb39d0
https://doi.org/10.1007/978-3-030-04849-5_32

SmartExchange: Decentralised Trustless
Cryptocurrency Exchange

Filip Adamik and Sokol Kosta

CMI, Aalborg University Copenhagen, Denmark
fadami15@student.aau.dk,sok@es.aau.dk

Abstract. Trading cryptocurrency on current digital exchange plat-
forms is a trust-based process, where the parties involved in the exchange
have to fully trust the service provider. As it has been proven several
times, this could lead to funds being stolen, either due to malicious ser-
vice providers that simply disappear or due to hacks that these platforms
might suffer. In this work, we propose and develop a decentralised ex-
change solution based on smart contracts running on the Ethereum net-
work that is open, verifiable, and does not require trust. The platform
enables two parties to trade different currencies, limited to Ethereum
and Bitcoin in the current status of the system. A smart contract, de-
ployed on the Ethereum blockchain, functions as an escrow, which holds
a user’s funds until a verified transaction has been made by the other
party. To make the smart contract able to detect a Bitcoin transfer, we
implement our solution by utilising an oracle. We define the system ar-
chitecture and implement a working platform, which we test in a model
scenario, successfully exchanging Bitcoin and Ether on the blockchain
test networks. We conclude the paper identifying possible challenges and
threats to such a system.

Key words: cryptocurrency, distributed, exchange, blockchain, smart
contract, oracle, ethereum, bitcoin

1 Introduction

Researchers and developers have proposed cryptocurrency as early as 1983, when
anonymous digital money was first introduced [1]. Today’s cryptocurrencies,
such as Bitcoin, Litecoin, Ethereum, etc., are thus only the continuation of a
long lasting effort on developing a currency with sufficient guarantees against
misuses, such as double-spending or theft. The wide-spread adoption of these
currencies indicates that the guarantees against misuse are indeed sufficient –
in other words, that the users trust the cryptocurrencies. If this was not the
case, they probably would not be used. There are numerous reasons why users
buy cryptocurrency, ranging from value-holding purposes to short-term trading.
However, the trust in the cryptocurrency is somewhat unavoidable. Regardless
of the motivation, whenever people acquire a cryptocurrency, they believe that
it will retain value, at least until they exchange it for other services or goods.

2 F. Adamik and S. Kosta

Indeed, exchanging cryptocurrencies has become a regular task for an in-
creasing number of people. There are countless different platforms that offer this
service, ranging from simple wallets that embed currency exchange as additional
service, to massive trading platforms with daily market cap of millions of dollars,
such as Bitfinex 1, Coinbase2, or Bitstamp3, among others. All these exchanges,
however, share one common feature: when making a transaction, users need to
trust them with their funds. For example, whenever a user exchanges USD to
Bitcoin, she transfers the USD funds to the company’s account, which converts
them to Bitcoin. Until the user does not withdraw the converted amount, the
platform has full control over her money. If the company suddenly goes out of
business, or gets attacked, the user may never get her funds back! This situation
is not hypothetical, there have been various cases where deposited funds were
lost or stolen, with the most famous case of the Japanese-based Bitcoin exchange
Mt. Gox, where USD 380 million worth of Bitcoins were stolen in 2014 [2]. As
such, the trust in the exchange platforms is quite questionable. Some experts
advise not to store any funds in these systems for long periods of time and to
make deposits to a secured wallet right away, since it is believed the funds are
more vulnerable in an exchange platform [3].

In this work, we address this problem and propose an exchange system where
the trust in the currency is used for making the exchange process of exchange
safer. To accomplish this task, we use the Ethereum system, which is the sec-
ond most popular cryptocurrency as of today. Ethereum gives the possibility
of running smart contracts – small programs that are run by many computers
around the world at the same time. This provides assurance that no-one will
tamper with the code and that no-one can manipulate the outcome of a smart
contract. We design and implement a system that deploys smart contracts to the
Ethereum network, which are used to control the trading process and function.
We show that having a distributed exchange platform is not only feasible, but
is highly beneficial for the users, since it removes the trust from a single entity.
Moreover, to facilitate the utilization of the exchange system, we implement an
Android demo application that we use for testing purposes. We demonstrate the
operation of this prototype in a model scenario, where we transfer Bitcoin and
Ether between two trading parties.

The rest of this work is structured as follows: First, in Section 2 we investigate
the existing systems and platforms related to our proposal; Then, in Section 3 we
describe the system architecture and the implementation details of our platform
and demo application; In Section 4 we present the evaluation of the distributed
exchange platform, deploying it on the test blockchain networks and performing
Ethereum to Bitcoin currency exchange; In Section 5 we present a short discus-
sion about the limits of our proposal; and finally, in Section 6 we conclude the
work presenting the final remarks and considerations for future improvements.

1 www.bitfinex.com
2 www.coinbase.com
3 www.bitstamp.com

Decentralised Cryptocurrency Exchange 3

2 Related Work

Blockchain is a distributed ledger that records sets of changes in a system [4]. A
change could be any data – for example it could be details of the latest currency
transactions [5] or newly deposited business agreements [6]. Blockchain is usually
distributed among several independent parties to prevent centralisation of the
system and to avoid easy manipulation with the blockchain data by a malicious
party [7]. The most notable use of the blockchain is the decentralised peer-to-
peer cryptocurrency Bitcoin, where the blockchain is used to keep record of all
currency transactions among its users [5]. Researchers identify the transaction-
recording as the most standard use of the blockchain [7, 8]. However, the possible
uses of the blockchain extend further than that – blockchains can be used for
operating decentralised applications [9], storing documents [6], financial uses, or
outside the financial world [7].

Smart contracts are small programs run in a decentralised manner by all the
nodes participating in the network, which are the heart of financial utilization
of blockchains. A smart contract consists of a program code, a balance, and a
storage space [10, 11]. The most prominent system that operates smart contracts
is the Ethereum platform. Ethereum fuses the blockchain with a Turing-complete
programming language run by the Ethereum Virtual Machine (EVM) [12]. The
states of this machine are altered by transactions. Besides invoking functions of a
smart contract, an Ethereum transaction can also be used to transfer Ethereum’s
native cryptocurrency Ether. For any transaction to be executed by the EVM,
users need to purchase command-execution units called gas. Users purchase gas
to pay for the operation of the EVM – every smart contract must have enough
gas to cover for all of its instructions, otherwise it will not be executed [13].

Researchers identify benefits of using the blockchain beyond the finance sec-
tor by providing a decentralised and trusted storage system. There are exemplary
uses by IBM and Microsoft, who provide the blockchain as a cloud-based service
for storing data and assuring their existence [14], or an e-commerce platform
implementation by a china-originated multinational conglomerate operating in
the transport industry HNA group, which implemented a blockchain-enabled
e-commerce platform with three main uses: issuing cryptocurrency, protecting
sensitive business information, and lowering the boundaries between different
business units [15].

Even though blockchain is considered a robust and secure technology, it still
has certain vulnerabilities. The authors of [16] examine these vulnerabilities and
find that the crucial risks are related to the 51% attack, where the attacker con-
trols the majority of the nodes in the network, the double spending attack, or
the problem of insufficient private key security. Moreover, other more advances
issues are due to vulnerable or under-optimised smart contracts, which result to
stolen or wasted funds. The paper further considers attacks independent from
the use of blockchain, such as selfish mining attack, where the attacker does not
immediately broadcast a new valid block that was mined, leading to unneces-
sary work performed by the other nodes in the network, or the Eclipse attack,
which consists of preventing a particular network node from receiving up-to-

4 F. Adamik and S. Kosta

date messages from the network and therefore limiting its functionality and/or
performance.

In 2014, a security weakness was exploited in a popular cryptocurrency ex-
change, namely Mt. Gox, which led to subsequent crash of this exchange [2].
While this case was widely covered by the mainstream media, there were nu-
merous other cases that didn’t make the news, where the exchange was attacked
and users lost their funds. The authors of [17] provide a comprehensive overview
over these attacks, and conclude that the probability of a security breach in a
cryptocurrency exchange is positively correlated with the transaction volume of
that exchange.

All the cryptocurrency exchanges mentioned in [17] were “traditional”, in a
way that they require the user to deposit funds to the exchange and withdraw
the exchanged funds afterwards. To the best of our knowledge, there is no fully
decentralised implementation of cryptocurrency exchange available today. There
are many exchange platforms offering trading Ethereum based tokens4, but these
tokens do not exist outside Ethereum realm. The only existing proposal for
a trust-less digital assets exchange is introduced by Hallgren et al. [18], but
this proposed architecture does not completely remove the system centralisation
issue, since funds still need to be deposited to the Hallex system. Conversely,
our solution is a fully decentralised cryptocurrency exchange platform, built on
blockchains and smart contract technology.

The problem of interaction of two separate blockchains is examined closely
in [19], where the author introduces several ways to enable cross-chain oper-
ability. These include notaries (a trusted group of entities, which operate and
exchange assets on both blockchains) and relays (where one of the blockchains
carries out a task to learn the status of the other blockchain). A detailed pro-
posal of a notary has been described in [20]. A relay has been described and
implemented in the BTC Relay system5, which allows users to pay for execution
of smart contracts on the Ethereum network with Bitcoins. While the exchange
of the funds on different blockchains is not the primary aim of this system, it
could be extended to support this use case.

3 Design and Implementation

To avoid the necessity of trust between the two trading parties, we propose an
architecture where a smart contract functions as a digital escrow holding service.
An escrow is a piece of property, temporarily held by a third party until a certain
condition has been met6. The smart contract therefore holds user’s funds, until a
condition agreed upon by both users is true. An example of such a condition could
be: “Ether funds can only be released to Bob, if Bob has transferred his Bitcoin
to Alice”. In this scenario, after an initial agreement between Alice and Bob,

4 https://angel.co/0xproject/, https://idex.market/
5 http://btcrelay.org/
6 https://www.investopedia.com/terms/e/escrow.asp

Decentralised Cryptocurrency Exchange 5

Alice proceeds to deploy the smart contract with an embedded condition to the
network. She then transfers her Ether to this smart contract, where it will pose
as an escrow. This transaction, together with the smart contract code is public
and can be verified by Bob. When Bob sees that the funds are deposited in the
smart contract, he can transfer his Bitcoins to Alice in an ordinary transaction.
The smart contract queries the Bitcoin blockchain for Bob’s transaction, and
once it has been completed, the smart contract releases Alice’s funds to Bob.
If Bob tries to cheat Alice by not sending Bitcoins, the condition specified in
the smart contract would not be met and the smart contract would not release
the funds to Bob. If Alice attempts to cheat Bob by deploying a smart contract
with incorrect condition, Bob would discover this by exploring the Ethereum
blockchain. A trading scenario between Alice and Bob is illustrated in Figure 2,
while in Figure 3 we provide a high-level overview of our system architecture.
The logic of the smart contract is described in Figure 1.

class my−smart−cont rac t {
r e c e i v e funds ;
check t r a n s a c t i o n s t a t u s ;
i f (t r a n s a c t i o n happened) :

forward funds to d e s t i n a t i o n ;
else

return funds to sender ;
}

Fig. 1. High-level notation of the logic inside a half black-box.

The complexity of implementing this scenario lies mainly in step number 4,
where the smart contract must verify the Bitcoin transaction. The difficulty
arises from the fact that Ethereum and Bitcoin blockchains are two separate
entities that operate on different networks, with different protocols, and are
isolated in their respective realms. Indeed, the smart contract resides on the
Ethereum blockchain, and to verify Bob’s transaction it would need to get data
from the Bitcoin blockchain. To address this problem, we make use of oracles,
which are specialised data sources that translate real-world, off-chain informa-
tion, into data that can be processed by the smart contract. Oracles watch the
blockchain for specified events and respond by publishing the results of a query
back to the smart contract [21]. A simple oracle could be a server that listens
for these events on the Ethereum network, fetches the real-world data from the
web or other location and then delivers the results back to the contract, sending
them as a part of a transaction [22, 23].

6 F. Adamik and S. Kosta

Pre-conditions Alice wants to sell Ether and buy Bitcoins. Bob wants to buy
Ether and sell Bitcoins. They agree on the details of the transaction via a side
channel.

1. Alice sends Ether to the smart contract.
2. Bob verifies this transaction.
3. Bob sends Bitcoins to Alice.
4. Smart contract verifies Bob’s transaction.
5. Smart contract releases Ether to Bob.

Post-conditions: Alice has Bob’s Bitcoin, Bob has Alice’s Ether.

Fig. 2. Trading scenario where Alice and Bob trade Ethereum and Bitcoin with the
help of the smart contract.

Fig. 3. System architecture, reflecting the scenario in Figure 2.

Currently, there are several open source projects that provide oracle services
– the biggest one being Oraclize7, which offers simple integration with the So-
lidity language, which is one of the programming languages for smart contracts.
Oraclize offers queries to multiple off-chain data sources, including simple HTTP
queries or Wolfram Alpha. In our implementation we use Oraclize, however our
platform is quite flexible, and other oracles can be integrated very easily.

3.1 Implementation of the System Components

The proposed system consists of several components that interact together, as
presented in Figure 4. The main point of user interaction for both primary and
secondary users is the system front-end, which communicates with the Ethereum
blockchain via an Ethereum node to deploy a custom smart contract that oper-

7 http://www.oraclize.it (https://github.com/oraclize)

Decentralised Cryptocurrency Exchange 7

Fig. 4. Overview of the system parts: Android application fetches the data about
existing offers from the communication back-end and sends new smart contracts to
the Ethereum node. Node communicates with other nodes in the Ethereum network,
maintains the status of the blockchain and deploys new smart contracts to the network.
Smart contract contacts the oracle after the deployment and holds the funds until the
oracle has cleared the transaction as approved. The oracle queries the Bitcoin block
explorer to learn about the status of the transaction and communicates the result back
to the smart contract. Communication back end communicates only with the Android
application. It holds details about users’ offers and supports the trading interaction
between the users.

ates the logic of the transaction, and with a back-end, which acts as a communi-
cation channel between users. To operate its logic, the smart contract communi-
cates with an oracle, which queries a blockchain explorer provider to learn about
the status of a transaction and sends the updates back to the smart contract.

Smart Contract. We program the contract using the Solidity language on
Remix, an in-browser IDE, which allows sandbox contract testing8. Smart con-
tracts written in Solidity get compiled into BIN (binary) and ABI (Application
Binary Interface) format, using the solc compiler. The BIN file contains the So-
lidity code compiled into Ethereum Virtual Machine bytecode and the ABI file
contains information about how to interact with the Smart Contract. The en-
coding of the ABI file is part of the Ethereum protocol specification. Then, we
use the Web3j command line tools9 to transform the BIN and ABI files into Java
representation of the smart contract. The Java file includes wrapper methods to
invoke the custom constructor and the methods of the contract.

Node. To be able to deploy the smart contracts, we need to have a node in
the Ethereum blockchain network. For this purpose, we make use of Infuria, a
node-hosting service10. Infura endpoints accept connections from any client and
no authentication is needed. This is not an issue, since by design, our system

8 https://remix.ethereum.org/
9 https://github.com/web3j/web3j

10 https://infura.io/

8 F. Adamik and S. Kosta

signs the transaction on device, before it is deployed to the network, meaning
that no private information is uploaded on the node.

Oracle. We use the Oraclize service, as it is currently the most widely used in
the community and includes extensive documentation and testing environment.
The smart contract implements a callback method to register for replies from
Oraclize, which is called by an Oraclize-issued smart contact together with the
result. It is in this method that the smart contract handles the response.

Blockchain Explorer. This entity is needed for the oracle to understand if a
transaction has been performed in the Bitcoin network. In our system, we use the
Simple Query API provided by the Blockchain.info platform, even though any
other service could be used without affecting the functionality of our platform.

Application Front-end. To demonstrate the functionality of the prototype, we
implement an Android application, which provides a user interface that allows
users to engage in a transaction and to deploy smart contracts on the network.
It also provides guidance through the transaction process, displaying prompts to
the users when their intervention is needed. Lastly, it provides a link to the smart
contract, once it has been deployed, so that users can easily locate and verify it
on the blockchain. To deploy the smart contract from the Android application,
we use a special Java class, which holds the binary representation of the compiled
Solidity code and wrapper methods that could be used to communicate with an
already deployed smart contract.

Communication Back-end. The data processed by the communication back-
end consists of users’ Bitcoin and Ether offers. Besides storing users’ offers,
the back-end also serves as the coordination channel for the users. When a
user performs an action in the application that advances the progress of the
transaction, a particular field in the database is updated. To implement the
back-end platform, we use Firebase, which is a noSQL database storing data in
JSON format.

4 Evaluation

In this experiment we demonstrate a transaction between two persons: a primary
user Eve, who wants to sell Ether and buy Bitcoin, and a secondary user Mike,
who wants to buy Ether and sell Bitcoin. Both users run the application on their
phones. Eve has her own Ethereum wallet with some Ether she wishes to sell,
while Mike has his own Bitcoin wallet he will use to make the transaction. Eve’s
and Mike’s wallets are standalone systems, independent from our system. The
scenario of the transaction is as follows:

1. Mike creates a Bitcoin offer in the Android application by inputting:
– Amount in Bitcoin he wishes to sell.
– Amount in Ether he wishes to receive.
– Ethereum address, where he wishes to receive the Ether.

Decentralised Cryptocurrency Exchange 9

Mike then confirms and the offer is pushed on the Firebase database.
2. Eve’s device reacts to the change in the database and fetches the latest offers.

Eve can now see Mike’s offer. She selects it and confirms.
3. Eve is presented with a temporary Ethereum address that will be used to

deploy the smart contract. To continue, Eve must transfer her funds to the
temporary address. This address is generated on the device by our system,
and no other party besides Eve’s Android application has access to the pri-
vate key.

4. Eve then creates an empty Bitcoin address where she will receive funds from
Mike. She then inputs her public key to the Android application, so that
Mike knows where to send the Bitcoin funds. Eve does not reveal her private
key in the process.

5. A smart contract is deployed from the temporary Ethereum address with
the following properties:
– Mike’s Ethereum address.
– Eve’s Bitcoin address.
– Amount of Bitcoin, that needs to be received by Eve, before the smart

contract releases the Ether.
Besides these properties, which are specified in the smart contract construc-
tor as data fields, the creation of a contract also carries two other significant
information:
– Sender’s Ethereum address – this is used to return the funds in case of

unsuccessful transaction.
– Value, associated with the transaction – this is funds Eve is sending to

Mike.
6. After the smart contract has been deployed, the transaction hash is displayed

to both Mike and Eve. Mike needs this transaction hash to find and verify
that Eve deployed the smart contract with the agreed properties.

7. After Mike verifies the correctness of the information in the smart contract,
he proceeds transferring funds to the Bitcoin address in the smart contract.

8. Right after the deployment, the smart contract sends a query to Oraclize.
The query consists of the following data:
– Blockchain.info API endpoint reference.
– Eve’s Bitcoin address.
– Delay, after which the API query is executed (600 seconds).
Oraclize registers this query and starts a timer. After 10 minutes, it contacts
the specified API endpoint with the specified Bitcoin address. This endpoint
returns the unspent transaction output of the queried address in Satoshi as
a plain string. After Oraclize receives this reply from the Blockchain.info, it
passes the result to the smart contract by calling its callback method.

9. The contract compares whether the result fulfils the condition (i.e. if the
unspent balance of the Bitcoin address received from the Blockchain.info is
equal or greater than the balance specified by Eve, when she deployed the
contract). If this condition is true, the smart contract sends its Ether balance
to Mike. If it is false, it returns the Ether back to Eve.

10 F. Adamik and S. Kosta

This scenario was successfully executed with two Android devices, a Parity
Ethereum wallet, and a GreenAddress Bitcoin wallet. The transactions were
made on the Ethereum Kovan test network and Bitcoin testnet3 test networks.
Eve’s device was a OnePlus A5000 running Android 8.1.0 Oreo, while Mike’s
device was a Samsung AM-A510F, running Android 7.0.0 Nougat and both de-
vices had a stable internet connection. The whole process took approximately
20 minutes, out of which 10 minutes is the oracle response delay. The cost of
the smart contract deployment was approximately 0.05 kETH11 and was paid
by Eve. This process can be replicated on the test networks at any time. The
prerequisites are a balance of kETH and testnet BTC and transaction amount
greater than 0.1 kETH.

5 Discussion

In this section, we present some challenges that need to be considered, which
might prove to be crucial for the adoption of the system.

Cost of a Transaction. As mentioned earlier, there is a cost associated with
every smart contract. The deployment of the smart contract used in the pro-
totype uses approximately 2 million gas (as a comparison, a simple transfer of
Ether uses exactly 21, 000 gas). The price payed for this amount of gas depends
on the market conditions and on how fast the user wants the transaction to be
processed. Limiting the amount of work preformed on the EVM by the smart
contract can reduce the cost of the contract deployment and therefore the costs
of the transaction. Moreover, it is also important to note that the smart contract
we have used in this implementation is related to the API provided by Oraclize.
It is possible that using another oracle provider might reduce the price for the
smart contract deployment.

Contract Verification. The transaction process relies on the fact that the
secondary user needs to verify the smart contract deployed by the primary user.
While the smart contract can be found on the blockchain using the blockchain
explorer, it is only the compiled bytecode that is being stored. As such, verifying
that the contract is correct is not an easy task in the current version of our
system, which needs to be simplified and automatised.

One Contract per Transaction. The current prototype always deploys a
new contract whenever a transaction is made. This contract is then executed
and discarded afterwards. Another approach would be to only deploy a single
contract for the whole system. New transactions would simply call methods
defined by this contract and the contract would be handling multiple transactions
simultaneously. Naturally, the smart contract would need to be more complex,
but the costs for its operation would be shared among all of its users.

Scalability Trading pair Bitcoin/Ethereum can be commonly found in the port-
folio of digital currency exchanges. According to Coinmarketcap platform12, the

11 kETH is used to indicate Kovan Ether.
12 https://coinmarketcap.com/

Decentralised Cryptocurrency Exchange 11

volume of the transactions between Bitcoin and Ether makes up to around 9% of
the overall transaction volume across the 10 biggest digital currency exchanges.
In the future, this number is likely to increase further, as cryptocurrencies further
establish in the society. While this is not a problem for Ethereum and Bitcoin
blockchains, it could affect our proposed system. With increasing number of
queries, oracle(s) could change their pricing model which would further increase
the transaction costs.

To handle larger number of users, the communication back-end would also
need to be reconsidered, to allow interaction of many individuals, while not
unnecessarily limiting the transaction making process.

6 Conclusions and Future Work

In this project, we proposed, designed, and implemented a system that enables
a distributed and secure trade of cryptocurrencies between two parties. We built
the system on the Ethereum platform and used smart contracts for the core of its
operation. The smart contract holds the users’ funds, until the other side of the
transaction from the other party has been made. To demonstrate the process, we
implemented an Android prototype, and showed that it is possible to successfully
exchange Ethereum to Bitcoin, and vice-versa, without the need of a centralized
service. Even though we performed the tests on the testing blockchain networks
Kovan and testnet3, moving to the real ones is straightforward and is just a
matter of deployment.

As plans of future development, we intend improving the system mainly on
the following two aspects:

Use of Multiple Nodes. To avoid the single-node issue, since the node could
refuse to perform a transaction or the provider could simply go offline, we will
extend the system to use multiple nodes.

Use of Multiple Oracles and Multiple Blockchain Explorers. The current
version of the system only uses one oracle and one blockchain explorer provider.
Similarly as the node, they could prevent transactions from happening, if either
of the two goes offline. A possible solution is to use multiple oracles, which in
turn query different blockchain explorers.

References

1. Chaum, D.: Blind Signatures for Untraceable Payments. In Chaum, D., Rivest,
R.L., Sherman, A.T., eds.: Advances in Cryptology, Boston, MA, Springer US
(1983) 199–203

2. Popper, N., Abrams, R.: Apparent Theft at Mt. Gox Shakes Bitcoin World - The
New York Times (2 2014)

3. McIntosh, R.: How to Choose Crypto Exchanges, Store Money and Avoid Scams.
Finance Magnates (1 2018)

12 F. Adamik and S. Kosta

4. Chen, L., Xu, L., Gao, Z., Shah, N., Lu, Y., Shi, W.: Smart Contract Execution -
the (+-)-Biased Ballot Problem. In Yoshio Okamoto; Takeshi Tokuyama, ed.: 28th
International Symposium on Algorithms and Computation (ISAAC 2017). Vol-
ume 92., Dagstuhl, Germany, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2017) 21:1– 21:12

5. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System
6. Robert Hackett: J.P. Morgan Chase Is Building an Ethereum-Based Blockchain:

Here’s Why (2016)
7. Swan, M.: Blockchain : blueprint for a new economy. 1 edn. O’Reilly Media,

Incorporated (2015)
8. Michael, N., Gomber, P., Oliver, H., Dirk, S.: Blockchain. Business & Information

Systems Engineering 59(3) (6 2017) 183–187
9. Buterin, V.: A next-generation smart contract and decentralized application plat-

form (2014)
10. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by Step Towards

Creating a Safe Smart Contract: Lessons and Insights from a Cryptocurrency Lab.
In Clark J., Meiklejohn S., R.P.W.D.B.M.R.K., ed.: Financial Cryptography and
Data Security. Springer, Berlin, Heidelberg (2 2016) 79–94

11. Mik, E.: Smart contracts: terminology, technical limitations and real world com-
plexity. Law, Innovation and Technology 9(2) (2017) 269–300

12. Patrick, M., Shahandashti, S.F., Feng, H.: A Smart Contract for Boardroom Voting
with Maximum Voter Privacy. In Kiayias, A., ed.: Financial Cryptography and
Data Security, Cham, Springer International Publishing (2017) 357–375

13. Dannen, C.: Introducing Ethereum and Solidity. Apress, Berkeley, CA (2017)
14. Mansfield-Devine, S.: Beyond Bitcoin: using blockchain technology to provide

assurance in the commercial world. Computer Fraud & Security 2017(5) (5 2017)
14–18

15. Ying, W., Jia, S., Du, W.: Digital enablement of blockchain: Evidence from HNA
group. International Journal of Information Management 39 (4 2018) 1–4

16. Li, X., Jiang, P., Chen, T., Luo, X., Wen, Q.: A survey on the security of blockchain
systems. Future Generation Computer Systems (8 2017)

17. Moore, T., Christin, N.: Beware the Middleman: Empirical Analysis of Bitcoin-
Exchange Risk. In Sadeghi, A.R., ed.: Financial Cryptography and Data Security,
Berlin, Heidelberg, Springer Berlin Heidelberg (2013) 25–33

18. Hallgren, J., Hallgren, M., Fisher, S., Larsen, N., Hautop, J., Ross, O.: Hallex: A
Trust-Less Exchange System for Digital Assets. SSRN Electronic Journal (2 2017)

19. Buterin, V.: Chain interoperability (2016)
20. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant

payments. draft version 0.5 9 (2016) 14
21. John Weldon: Building an “Oracle” for an Ethereum contract (2016)
22. : Oraclize documentation (2018)
23. Jules Dourlens: Oracles: bringing data to the blockchain (2017)

