Skip to main content

EdSIDH: Supersingular Isogeny Diffie-Hellman Key Exchange on Edwards Curves

  • Conference paper
  • First Online:
Book cover Security, Privacy, and Applied Cryptography Engineering (SPACE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11348))

Abstract

Problems relating to the computation of isogenies between elliptic curves defined over finite fields have been studied for a long time. Isogenies on supersingular elliptic curves are a candidate for quantum-safe key exchange protocols because the best known classical and quantum algorithms for solving well-formed instances of the isogeny problem are exponential. We propose an implementation of supersingular isogeny Diffie-Hellman (SIDH) key exchange for complete Edwards curves. Our work is motivated by the use of Edwards curves to speed up many cryptographic protocols and improve security. Our work does not actually provide a faster implementation of SIDH, but the use of complete Edwards curves and their complete addition formulae provides security benefits against side-channel attacks. We provide run time complexity analysis and operation counts for the proposed key exchange based on Edwards curves along with comparisons to the Montgomery form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azarderakhsh, R., Fishbein, D., Jao, D.: Efficient implementations of a quantum-resistant key-exchange protocol on embedded systems. Technical report (2014)

    Google Scholar 

  2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, AsiaPKC 2016, pp. 1–10. ACM, New York (2016)

    Google Scholar 

  3. Azarderakhsh, R., Jao, D., Leonardi, C.: Post-quantum static-static key agreement using multiple protocol instances. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 45–63. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_3

    Chapter  Google Scholar 

  4. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9_26

    Chapter  Google Scholar 

  5. Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: ECM using Edwards curves. Math. Comp. 82(282), 1139–1179 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_3

    Chapter  Google Scholar 

  7. Bernstein, D.J., Lange, T.: A complete set of addition laws for incomplete Edwards curves. J. Number Theory 131(5), 858–872 (2011). Elliptic Curve Cryptography

    Article  MathSciNet  Google Scholar 

  8. Charles, D., Lauter, K., Goren, E.: Cryptographic hash functions from expander graphs. J. Cryptol. 22(1), 93–113 (2009)

    Article  MathSciNet  Google Scholar 

  9. Chen, L., et al.: Report on post-quantum cryptography. Technical report, National Institute of Standards and Technology (NIST) (2016)

    Google Scholar 

  10. Costache, A., Feigon, B., Lauter, K., Massierer, M., Puskas, A.: Ramanujan graphs in cryptography. Cryptology ePrint Archive, Report 2018/593 (2018)

    Google Scholar 

  11. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_21

    Chapter  Google Scholar 

  12. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_11

    Chapter  Google Scholar 

  13. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient compression of SIDH public keys. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_24

    Chapter  Google Scholar 

  14. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Edwards, H.M.: A normal form for elliptic curves. In: Bulletin of the American Mathematical Society, pp. 393–422 (2007)

    Article  MathSciNet  Google Scholar 

  16. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodríguez-Henríquez, F.: A faster software implementation of the supersingular isogeny Diffie-Hellman key exchange protocol. IEEE Trans. Comput. (2018, to appear)

    Google Scholar 

  17. Jalali, A., Azarderakhsh, R., Mozaffari-Kermani, M., Jao, D.: Supersingular isogeny Diffie-Hellman key exchange on 64-bit ARM. IEEE Trans. Dependable Secur. Comput. I: Regul. Pap. (2017)

    Google Scholar 

  18. Jao, D., et al.: Supersingular isogeny key encapsulation. Submission to the NIST Post-Quantum Standardization Project (2017)

    Google Scholar 

  19. Kim, S., Yoon, K., Kwon, J., Hong, S., Park, Y.-H.: Efficient isogeny computations on twisted Edwards curves. Secur. Commun. Netw. (2018)

    Google Scholar 

  20. Koziel, B., Azarderakhsh, R., Jao, D.: An exposure model for supersingular isogeny Diffie-Hellman key exchange. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 452–469. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_24

    Chapter  Google Scholar 

  21. Koziel, B., Azarderakhsh, R., Jao, D.: Side-channel attacks on quantum-resistant supersingular isogeny Diffie-Hellman. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 64–81. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_4

    Chapter  Google Scholar 

  22. Koziel, B., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: On fast calculation of addition chains for isogeny-based cryptography. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS, vol. 10143, pp. 323–342. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54705-3_20

    Chapter  Google Scholar 

  23. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M.: Fast hardware architectures for supersingular isogeny Diffie-Hellman key exchange on FPGA. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 191–206. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49890-4_11

    Chapter  Google Scholar 

  24. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M.: A high-performance and scalable hardware architecture for isogeny-based cryptography. IEEE Trans. Comput. PP(99), 1 (2018)

    MATH  Google Scholar 

  25. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M., Jao, D.: Post-quantum cryptography on FPGA based on isogenies on elliptic curves. IEEE Trans. Circ. Syst. I: Regul. Pap. 64, 86–99 (2017)

    MATH  Google Scholar 

  26. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: NEON-SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key exchange protocol on ARM. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 88–103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_6

    Chapter  Google Scholar 

  27. Meyer, M., Reith, S., Campos, F.: On hybrid SIDH schemes using Edwards and Montgomery curve arithmetic. Cryptology ePrint Archive, Report 2017/1213 (2017)

    Google Scholar 

  28. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Math. Comput. 48, 243–264 (1987)

    Article  MathSciNet  Google Scholar 

  29. Moody, D., Shumow, D.: Analogues of Vélu’s formulas for isogenies on alternate models of elliptic curves. Math. Comp. 85(300), 1929–1951 (2016)

    Article  MathSciNet  Google Scholar 

  30. Valyukh, V.: Performance and comparison of post-quantum cryptographic algorithms. Master’s thesis, Linkoping University (2017)

    Google Scholar 

  31. Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B 273, A238–A241 (1971)

    MATH  Google Scholar 

  32. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum digital signature scheme based on supersingular isogenies. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 163–181. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7_9

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the reviewers for their comments. This work is supported in parts by awards NIST 60NANB16D246, NIST 60NANB17D184, and NSF CNS-1801341. Also, this research was undertaken thanks in part to funding from the Canada First Research Excellence Fund, Natural Sciences and Engineering Research Council of Canada, CryptoWorks21, Public Works and Government Services Canada, and the Royal Bank of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Koziel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azarderakhsh, R., Bakos Lang, E., Jao, D., Koziel, B. (2018). EdSIDH: Supersingular Isogeny Diffie-Hellman Key Exchange on Edwards Curves. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2018. Lecture Notes in Computer Science(), vol 11348. Springer, Cham. https://doi.org/10.1007/978-3-030-05072-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05072-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05071-9

  • Online ISBN: 978-3-030-05072-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics