
Privacy Preserving Multi-server k-means
Computation over Horizontally

Partitioned Data

Riddhi Ghosal1(B) and Sanjit Chatterjee2(B)

1 Indian Statistical Institute, Kolkata, India
postboxriddhi@gmail.com

2 Department of Computer Science and Automation, Indian Institute of Science,
Bengaluru, India

sanjit@iisc.ac.in

Abstract. The k-means clustering is one of the most popular clustering
algorithms in data mining. Recently a lot of research has been concen-
trated on the algorithm when the data-set is divided into multiple parties
or when the data-set is too large to be handled by the data owner. In the
latter case, usually some servers are hired to perform the task of cluster-
ing. The data set is divided by the data owner among the servers who
together compute the k-means and return the cluster labels to the owner.
The major challenge in this method is to prevent the servers from gaining
substantial information about the actual data of the owner. Several algo-
rithms have been designed in the past that provide cryptographic solu-
tions to perform privacy preserving k-means. We propose a new method
to perform k-means over a large set of data using multiple servers. Our
technique avoids heavy cryptographic computations and instead we use
a simple randomization technique to preserve the privacy of the data.
The k-means computed has essentially the same efficiency and accuracy
as the k-means computed over the original data-set without any random-
ization. We argue that our algorithm is secure against honest-but-curious
and non-colluding adversary.

Keywords: Privacy preserving computation · k-Means
Multiple servers · Horizontal partition

1 Introduction

The k-means clustering is one of the most widely used techniques in data mining
[2,11,15,16,20]. The k-means clustering algorithm is used to find groups which
have not been explicitly labeled in the data. This can be used to confirm business
assumptions about what types of groups exist or to identify unknown groups in
complex data sets. It has been successfully used in various domains including
market segmentation, computer vision, geostatistics, astronomy and agriculture
[6,27,29]. k-means clustering is rather easy to implement and apply even on
c© Springer Nature Switzerland AG 2018
V. Ganapathy et al. (Eds.): ICISS 2018, LNCS 11281, pp. 189–208, 2018.
https://doi.org/10.1007/978-3-030-05171-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05171-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-05171-6_10

190 R. Ghosal and S. Chatterjee

large data sets, particularly when using heuristics such as Lloyd’s algorithm.
However, sometimes the data-set contains private information that cannot be
made available to the party who is computing the k-means for a user [1,8].
There are times when the data is huge and the data owner does not have the
computational capability to do clustering on his/her own. In our work we deal
with this particular case. Another scenario may be a few independent parties
contain parts of data on whom clustering has to be performed as a whole [5,13,
32].

The privacy and secrecy considerations can prohibit the parties from sharing
their data with each other. The solution should not just provide the required
privacy assurance but should also minimize the additional overheads in terms of
communication and computation costs required to introduce privacy. Solutions
proposed in the works such as [5,9,13,32] compute k-means by making the par-
ticipating parties compute common functions, without having to actually reveal
their individual data to any other party. Such algorithms face a lot of challenges
because it is not very easy to reach an optimal point that will provide a perfect
balance for security, accuracy and efficiency.

One of the most common approaches to solve this issue is using data per-
turbation to preserve the privacy of the data. Some of the common techniques
are using additive noise [18], multiplicative noise [22], geometric perturbation, or
rotational perturbation [7], all of which have the “Distance Preservation Prop-
erty”. Some works use secure multiparty computation [28], and homomorphic
encryptions [3,14] to safeguard the data. But these schemes are generally com-
putationally costly and reduce the performance of the clustering algorithm sig-
nificantly. The latter approaches provide more protection to the data than the
former at the cost of efficiency and sometimes their application becomes practi-
cally infeasible.

The setup we consider in this work is somewhat similar to [31] in which
Upmanyu et al. use a so-called shatter function (a function described [31] to
divide a value into many secret shares keeping the privacy of the data intact) and
the Chinese Remainder theorem [10,25] to encrypt and reconstruct respectively.
They propose a ‘cloud computing’ based solution that utilizes the services of
non-colluding servers. Each of the users, is required to compute the secret shares
of its private data using a shatter function. Each share is then sent over to a
specific server for processing. The cloud of employed servers, now runs the k-
means algorithm using just the secret shares. The protocol ensures that none
of the users/servers have sufficient information to reconstruct the original data,
thus ensuring privacy.

1.1 Our Contribution

We use the concept of outsourcing [21] the data to third parties who will do
the computation for the data provider. These third parties are considered as
adversarial, hence the data needs to be protected from them. Though [31] is fairly
efficient, our protocol is better because we avoid any cryptographic overheads
and use multiplicative data perturbation. Since our protocol divides the data into

Privacy Preserving Multi-server k-means Computation 191

parts and every server works in parallel, it boosts the performance in comparison
to a single server performing the whole algorithm [33]. We argue that our protocol
is secure against attacks on data perturbations because of the introduction of a
noise term. Keeping the noise under a certain limit, we have been able to provide
a clustering algorithm that achieves the same accuracy as the iterative k-means
over non-randomized data.

2 Proposed Solution

2.1 Problem Setup

In our setting, there is one data owner who holds a large dataset D containing
n data points each having d attributes. All the attributes are considered to be
floating point parameters. Hence D can be thought as containing n points in Rd.
Let these points be labeled as X1,X2, ...,Xn.

The data owner wishes to use t servers to compute the k-means. In this
work we consider horizontal partitioning of the data, which means dividing the
entire dataset into subsets based on tuples. Each tuple contains all the attributes
involved. Let m be the number of iterations needed for the k-means to converge
where k represents the number of clusters we want to form. The problem is
computing the k-means on the entire dataset securely, efficiently and accurately
by dividing the dataset horizontally among the servers without revealing any
information about the original data points and any of the attributes to the
servers.

2.2 Our Protocol

– The data provider generates 2d random numbers ri, i ∈ 1, 2, ..., 2d from a
large set R. A lower bound for the value of ri will be discussed in a later
section.

– The data provider selects a small enough ε > 0 and then chooses n many εi,
i ∈ 1, 2, ..., n uniformly from (0, ε). They will behave as noise added to the
data to improve the security. A detailed analysis of the upper bound of ε has
been provided later.

– Let us denote Xi = (xi1, xi2, ..., xid).
Randomize the data by the following computation:

X ′
i = ((r1 + εi) ∗ xi1 + r2, (r3 + εi) ∗ xi2 + r4, ..., (r2d−1 + εi) ∗ xid + r2d). (1)

Hence the jth attribute of Xi is transformed to:

(r2j−1 + εi) ∗ xij + r2j . (2)

– The data owner then locally partitions the transformed data horizontally
into t − 1 parts and sends it to t − 1 servers, which means the tth server
does not receive any data. The work of the tth server shall be to perform
certain calculations using the data provided to it by the remaining servers.
The details of which shall be discussed below.

192 R. Ghosal and S. Chatterjee

The k-mean Computation

Initialization Step. The data provider picks k many transformed data points
at random.1 These points will act as the initial cluster centers. These points
say, c1, c2, ..., ck shall be sent to all the t − 1 servers who have some part of the
transformed data points.

Lloyd’s Step

1. Each server computes the Euclidean distance of its share of data from the
initial centers and assigns cluster labels to the points locally.

2. Every server finds the number of points allotted to each center among their
share of the data. Suppose for server si, mij denotes the number of data
points belonging to cluster cj . Here i ∈ {1, 2, ..., (t − 1)}, j ∈ {1, 2, ..., k}.

3. Each server computes the sum of the points belonging to each center. Let us
denote it by dij , which denotes the sum of the points belonging to cluster j
for server i.

4. Next step involves the generation and sharing of two secret keys x and y
among the t − 1 servers. For this purpose, the data owner may generate two
random numbers and transfer them to the t − 1 servers alongside the trans-
formed data set that is being transferred. The key sharing will be performed
only for the first iteration. From the next iteration onwards we can use a
cryptographically secure hash function to get modified values of x and y for
every step. The hash function used will be a common function known to each
of the first t−1 servers. The key generation procedure and hash function will
be discussed in details in Sect. 2.3.

5. Each server computes
x ∗ dij (3)

and
y ∗ mij (4)

for each center j, 1 ≤ j ≤ k and sends it to the tth server.
6. Server t calculates: ∑t−1

i=1(x ∗ dij)
∑t−i

i=1(y ∗ mij)
(5)

for 1 ≤ j ≤ k centers and returns this result to the other servers. This value
shall work as the centroid i.e. the new centers for the subsequent iteration of
the Lloyd’s step.
Let the centroid be denoted by ν1, ν2, ..., νk.

Re-initialization. Repeat Lloyd’s step till convergence. If the new centroids com-
puted are not equal to the centroids computed in the previous iteration, i.e.
{c1, c2, ..., ck} �= {ν1, ν2, ..., νk} then reassign c1, c2, ..., ck = ν1, ν2, ..., νk. These
shall be the updated centroid values.
1 We are aware of several other methods to select the initial centers which may make

the k-means work more efficiently. But in this work we do not concentrate on assign-
ment of initial clusters too much.

Privacy Preserving Multi-server k-means Computation 193

Output. After the iterations are complete, the t − 1 servers send the cluster
centers and cluster assignments of their share of data to the data provider. The
data owner now possesses the cluster labelling of all the data and the final cluster
centers. Hence, the algorithm terminates at this step.

2.3 Group Key Sharing and Hash Function

As previously mentioned, the initial set of x and y will be provided to the t − 1
servers by the data provider. Alternatively the t − 1 servers may indulge in a
group key sharing algorithm [4] to generate the first pair of random numbers. But
this would lead to additional computational costs which we are compensating for,
by a little bit of additional communication that is involved in transferring two
random numbers from the data owner to servers. For the subsequent iterations,
we use a publicly available hash function. This function will take as input the
output of the previous iteration and the round number. This will allow only the
parties that have access to the group key to generate random numbers using
the hash iteratively. The hash function used should be a one way function, i.e.
computation of the inverse of the hash function should be computationally hard.

2.4 Dynamic Setting

In our protocol, we have only talked about static data. In case, the data provider
gets access to more data that it wishes to include in the k-means calculation, the
data provider does the randomization as Eq. (1) over the new data points. The
new points will then be partitioned and sent to the servers. These servers will
just include these new points during the assignment of clusters and finding of
centroids from the subsequent iteration and proceed as before till convergence.

3 Analysis

In this section, we will be performing a detailed analysis of the correctness of
our protocol. We will inspect the accuracy and show how we handle error in our
protocol by providing an upper bound for the noise element. Further we will
scrutinize our protocol from the security point of view, where we will talk about
leakage of information and conclude how such a leakage does not compromise the
privacy. Lastly we will provide a brief account of the efficiency of our algorithm.

3.1 Correctness

Since iterative k-means guarantees convergence, our protocol will be deemed
correct if we can prove convergence of our algorithm over the transformed data
and if we can show that the error involved in clustering the transformed data is
acceptable when compared to the clustering of the original data.

Without loss of generality, we have made the assumption that all data points
have non negative attributes. This assumption can be made because all points

194 R. Ghosal and S. Chatterjee

can easily be translated such that all their coordinates become positive. This is
done without distorting the geometry at all, hence it does not affect the clustering
algorithm.

Necessarily the main operations in the k-means computation are the following
steps.

1. Find Distance: Computing distance between points and the centroids.
2. Compare Distance: Find which centroid is nearest to a point.
3. Find new centroid: Re-initialize the centers.

For two data points X1,X2 and the corresponding transformed data points
X ′

1,X
′
2 we can express the respective distances as follows.

Distance(X1,X2) := 2

√
√
√
√

d∑

i=1

(x1i − x2i)2 (6)

Distance(X ′
1,X

′
2) := 2

√
√
√
√

d∑

i=1

(r2i−1(x1i − x2i) + ε1x1i − ε2x2i)2 (7)

= 2

√
√
√
√

d∑

i=1

(r22i−1(x1i − x2i)2+(ε1x1i − ε2x2i)2 + 2r2i−1(x1i − x2i)(ε1x1i − ε2x2i)).

In order to make our calculations and analysis simpler, the above expression
under the root maybe looked upon as a quadratic polynomial in ε. Assuming
ε to be sufficiently small (say ≤ 0.1), the polynomial will be dominated by
the lower order and the constant terms, hence the quadratic term of ε can be
neglected. Thus, the final expression takes the form:

2

√
√
√
√

d∑

i=1

(r22i−1(x1i − x2i)2 + 2r2i−1(x1i − x2i)(ε1x1i − ε2x2i). (8)

In some places we will use expression (8) instead of (7) and will provide proper
justification for its usage. We introduce an error term λ where λ1 = (ε1x1i −
ε2x2i)2+2r2i−1(x1i −x2i)(ε1x1i −ε2x2i) and λ2 = 2r2i−1(x1i −x2i)(ε1x1i −ε2x2i)
shall be considered to be the error terms for (7) and (8) respectively added to the
distance due to inclusion of noise. Note that the error terms λ1, λ2 are directly
proportional to ε and the difference in co-ordinates of the two points (X1,X2).
Given a sufficiently small ε, the error can be easily bounded by an acceptable
threshold. This will be made clearer shortly when we discuss the bound of ε and
ris. We emphasise that the distance between the transformed points (X ′

1,X
′
2) is

nothing but the scaled distance between the original points (X1,X2) with some
error term added to it. The scaling is done uniformly for all data points Xi,
1 ≤ i ≤ n.

Privacy Preserving Multi-server k-means Computation 195

It is evident that k-means converges when the distance between the new and
original centroid becomes 0. Expression (6) becomes 0 when x1i − x2i = 0,∀i ∈
1, ..., d. Given that each ri > 0, it will be evident that (8) will become 0 if and
only if the above condition holds. Since our exact distance form is described
by (7), (8) becoming 0 implies an error element may prevail in (7) that may
not become 0, but we can neglect that error under the above assumption of
sufficiently small ε.

Hence, we can claim that the k-means on the transformed data shall converge
at the same time when the k-means on the plain text converges. So, the number
of iterations required for convergence is exactly the same.

Lower Bound of ri . We need to specify a range of ris for which the error term
involved in the above expression can be acceptable. We can say that the error
term will not influence our clustering if it does not alter our Compare Distance
method. Hence, if

2

√
√
√
√

d∑

i=1

(x1i − x2i)2 < 2

√
√
√
√

d∑

i=1

(x1i − x3i)2 (9)

then,

2

√
√
√
√

d∑

i=1

(r22i−1(x1i − x2i)2 + (ε1x1i − ε2x2i)2 + 2r2i−1(x1i − x2i)(ε1x1i − ε2x2i))

< 2

√
√
√
√

d∑

i=1

(r22i−1(x1i − x3i)2 + (ε1x1i − ε3x3i)2 + 2r2i−1(x1i − x3i)(ε1x1i − ε3x3i))

(10)
for all possible values of i, which means,

max 2

√
√
√
√

d∑

i=1

(r22i−1(x1i−x2i)2+(ε1x1i−ε2x2i)2+2r2i−1(x1i−x2i)(ε1x1i − ε2x2i))

< min 2

√
√
√
√

d∑

i=1

(r22i−1(x1i−x3i)2+(ε1x1i−ε3x3i)2+2r2i−1(x1i−x3i)(ε1x1i−ε3x3i))

Solving the above equation with proper bounds and using the expression (10)
we get a lower bound for ris.

r > max

∑d
l=1 (x2

il − (xil − xkl)2)

2
∑d

l=1 (xil − xkl)2 − xil(xil − xjl)
,∀i, j, k (11)

where r=min(ri),∀i. Refer to AppendixA.1 for detailed calculation.

196 R. Ghosal and S. Chatterjee

Upper Bound on ε. The requirement that the term inside the root in expres-
sion (8) must be non-negative, gives us an upper bound for ε. A sufficient con-
dition to achieve it is, r22i−1(x1i − x2i)2 > λ2. Substituting for the value of λ2

we get, r2i−1(x1i − x2i) > 2(ε1x1i − ε2x2i) over all possible values of i. Hence,
r2i−1(x1i − x2i) > max(2(ε1x1i − ε2x2i)). Upon simplification, we get

ε < min
r2k−1(xik − xjk)

2xik
,∀i, j, k. (12)

If we use (7) as our parent equation then (9) remains unchanged. This is so
because λ1 is greater than λ2. So using the latter provides us a stronger upper
bound for ε.

Equations (11) and (12) show the bound of r and ε. Combining the two
relations, we will get a common expression for the relation between ε and r that
shall ensure correctness. Thus if ε and ris lie in this range then the output of
Compare Distance function will not be altered for the transformed data.

It is guaranteed that assignment of intermediate clusters for the points remain
consistent with the assignment without the transformation. That is so because
the centroids are found by taking the average over the points in a particular
cluster, hence the distance between a centroid and a data point will be less than
the global maximum and more than the global minimum as described in the
derivation of (11) and (12) respectively. These conditions will ensure that the
clustering over the randomized data points is same as the clustering over the
original data. This way we ensure the accuracy of our clustering technique.

3.2 Security

We consider the adversarial servers to be honest-but-curious.

Adversarial Power:

1. Every server tries to obtain maximum information about the original data
without deviating from the protocol.

2. Every server would like to gain knowledge about the data possessed by the
other servers.

3. Servers record and store all intermediate information made available to them
and use it to find out more information about the data.

4. Collusion among servers is not allowed.

Information available to servers 1 to t − 1:

1. Randomized data points.
2. Intermediate cluster assignments of their own data only.
3. Intermediate cluster centers.
4. Number of iterations needed to converge.

Privacy Preserving Multi-server k-means Computation 197

Information available to tth server:

1. A scaled version of the intermediate centers.
2. Randomized sum of coordinates of the data points that belong to a particular

cluster at each iteration.
3. Randomized value for the number of data points belonging to every cluster

for each server at every iteration.
4. Randomized value of intermediate centers.
5. Number of iterations needed to converge.

Security Against Existing Attack Scenarios. Recall that the information
initially available to the first t − 1 servers is of the form of Eq. (1). Various
algebraic methods have been discussed in [19,23,24] to design attacks on data
perturbation techniques. But most of the attacks described so far in the above
works are applicable for additive noise. In [23], Liu et al. have discussed in
detail the security in random perturbation from the attackers point of view.
Their model deals with known sample or known input-output models in case
of Distance Preserving Transformations. Liu et al. [22] talked about attacks on
multiplicative data perturbation. Their approach uses Independent Component
Analysis to remove the randomization and gain information about the data.
Given that Principle Component Analysis (PCA) works successfully only when
the perturbation matrix is orthogonal, so if the transformation is not distance
preserving as in our case, PCA is unsuccessful to gain any significant information
about the original data.

The crux of all these attack approaches is the fact that that distance pre-
serving transformation in a vector space over a real field is an orthogonal trans-
formation. The advantage of our technique is that the data transformation does
not preserve the distance hence making the transformation a non-orthogonal
one. This fact appears to make it more secure than the Distance Preserving
transformations.

A recent work [17] has devised an attack on Relation Preserving Transfor-
mation (RPT). Since RPT is the basis of our transformation, it may be open
to breach by [17]. Assuming that such an attack is implemented, we analyze the
feasibility of it in detail.

We first recall the salient features of the attack proposed in [17]. It is assumed
that there exists a third party malicious adversary and the attacker has knowl-
edge about some original data points. The attack reveals which side of the hyper-
plane does the point lie. No information is found about the exact location of the
point. A major assumption is that the search space is discrete. It has been
stated that the algorithm is useful for data set that is usually low dimensional.
The main basis of a successful attack is that probability of choosing a point
inside a bounded area is non negligible which again goes back to the assumption
of a discrete search space.

As per [17], the complexity of their algorithm is O(
(|K|

2

)
(R

c)
dI). In the above

expression, |K| is the size of known sample, R is the range of data points, c the

198 R. Ghosal and S. Chatterjee

length of a cell into which the entire space is divided and I is the complexity of
finding Intersection.

We argue why such an attack is not practically applicable in our case. The
attacker has no knowledge about any of the original data and all communication
channels are assumed to be secure and the servers have no information about
any data point. We are working with high dimensional data sets where, usually
d ≥ 8. We consider the best case scenario for the attacker and take |K| = 2. In
the following table, we tabulate complexity of the attack for different choices of
R, c and d (Table 1).

Table 1. Complexity of the attack (O(xI)), where x =
(|K|

2

)
(R
c
)
d

from [17] in our
setting.

R c d x in O(xI)

1000 0.01 2 233

1000 0.01 3 249

1000 0.01 4 266

10 0.001 5 266

10 0.001 6 279

10 0.001 8 2105

100 0.01 9 2118

10 0.001 10 2132

10 0.001 12 2158

1000 0.01 11 2181

In the current computational power, around 264 steps is considered barely
feasible. To compute k-means, let’s assume we require precision of at least 3
digits for accuracy. Since we are dealing with large values of d, even in the best
case for the attacker where R = 10, the complexity can be seen to be much larger
than 264. While dealing with large datasets, it is not a practical assumption that
the data points are dispersed over a range of just 10 units. It will be much
more than this in most cases and d ≥ 8 in most cases where cloud computing
is used. We can thus conclude from the above table that this attack cannot
be practically implemented whenever the dimension is more than 5 because of
the extremely high complexity. Since the attack is exponential in d, the attack
becomes extremely inefficient for large and high dimensional data sets making
it infeasible to implement in real life.

