Skip to main content

Air Flow Based Failure Model for Data Centers

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11334))

Abstract

With the explosive growth of data, thousands upon thousands servers are contained in data centers. Hence, node failure is unavoidable and it generally brings effects on the performance of the whole data center. On the other hand, data centers with vast nodes will cause plenty of energy consumption. Many existing task scheduling techniques can effectively reduce the power consumption in data centers by considering heat recirculation. However, traditional techniques barely take the situation of node failure into account. This paper proposes an airflow-based failure model for data centers by leveraging heat recirculation. In this model, the spatial distribution and time distribution of failure nodes are considered. Furthermore, the Genetic algorithm (GA) and Simulated Annealing algorithm (SA) are implemented to evaluate the proposed failure model. Because the position of failures has a significant impact on the heat recirculation and the energy consumption of data centers, failure nodes with different positions are analyzed and evaluated. The experimental results demonstrate that the energy consumption of data centers can be significantly reduced by using the GA and SA algorithms for task scheduling based on proposed failure model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bilal, K., Malik, S.U.R., Khan, S.U., Zomaya, A.Y.: Trends and challenges in cloud datacenters. IEEE Cloud Comput. 1(1), 10–20 (2014)

    Article  Google Scholar 

  2. Cheng, Y., Fiorani, M., Wosinska, L., Chen, J.: Reliable and cost efficient passive optical interconnects for data centers. IEEE Commun. Lett. 19(11), 1913–1916 (2015)

    Article  Google Scholar 

  3. Deng, Y.: What is the future of disk drives, death or rebirth? ACM Comput. Surv. 43(3), 1–27 (2011)

    Article  Google Scholar 

  4. Deng, Y., Hu, Y., Meng, X., Zhu, Y., Zhang, Z., Han, J.: Predictively booting nodes to minimize performance degradation of a power-aware web cluster. Cluster Comput. 17, 1309–1322 (2014)

    Article  Google Scholar 

  5. Deng, Y., Huang, X., Song, L., Zhou, Y., Wang, F.: Memory deduplication: an effective approach to improve the memory system. J. Inf. Sci. Eng. 33, 1103–1120 (2017)

    Google Scholar 

  6. Elgelany, A.: Energy efficiency for data centers and cloud computing: a literature review. Energy 3 (2013)

    Google Scholar 

  7. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. ACM (2007)

    Google Scholar 

  8. Ferreira, A.M., Pernici, B.: Managing the complex data center environment: an integrated energy-aware framework. Compute 98, 709–749 (2016)

    Article  MathSciNet  Google Scholar 

  9. Guitart, J.: Toward sustainable data centers: a comprehensive energy management strategy. Computing 99(6), 597–615 (2017)

    Article  MathSciNet  Google Scholar 

  10. Hua, Y., Liu, X., Jiang, H.: Antelope: a semantic-aware data cube scheme for cloud data center networks. IEEE Trans. Comput. 63(9), 2146–2159 (2014)

    Article  MathSciNet  Google Scholar 

  11. Lee, Y.C., Zomaya, A.Y.: Energy efficient utilization of resources in cloud computing systems. J. Supercomput. 60(2), 268–280 (2012)

    Article  Google Scholar 

  12. Li, H., Zhu, G., Cui, C., Tang, H., Dou, Y., He, C.: Energy-efficient migration and consolidation algorithm of virtual machines in data centers for cloud computing. Computing 98(3), 303–317 (2016)

    Article  MathSciNet  Google Scholar 

  13. Li, L., Ho, D.W.C., Lu, J.: A consensus recovery approach to nonlinear multi-agent system under node failure (2016)

    Google Scholar 

  14. Lin, R., Deng, Y.: Allocating workload to minimize the power consumption of data centers. Front. Comput. Sci. 11(1), 105–118 (2017)

    Article  Google Scholar 

  15. Liu, Z., et al.: Renewable and cooling aware workload management for sustainable data centers. In: ACM Sigmetrics/Performance Joint International Conference on Measurement and Modeling of Computer Systems, pp. 175–186 (2012)

    Google Scholar 

  16. Moore, J., Chase, J., Ranganathan, P., Sharma, R.: Making scheduling “cool": temperature-aware workload placement in data centers. In: Usenix Technical Conference, Anaheim, CA, USA, 10–15 April 2005, pp. 61–75 (2008)

    Google Scholar 

  17. Polverini, M., Vasilakos, A.V., Ren, S., Cianfrani, A.: Thermal-aware scheduling of batch jobs in geographically distributed data centers. IEEE Trans. Cloud Comput. 2(1), 71–84 (2014)

    Article  Google Scholar 

  18. Popoola, O., Pranggono, B.: On energy consumption of switch-centric data center networks. J. Supercomput. 1–36 (2017)

    Google Scholar 

  19. Sahoo, R.K., Sivasubramaniam, A., Squillante, M.S., Zhang, Y.: Failure data analysis of a large-scale heterogeneous server environment, p. 772 (2004)

    Google Scholar 

  20. Sanjeevi, P., Viswanathan, P.: Nuts scheduling approach for cloud data centers to optimize energy consumption. Computing 11, 1–27 (2017)

    Google Scholar 

  21. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-performance computing systems. IEEE Trans. Dependable Secure Comput. 7(4), 337–350 (2010)

    Article  Google Scholar 

  22. Tang, Q., Gupta, S.K.S., Stanzione, D., Cayton, P.: Thermal-aware task scheduling to minimize energy usage of blade server based datacenters. In: IEEE International Symposium on Dependable, Autonomic and Secure Computing, pp. 195–202 (2006)

    Google Scholar 

  23. Tang, Q., Gupta, S.K.S., Varsamopoulos, G.: Energy-efficient thermal-aware task scheduling for homogeneous high-performance computing data centers: a cyber-physical approach. IEEE Trans. Parallel Distrib. Syst. 19(11), 1458–1472 (2008)

    Article  Google Scholar 

  24. Wang, L., Khan, S.U.: Review of performance metrics for green data centers: a taxonomy study. J. Supercomput. 63(3), 639–656 (2013)

    Article  Google Scholar 

  25. Wang, L., Khan, S.U., Dayal, J.: Thermal aware workload placement with task-temperature profiles in a data center. J. Supercomput. 61(3), 780–803 (2012)

    Article  Google Scholar 

  26. Wei, J., Jiang, H., Zhou, K., Feng, D.: Efficiently representing membershipfor variable large data sets. IEEE Trans. Parallel Distrib. Syst. 25(4), 960–970 (2014)

    Article  Google Scholar 

  27. Wierman, A., Andrew, L.L.H., Thereska, E.: Dynamic right-sizing for power-proportional data centers. IEEE/ACM Trans. Networking 21(5), 1378–1391 (2011)

    Google Scholar 

  28. Xie, J., Deng, Y., Min, G., Zhou, Y.: An incrementally scalable and cost-efficient interconnection structure for data centers. IEEE Trans. Parallel Distrib. Syst. 28(6), 1578–1592 (2017)

    Article  Google Scholar 

  29. Yang, L., Deng, Y., Yang, L.T., Lin, R.: Reducing the cooling power of data centers by intelligently assigning tasks. IEEE Internet Things J. 5(3), 1667–1678 (2017)

    Article  Google Scholar 

  30. Zhan, X., Reda, S.: Power budgeting techniques for data centers. IEEE Trans. Comput. 64(8), 2267–2278 (2015)

    Article  MathSciNet  Google Scholar 

  31. Zhang, L., Deng, Y., Zhu, W., Zhou, J., Wang, F.: Skewly replicating hot data to construct a power-efficient storage cluster. J. Netw. Comput. Appl. 50, 168–179 (2015)

    Article  Google Scholar 

  32. Zhang, Y., Squillante, M.S., Sivasubramaniam, A., Sahoo, R.K.: Performance implications of failures in large-scale cluster scheduling. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277, pp. 233–252. Springer, Heidelberg (2005). https://doi.org/10.1007/11407522_13

    Chapter  Google Scholar 

  33. Zhou, K., Hu, S., Huang, P.H., Zhao, Y.: LX-SSD : enhancing the lifespan of NAND flash-based memory via recycling invalid pages. In: 33rd International Conference on Massive Storage Systems and Technology (MSST 2017) (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the NSFC (no.61572232), in part by the Science and Technology Planning Project of Guangzhou (no. 201802010028, and no. 201802010058), in part by the Science and Technology Planning Project of Nansha (no. 2017CX006), and in part by the Open Research Fund of Key Laboratory of Computer System and Architecture, Institute of Computing Technology, Chinese Academy of Sciences under Grant CARCH201705.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhui Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, H., Deng, Y., Yu, L. (2018). Air Flow Based Failure Model for Data Centers. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11334. Springer, Cham. https://doi.org/10.1007/978-3-030-05051-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05051-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05050-4

  • Online ISBN: 978-3-030-05051-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics