Series editors

Prof. Bruno Siciliano Dipartimento di Ingegneria Elettrica e Tecnologie dell'Informazione Università degli Studi di Napoli Federico II Via Claudio 21, 80125 Napoli Italy E-mail: siciliano@unina.it Prof. Oussama Khatib Artificial Intelligence Laboratory Department of Computer Science Stanford University Stanford, CA 94305-9010 USA E-mail: khatib@cs.stanford.edu

Editorial Advisory Board

Nancy Amato, Texas A & M, USA Oliver Brock, TU Berlin, Germany Herman Bruyninckx, KU Leuven, Belgium Wolfram Burgard, University Freiburg, Germany Raja Chatila, ISIR-UPMC & CNRS, France Francois Chaumette, INRIA Rennes-Bretagne Atlantique, France Wan Kyun Chung, POSTECH, Korea Peter Corke, Queensland University of Technology, Australia Paolo Dario, Scuola S. Anna Pisa, Italy Alessandro De Luca, Sapienza University Rome, Italy Rüdiger Dillmann, University Karlsruhe, Germany Ken Goldberg, UC Berkeley, USA John Hollerbach, University Utah, USA Lydia E. Kavraki, Rice University, USA Vijay Kumar, University Pennsylvania, USA Bradley J. Nelson, ETH Zürich, Switzerland Frank Chongwoo Park, Seoul National University, Korea S. E. Salcudean, University British Columbia, Canada Roland Siegwart, ETH Zurich, Switzerland Gaurav S. Sukhatme, University Southern California, USA

More information about this series at http://www.springer.com/series/5208

Daniel Sebastian Leidner

Cognitive Reasoning for Compliant Robot Manipulation

Daniel Sebastian Leidner Institute of Robotics and Mechatronics German Aerospace Center (DLR) Wessling, Germany

ISSN 1610-7438 ISSN 1610-742X (electronic) Springer Tracts in Advanced Robotics ISBN 978-3-030-04857-0 ISBN 978-3-030-04858-7 (eBook) https://doi.org/10.1007/978-3-030-04858-7

Library of Congress Control Number: 2018962373

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my brother Björn

Foreword

Robotics is undergoing a major transformation in scope and dimension. From a largely dominant industrial focus, robotics is rapidly expanding into human environments and vigorously engaged in its new challenges. Interacting with, assisting, serving, and exploring with humans, the emerging robots will increasingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an abundant source of stimulation and insights for the field of robotics. It is indeed at the intersection of disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the research community the latest advances in the robotics field on the basis of their significance and quality. Through a wide and timely dissemination of critical research developments in robotics, our objective with this series is to promote more exchanges and collaborations among the researchers in the community and contribute to further advancements in this rapidly growing field.

The monograph by Daniel Sebastian Leidner is based on the author's doctoral thesis. It conjugates the two research worlds of artificial intelligence and robotics in one original work on cognitive reasoning for compliant robot manipulation. Representation, planning, execution, and interpretation of constrained manipulation tasks naturally lead to the concept of intelligent physical compliance. These methodological issues are keenly discussed along with supporting practical issues, clearly demonstrating the potential of cognition-enabled service robots.

Rich of examples developed by means of extensive experimentation on a humanoid robotic platform both on ground and in a space context, this volume was the winner of the 2018 Georges Giralt PhD Award for the best doctoral thesis in Europe. A very fine addition to the STAR series!

Naples, Italy October 2018 Bruno Siciliano STAR Editor

Preface

This manuscript is the result of six years of research conducted between 2011 and 2017 at the Institute of Robotics and Mechatronics at the German Aerospace Center (DLR). The findings were elaborated in cooperation with the Institute for Artificial Intelligence at the University of Bremen. This exceptional alliance between two of the world's leading research facilities on artificial intelligence and robotics enabled me to realize this work.

Accordingly, I would first like to express my utmost gratitude to my supervisors, Prof. Michael Beetz and Prof. Alin Albu-Schäffer, for the opportunity to live out this relationship under their guidance. In addition, I would like to thank Christoph Borst for his trust in my qualities as a robotics researcher that allowed me to work in one of the most inspiring environments. My special thanks go to Florian Schmidt, who introduced me to the world of robotics and continually supported me during my research. Furthermore, I would like to thank Dr. Alexander Dietrich, which whom I collaborated in several publications leading to a better understanding of the interconnections between high-level reasoning and low-level control. Thanks to Georg Bartels, for the interesting and fruitful discussions during our research stays, which resulted in many valuable ideas. Thanks to my former students, Peter Birkenkampf and Wissam Bejjani, for their support.

My deep gratitude goes to the entire support team of Rollin' Justin for the maintenance of the robot, which are Thomas Gumpert, Werner Friedl, Martin Heumos, Robert Burger, Alexander Beyer, and Dr. Jörg Butterfass.

Special thanks go to the METERON SUPVIS Justin team, who helped to push the robot to the limits, resulting in an excellent experiment. In particular, I would like to thank Dr. Neal Y. Lii, Peter Birkenkampf, Ralph Bayer, and Benedikt Pleintinger.

Moreover, I would like to thank the people proofreading this book: Dr. Neal Y. Lii, Dr. Alexander Dietrich, Dr. Maxime Chalon, and Dr. Freek Stulp.

Thanks to my parents Birgit and Lothar, who supported me during my entire life, always believing in my strengths. Finally, I would like to thank my wife Hanna for her love. Without her patience and her support while raising our newborn son Leon Maximilian, I would have been unable to finish this work.

Munich, Germany May 2017 Daniel Sebastian Leidner

Contents

1	Intro	oduction	1
	1.1	A Survey on Everyday Compliant Manipulation	5
	1.2	Problem Statement	8
	1.3	The Concept of Intelligent Physical Compliance	9
		1.3.1 Representation	9
		1.3.2 Planning	11
		1.3.3 Execution	13
		1.3.4 Interpretation	14
	1.4	Contributions	15
	1.5	Outline	17
	1.6	Publication Note	20
	Refe	rences	21
2	Fun	damentals	25
	2.1	Physical Compliance in AI and Robotics	25
	2.2	The Humanoid Service Robot Rollin' Justin	27
	2.3	Motion Planning and Generation	29
	2.4	Symbolic Planning and Logic Programming	31
	2.5	Knowledge Representation and Reasoning	32
	Refe	rences	33
3	Clas	sifying Compliant Manipulation	37
	3.1	Manipulation Taxonomies in Robotics Research	38
		3.1.1 Related Work	38
		3.1.2 Investigating Applicable Taxonomies	40
	3.2	The Compliant Manipulation Taxonomy	42
		3.2.1 Classification Terms	44
		3.2.2 Example Actions	46
		3.2.3 Discussion	47

	3.3	Classification of Wiping Tasks	49 49
		3.3.2 Discussion	52
	34	Summary	53
	Refe	stences	53
4	Rep	resentations for Compliant Manipulation	55
	4.1	Representing Task Knowledge as Object Properties	56
	4.2	Object-Centric Action Representation	58
		4.2.1 Action Templates	61
		4.2.2 Action Templates for Compliant Manipulation	63
	4.3	Representing the Effects of Wiping Actions	65
	4.4	Representing Wiping Motions	70
	4.5	Related Work	72
	4.6	Summary	74
	Refe	rences	74
5	Plan	ning Everyday Manipulation Tasks	77
	5.1	Symbol Grounding and Semantic Planning	77
		5.1.1 Object-Centered Hybrid Reasoning	79
		5.1.2 Backtracking	82
		5.1.3 Execution	85
		5.1.4 Discussion	85
	5.2	Mobile Manipulation	86
		5.2.1 Reasoning About Reachability	87
		5.2.2 Whole-Body Motion Planning	90
		5.2.3 Discussion	92
	5.3	Effect-Space Planning of Wiping Motions	93
		5.3.1 Reasoning About Cartesian Wiping Motions	95
		5.3.2 Generating Whole-Body Joint Motions	98
		5.3.3 Reachability Extension	01
		5.3.4 Combined Wiping Actions 1	03
		5.3.5 Effect Prediction and Evaluation	1 04
		5.3.6 Discussion	05
	5.4	Related Work	1 08
	5.5	Summary	1 09
	Refe	rences 1	10
6	Con	pliance Parameterization and Task Execution 1	13
	6.1	Control Strategies for Compliant Interaction 1	13
		6.1.1 Impedance Control 1	16
		6.1.2 Hierarchical Whole-Body Control 1	17

	6.2	Controller Parameterization	121
		6.2.1 Trajectory Design in Contact	122
		6.2.2 Controlling the Contact Force.	124
		6.2.3 Discussion	125
	6.3	Execution of Compliant Wiping Motions	126
		6.3.1 Scrubbing a Mug with a Sponge	127
		6.3.2 Skimming a Window with a Window Wiper	128
		6.3.3 Collecting Shards with a Broom	131
		6.3.4 Discussion	134
	6.4	Related Work	135
	6.5	Summary	136
	Refe	erences	137
7	Sem	antic Interpretation of Haptic Feedback	141
	7.1	Effect Inference Based on Haptic Perception	142
		7.1.1 Contact Estimation	144
		7.1.2 Effect Inference	147
		7.1.3 Failure Detection and Recovery	151
		7.1.4 Discussion	157
	7.2	Semantic Analysis with OpenEASE	157
	7.3	Related Work	159
	7.4	Summary	160
	Refe	erences	161
8	4 nn	liad Intelligent Physical Compliance	165
0	App 8 1	The METERON SUPPLY Justin Experiment	165
	8.2	A Supervised Autonomy III Based on Action Templates	169
	8.3	Mission Objectives and Scientific Goals	172
	8.4	Summary	174
	Refe	Prences	174
	nen		171
9	Con	clusions	177
	9.1	Manuscript Summary	178
	9.2	Discussion	182
	9.3	Open Research Questions	183
	9.4	Outlook	184
	Refe	erences	185

List of Used Symbols and Abbreviations

The used symbols appear in equations or within the description of algorithms. Their meaning remains thereby consistent throughout the entire manuscript, if not otherwise stated. The listed pseudocode shall be considered independent of any concrete implementation, yet it is derived from Python syntax. Assignments of variables are thereby denoted by the left arrow symbol (e.g., $\gamma \leftarrow 0$). List attachments are denoted by the concatenation operator, where angle brackets encompass the element to be attached (e.g., $X^{\frown}\langle x_{end} \rangle$).

In the following, the most frequent quantities and abbreviations of prominent importance are listed. They may appear with different subscripts and superscripts, where a dot donates a total derivative with respect to time t. Scalar quantities are printed as plain letters (e.g., α , l_{max} , \mathcal{O}). Vectors and matrices are bold (e.g., \dot{x} , f_{ext} , P). The meaning of the symbols is not further specified at this point, but detailed in the respective chapters they are introduced.

Symbols

α	Action Template
γ	Tier value for a particular action
δ	Step size
μ	Mean value
σ	Standard deviation
i, j, k	Indices for numbering and iterations
n	Node element in a graph
r	Reachability index
t	Time
x, y	Particle coordinates
N, M	Numbers (e.g., number of robot joints)
Ó	Object of interest
V	Spring potential

λ	Discretized A* map
au	Vector of joint torques
$\boldsymbol{\varphi}$	Region of interest
e	List of effects
f	Vector of (generalized) Cartesian forces
р	List of preconditions
q	Link-side joint configuration
x	Vector of Cartesian coordinates
${\cal A}$	List of Action Templates
Φ	List of low-level robot commands
Ω	List of elemental robot operations
\mathcal{C}	Controller parameter vector
D	Positive definite damping matrix
${\cal G}$	Geometric state of the environment
J	Jacobian matrix
${\cal P}$	Particle distribution state
S	Symbolic state of the environment
\mathcal{T}	Transition vector (symbolic or geometric)
Q	Configuration space trajectory
X	Cartesian trajectory

Abbreviations

act	Actual
cmd	Command
des	Desired
dev	Deviation
e.g.	Exempli gratia (for example)
eef	End effector
ext	External
i.e.	Id est (that is)
max	Maximum
min	Minimum
w.r.t.	With respect to
AI	Artificial intelligence
DLR	Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace
	Center)
DOF	Degree(s) of freedom
ESA	European Space Agency
ISS	International Space Station
KDE	Kernel density estimation
METERON	Multi-purpose End-To-End Robotic Operation Network
MST	Minimum spanning tree

OpenRAVE	Open Robotics Automation Virtual Environment
PDDL	Planning Domain Definition Language
ROI	Region of interest
RRT	Rapidly Exploring Random Trees
SDG	Semantic directed graph
TCP	Tool center point
TSP	Traveling salesperson

List of Figures

Fig. 1.1	Artist's conception of a universal service robot cleaning a public area	2
Fig. 1.2	The concept of Intelligent Physical Compliance	4
Fig. 1.3	Examples of wiping actions observed in everyday environments	7
Fig. 1.4	Failed attempt to collect all shards of a broken mug. A robot has to be able to detect the effects of its actions and relate them to previously conducted predictions in order to estimate the task outcome qualitatively. This requires substantial reasoning on the contact situation, the applied contact force, and the compliance parameterization.	9
Fig. 1.5	Actions relate motions to effects. motions result in effects and in return, analyzing effects can be used to assess the performance of motions. Objects properties are used to parameterize actions and the outcome of an action can be used to refine object properties	10
Fig. 1.6	The symbol grounding problem visualized at the example of collecting breadcrumbs by wiping along the surface with a sponge. The geometric action incorporates the wiping motion as well as the effect (i.e. the accumulated breadcrumbs). Both have to be associated with the semantic meaning	10
Fig. 1.7	Whole-body impedance control scheme based on Dietrich (2015). The redundant robot resolves the deviation of the spatial virtual equilibrium compliantly while the tool is in contact	13
Fig. 1.8	The humanoid robot Rollin' Justin is disturbed during a wiping task	15
Fig. 1.9	Overview of the chapters. The associate research papers are listed accordingly. Chapters three to six are arranged	10
Fig. 2.1	w.r.t. the concept of Intelligent Physical Compliance	18
гıg. 2.1	Excerpt of the research topics of AI and robotics	21

Fig. 2.2	Sensors and actuators of the humanoid robot Rollin' Justin	28
Fig. 3.1	An object-centric view is used to derive classification terms.	
	Each classification term describes an abstract view on the	
	contact situation between the two reference systems, i. e.	
	the hand-object system colored in black and the environment	
	colored in gray. It is thereby not of interest if the tool is guided	
	by a robotic manipulator (left) or a human hand (right)	43
Fig. 3.2	Hierarchy of compliant manipulation tasks. For each leaf	
	of the tree an example action is given. The complexity	
	increases from top to bottom in number of parameters	
	to be considered during the reasoning process. Note that	
	neither hand kinematics, nor the hand posture, nor the contact	
	between the hand and the grasped object are considered	
	for classification	44
Fig. 3.3	Example of peg-in-hole insertion as combination of three actions	48
Fig. 3.4	Matrix classification of wiping tasks according to the tool,	
U	the surface, and the medium, versus the role of the medium.	
	The tool (grasped by a human hand) is abstracted as a rectangle	
	capable of all illustrated actions. The motion of the tool is	
	indicated as a solid arrow. The surface is always shown on	
	the bottom of the corresponding matrix cell. It might be flat	
	as illustrated, curved, or of any other shape. The medium is	
	shown shown in an abstract form in the initial state (solid	
	circles) and in the goal state after the action is performed	
	(dashed circles) where dashed arrows indicate the transition	
	of the medium	50
Fig. 4.1	Representing intelligent physical compliance	56
Fig. 4.2	Example ontology for the window wiper object class.	
U	The skim action is populated w.r.t. the properties	
	of the kaercher wy50 wiper and the properties	
	of the mockup window	58
Fig. 4.3	Classical program for a polishing action with	
81 112	a KUKA robot	59
Fig. 4.4	The action template for a pick action provided by the generic	
0	object class	60
Fig. 4.5	The action template for a skimming action as it is provided	
0	by the abstract window wiper class	64
Fig. 4.6	Change estimation of the particle distribution in contact with	
0	a sponge during wiping. A uniform particle distribution is	
	assumed in the example at hand. Upon contact with the	
	sponge, the particle model is undated w.r.t. the properties	
	of the medium. Here, solid particles are simulated to be	
	pushed by the sponge	65
	Parine of the should straight the straight strai	00

Fig. 4.7	The particle model to represent effects of wiping motions. On the left, the particles are pushed such that they accumulate in front of the sponge. On the right, the particles are deleted	(7
Fig. 4.8	Example of SDGs for the three removal actions. The nodes n_i are visualized by cyan boxes. The edges n_i , n_{i+1} are shown as blue lines. The goal positions are highlighted as green boxes.	71
Fig. 5.1	Planning intelligent physical compliance.	78
Fig. 5.2	The flow chart for solving manipulation tasks within the object context	80
Fig. 5.3	Example parameterization of the geometric process models of the <i>skim</i> Action Template with different wipers and windows. The target surface is highlighted in red. The derived tool trajectories are drawn in blue	81
Fig. 5.4	Alternative parameter sets and geometric backtracking are used to find a feasible configuration to clean the inner side of a mug with a sponge. Given the choice made for the first alternative, the hand is covering the mug, which prevents any successful task completion	83
Fig. 5.5	None of the alternatives explored in Fig. 5.4 are successful, such that symbolic backtracking has to be initialized. The symbolic planner explores the symbolic state space anew. As a result, the planner adds a handover action such that the inner side of the mug can be cleaned	83
Fig. 5.6	Cross section of the Capability Map for Rollin' Justin's right arm.	87
Fig. 5.7	Optimal intersection of the capability map for the right manipulator and the ROI of a window wiper on the left, and the optimal intersection for the ROI of a window on the right	89
Fig. 5.8	Simulation of whole-body motions to solve the window wiping task. The robot executes wiping motions from the left to the right, starting at the top of the window pane. The large area requires the robot to use its right arm, the torso and the mobile base to reach the entire window	91
Fig. 5.9	The workspace trajectory for wiping the window (left) and the corresponding reachability index r for the end-effector along the complete trajectory (right)	02
Fig. 5.10	Illustration of the robotic agent Rollin' Justin skimming the windshield of a car and scrubbing the hood	72
	with a sponge	93

Fig. 5.11	Simulated particle distribution on the target surface in the chopping board scenario. The initial distribution of the particles is randomly sampled. This can be assumed for any barely perceivable medium, such as small	
Fig. 5.12	breadcrumbs	94
U	the boundaries for the particle distribution. The visualized collision sphere matches the size of the sponge in Fig. 4.6. It is visualized for the graph node positions n_i , where	
Fig. 5.12	green is valid and red in collision with the environment	95
Fig. 5.15	The visualized area corresponds to the obstacle free chopping	0.6
Fig. 5.14	Top view of the developed graph structures for the three	96
-	prototypical removal actions absorb, collect, and skim.	
	for the skim action are located at the top, outside	
	the boundaries of the plot	97
Fig. 5.15	Visualization of the tool orientation in case of collision and no reachability. Initially, each node n_i is oriented toward	
	the next node n_{i+1} . The tool rotation is interpolated along	
	the Cartesian path, i.e. the edge (n_i, n_{i+1}) between this nodes. If a configuration along this path is in collision (left)	
	or unreachable (right), the free tool DOF are exploited.	100
Fig. 5.16	The eSDG collect graph consists of three clusters visualized	
	is located on the right (vellow node), the cluster on the left	
	is resolved first (transparent robot). The A* algorithm	
Fig. 5.17	is used to navigate between the clusters	102
1 ig. <i>3</i> .17	(right) is used to dispense all particles into a trash can (red)	103
Fig. 5.18	Simulation-based effect prediction for the collect action in the	
	chopping board scenario. The particles contact behavior is visualized over time	105
Fig. 5.19	Simulation-based effect prediction for the absorb action	
	in the table scenario. The particles contact behavior is visualized over time	106
Fig. 5.20	Simulation-based effect prediction for the skim action	100
	in the windshield scenario. The particles contact behavior	107
Fig. 6.1	Is visualized over time	107
Fig. 6.2	Cartesian impedance control loop (Dietrich 2015)	116

Fig. 6.3	Overview of the cognition-enabled controller concept. The whole-body controller is parameterized by the reasoning introduced in Chap. 5. In return, the controller provides episodic memories to interpret the task outcome	
	to be detailed in Chap. 7.	122
Fig. 6.4	The conceptual parameterization of the control level. The objects that participate in the action span the parameter set. The respective object elements that parameterize the control level are listed on the left, the influenced controller task is listed in the center, and the execution effects that are mandatory to fulfill the desired task outcome are listed on the right.	123
Fig. 6.5	The compliant control strategy can be exploited to simplify the planning of in-contact motions. The commanded state for the tool x_{tool} , resulting from the virtual, spatial equilibrium x_{des} of the right end-effector, is geometrically unfeasible. In contact, the parameterization of the robot forces the correct alignment of the tool (including deformations) to solve the task (see x_{act})	124
Fig. 6.6	The humanoid robot Rollin' Justin scrubbing a mug with a sponge	128
Fig. 6.7	Desired and actual position of the left hand during scrubbing	129
Fig. 6.8	This plot compares the spatial, virtual equilibrium point x_{des} with the actual position of the right hand x_{act} during the window wiping task. The three axes correspond to the three dimensions of the window (similar to robot coordinates), where z is the height and y is the width. The deviation along the x-axis corresponds to the contact of the wiper with the window pane. Note that the transit paths	
Fig. 6.9	(connecting two contact situations) are removed for clarity Rollin' Justin wiping a window. Based on the ROI (red) and the wiper width the Cartesian task trajectory (blue, dashed arrows) is computed. The task has been successfully demonstrated to a public audience at the Hanover Fair 2013	131
Fig. 6.10	Rollin' Justin collecting shards of a broken mug. The ROI (red) is defined by the distribution of the shards which is here localized manually. Along this region, a cyclic trajectory has to be executed (blue, dashed arrow)	132
Fig. 6.11	Frontal view of the commanded and measured TCP of the right manipulator. During the contact phase the hands are both following a tilt motion introduced by the sweeping broom which reflects the low rotational stiffness around	
	the brush	134

Fig. 7.1	Interpreting Intelligent Physical Compliance	142
Fig. 7.2	Coupling between the planning approach and the interpretation	
	of wiping motions. The particle distribution model serves	
	as the basis for the earlier introduced motion planning	
	algorithm as well as the haptic effect inference method	
	discussed in this chapter. The methods complement each	
	other such that the output of the effect inference can be utilized	
	to plan recovery motions in case of estimated performance	
	errors introduced by external disturbances, e. g. collisions	
	with humans as visualized	144
Fig. 7.3	Visualization of a recorded collect motion executed	
	by Rollin' Justin. The recorded Cartesian wiping motion	
	of the robotic manipulator, i.e. the TCP of the sponge	
	it is holding respectively are plotted as black dotted line.	
	The desired wiping motion in contact is shown	
	as blue lines	145
Fig. 7.4	Plot of the external force normal to the target surface $f_{\text{ext, n}}$	
	and the corresponding TCP position in z-direction $x_{tcp, z}$.	
	The measurements with high contact confidence $\mathbf{x}'_{\text{tcp},i}$	
	are highlighted by the green bars	146
Fig. 7.5	Left: Closeup view of all measurements with high	
	contact confidence $\mathbf{x}'_{\text{tcn},i}$ (green dots), which are the basis	
	for the target surface estimation. Right: The estimated	
	target surface visualized as purple box. All positions	
	of the TCP within this box $x_{\text{plane, }i}$ are considered	
	in contact. The brighter the green color, the higher	
	the normalized contact force f'_{r}	146
Fig 76	Example plots of the probability density function for the	110
1 19. 7.0	log-likelihood function for different contact situations	148
Fig 77	The real collect action with a sponge executed by Rollin'	1.0
1 19. 7.7	Iustin (middle) compared to the estimated outcome	
	(bottom) The particle distribution in the bottom row is rotated	
	clockwise where the upper left corner corresponds to the left	
	corner of the chopping board in the top row Black chippings	
	of glass are placed to visualize the task performance and assess	
	the results of the effect inference method. They are not visually	
	perceived by the robot Instead a uniform initial distribution	
	is assumed	149
Fig 78	A broom is used to collect particles on the floor. The broom	112
1 19. 7.0	is in general less accurate than the sponge utilized in the	
	previous example. Some of the chippings are not effected	
	by the broom (top). The task performance decreases with	
	the size of the particles as it is observed for the fine grained	
	sand (bottom)	150

List of Figures

Fig. 7.9	Detergent is applied to a glass panel. The robot executes a skim action with a window wiper and a brush in order to remove the liquid. The detergent on the glass panel is shown before (left) and after (right). The model parameters μ and σ are designed to match the affect of the two tools on	
	the medium.	150
Fig. 7.10	Illustration of the two investigated failure scenarios. First, contact loss due to imprecise localization (left). Second, contact loss due to external human perturbation (right)	151
Fig. 7.11	A plot of the contact force $f_{\text{ext, n}}$ and the TCP position in z-direction $x_{\text{tcp, z}}$ in a failure situation. While the position stays on certain level, it is notable that the contact force is of irregular nature. The contact loss is evident in the reduced number of confident contact situations x'_{true} (green bars)	151
Fig. 7.12	The recorded Cartesian wiping motion in a failure situation arising from a tilted table. The green and black path visualizes the actual measured TCP trajectory. The commanded path is visualized as blue lines. The few confident contact measurements are sufficient to estimate the target surface with the RanSaC algorithm. However, the limited contact force results in less effective motions, such that the particles close to the table edge remain unmoved in the simulation	152
Fig. 7.13	Failure Scenario I: The tilted table simulates an incorrect localization leading to partially bad contact situations shown in the top row. The estimated particle distribution is shown in the lower row. Similarly to the first example the particle behavior is simulated w. r. t. the real world telemetry data recorded during the task execution	153
Fig. 7.14	The plot for the contact force $f_{ext,n}$ and the TCP position in z-direction $x_{tcp,z}$ in the second failure situation. In comparison to the first failure scenario the contact force stays leveled. However, in this case the TCP position deviates significantly. The red bars indicate false positive	
Fig. 7.15	contacts introduced due to this perturbation The Cartesian wiping motion for the second failure situation where the robot was pushed twice at the end-effector. The real world measurements of the TCP position are here visualized as green and red path. The commanded path is visualized as blue lines. Again, the RanSaC algorithm has enough information to estimate the target surface, such that the outliers are detected correctly. Consequently the simulation is omitted and the particles right below the occurrence of the disturbance	154
	remain	154

Fig. 7.16	Failure Scenario II: The robot is pushed twice at	
	the end-effector during task execution as it is shown	
	in the top row. The estimated particle distribution visualized	
	in the bottom row reflects this disturbance	155
Fig. 7.17	Top left: KDE for the remaining particle distribution after	
	the second failure scenario. Top right: The recorded recovery	
	motion and the final particle distribution. Bottom:	
	The eventually successful real world execution.	156
Fig. 7.18	The web interface of openEASE visualizing all trajectories	
	of the sponge where a collision occurred. The yellow	
	trajectory displays one of several collision events	159
Fig. 8.1	Overview of related experiments in the METERON project.	
C	The Haptics experiments validate bilateral haptic teleoperation.	
	Interact uses a mixture of telepresence and basic high-level	
	commands to command a mobile robot. In contrast,	
	the SUPVIS Justin experiment uses a full set of advanced	
	high-level commands to supervise the actions of a robot	167
Fig. 8.2	The image shows the astronauts Paolo Nespoli and Jack	
	Fisher during the first experiment session from ISS on August	
	25, 2017. Paolo Nespoli (in red on the monitor) trained Jack	
	Fisher (in blue on the monitor) and Randy Bresnik (not shown)	
	spontaneously in flight. The intuitive interface concept allowed	
	the additional astronauts to control Rollin' Justin without prior	
	experience	168
Fig. 8.3	Navigation view of the supervised autonomy UI. The semantic	
	map is based on the internal world state of the robot.	
	It is possible to move toward a freely selectable goal	
	position (orange marker) or toward a particular object	170
Fig. 8.4	The central area of the manipulation view shows the	
	augmented video stream of the robot. After an object is	
	selected, a list of possible actions is shown	171
Fig. 8.5	Applied Intelligent Physical Compliance in the SUPVIS	
	Justin experiment	173
Fig. 8.6	Rollin Justin cleaning the SPU as response to the identified	
	failure status	173

List of Tables

Table 1.1	Main publications related to this manuscript	20
Table 2.1	Overview of the actuators of Rollin' Justin	29
Table 3.1	Available manipulation taxonomies related to robotics research	41
Table 3.2	Manipulation task examples based on the developed	16
		40
Table 5.1	Evaluation of the chopping board scenario.	105
Table 5.2	Evaluation of the table top scenario	106
Table 5.3	Evaluation of the windshield scenario	107
Table 6.1	Overview of the parameters for the control tasks. Note that all parameters are instantiated with general-purpose values. The overall controller parameter vector is defined	
	as $C = (C_{car}, C_{jnt}, C_{sca}, C_{mes}, C_{sav}, C_{g}) \dots \dots \dots \dots$	119
Table 6.2	Table of tool-specific parameters. The Cartesian force	
	and the Cartesian stiffness parameters are given w.r.t.	
	the visualized frames	126

List of Listings

Listing 4.1	Exemplary PDDL action definition	58
Listing 4.2	Pick action template: Semantic header	61
Listing 4.3	Pick action template: Geometric body	62
Listing 4.4	Pick action template: Knowledge-based definition	
	of geometric parameters	62
Listing 4.5	Pick action template: List of robot operations	63
Listing 5.1	PDDL definition for a reachable pick action	89
Listing 6.1	Symbolic action representation of the mug scrubbing	
	experiment	127
Listing 6.2	Symbolic transition for the mug scrubbing experiment	127
Listing 6.3	Symbolic action representation for the window skimming	
	experiment	130
Listing 6.4	Symbolic transition for the window skimming experiment	130
Listing 6.5	Symbolic action representation for the collect experiment	132
Listing 6.6	Symbolic transition for the collect experiment	132
Listing 7.1	Prolog query to request and visualize all collision	
	events from openEASE	158

List of Algorithms

Algorithm 5.1	Geometric reasoning procedure	81
Algorithm 5.2	Geometric reasoning with integrated geometric	
	backtracking	84
Algorithm 5.3	Integrated navigation algorithm	90
Algorithm 5.4	The path following algorithm to resolve SDGs in joint	
	space	100
Algorithm 5.5	Extended SDG function, ExtendSDG(<i>C</i> , eSDG)	102
Algorithm 8.1	Resolving action parameters and apply filters	171

Abstract

Physically compliant contact is a major element for many tasks in everyday environments. A universal service robot that is utilized to collect leaves in a park, polish a workpiece, or clean solar panels requires the cognition and manipulation capabilities to facilitate such compliant interaction. Evolution equipped humans with advanced mental abilities to envision physical contact situations and their resulting outcome, dexterous motor skills to perform the actions accordingly, as well as a sense of quality to rate the outcome of the task. In order to achieve human-like performance, a robot must provide the necessary methods to represent, plan, execute, and interpret compliant manipulation tasks. This manuscript covers those four steps of reasoning in the concept of *intelligent physical compliance*.

The contributions advance the capabilities of service robots by combining artificial intelligence reasoning methods and control strategies for compliant manipulation. A classification of manipulation tasks is conducted to identify the central research questions of the addressed topic. Novel representations are derived to describe the properties of physical interaction. Special attention is given to wiping tasks which are predominant in everyday environments. It is investigated how symbolic task descriptions can be translated into meaningful robot commands. A particle distribution model is used to plan goal-oriented wiping actions and predict the quality according to the anticipated result. The planned tool motions are converted into the joint space of the humanoid robot Rollin' Justin to perform the tasks in the real world. In order to execute the motions in a physically compliant fashion, a hierarchical whole-body impedance controller is integrated into the framework. The controller is automatically parameterized with respect to the requirements of the particular task. Haptic feedback is utilized to infer contact and interpret the performance semantically. Finally, the robot is able to compensate for possible disturbances as it plans additional recovery motions while effectively closing the cognitive control loop. Among others, the developed concept is applied in an actual space robotics mission, in which an astronaut aboard the International Space Station (ISS) commands Rollin' Justin to maintain a Martian solar panel farm in a mock-up environment. This application demonstrates the far-reaching impact of the proposed approach and the associated opportunities that emerge with the availability of cognition-enabled service robots.