Security Against Data Leakage. Our technique allows certain information
leakage to the servers. After convergence, servers 1 to (t − 1) will get to know
information about the final cluster allotments for every data-point that they
have access to. They also learn which points belong to the same cluster. The

Privacy Preserving Multi-server k-means Computation 199

tth servers knows the intermediate as well as the final cluster centres. This
leakage allows the servers to gain information about the transformed points
only. Knowing about the cluster assignments of the randomized points does not
help the adversary gain any significant information about the original points
or their cluster assignments. We shall now justify this statement with concrete
analysis.

The adversarial servers may try to remove the randomness from the data
they have and retrieve maximum information about the original data. If they
take the attribute wise quotient of their data then they get the following:

r1(x11 − x21) + ε1x11 − ε2x21

r1(x41 − x31) + ε4x41 − ε3x31
. (13)

If the servers wish to use the entire data points instead of the attributes, then the
one possible method to proceed will be to compute the generalized inverse [26]
by treating the vectors as column matrix. Finding the g-inverse of a point and
multiplying it with another data point can be interpreted as a quotient between
two vectors. This calculation leads us back to a form of the above expression
(13).

We next analyse the effectiveness of a probabilistic approach to see if there
is some significant leakage of data. We want to ensure that the above expression
(13) reveals no significant information about

x11 − x21

x41 − x31
. (14)

We assume probability distributions over expression (13) and (14) and proceed to
check how similar are these two distributions. If the distributions are not similar
then we can claim the expression (13) does not reveal anything significant about
expression (14).

We use the Kullback-Leibler Divergence function [12] as a metric to compare
the two distributions. Kullback-Leibler divergence is a bounded function between
0 and 1. The further the value is from 0, the less similar are the two distributions.
With the help of proper upper and lower bounds, simplification of the divergence
functions gives us a lower bound on the metric. Let us denote KD as the output
of the divergence function. Then,

KD ≥ d
x11 − x21

x41 − x31
log

r1 + εx41
x41−x31

r1 − εx11
x11−x21

. (15)

Refer to AppendixA.2 for details.
The definition of Kullback-Leibler guarantees the value of (15) to be non

negative. Since (15) is an increasing function of ε, the greater the value of ε,
more is the deviation of the function from 0. We can increase ε till the upper
bounds to ensure that the Kullback-Leibler distance moves away from 0. Hence,
by regulating ε, the probability distributions can be made dissimilar.

Finally, we discuss the leakage of information to server t. Server t receives
information in the form of Eqs. (3) and (4). Its aim again will be to remove

200 R. Ghosal and S. Chatterjee

the randomization and get information about the original values. It can try the
following two divisions to extract out the randomness. Compute

(x ∗ dij)
(y ∗ mij)

(16)

or compute using only (3)
(x1 ∗ dij)
(x2 ∗ dij)

(17)

and do similar with the use of (4) alone. Again, using the same techniques as
before of assuming probability distributions and finding the Kullback-Leibler
divergence function between the randomized and the non-randomized values, it
can be shown that KD for (16) is:

− log
x

y

∑ dij

mij
(18)

while KD for (17) is:
− log

x1

x2
z (19)

where z denotes the number of points taken into consideration while computing
KD.

Thus we see that as long as x and y are not same, the occurrence of which
has negligible probability as the numbers are generated randomly, the Kullback-
Leibler divergence function will give an output that will be away from 0.

There is no interaction between servers 1, ..., (t − 1) other than the key
exchange, so a server cannot gain any information about the data of the other
servers when collusion is disallowed. The other leakage of information that we
compromise with is the number of iterations needed to converge, but we can
accommodate this because it does not give up on the privacy of the data which
is our primary goal.

3.3 Efficiency

In analyzing the performance of our algorithm on the basis of the total commu-
nication and computational cost, we discuss the complexity of the entire process
by dividing it into three different stages: the data provider, the first t−1 servers
and the tth server.

Data Provider Computation: The only computation done here is the random-
ization of the data where the computation cost is dominated by the number of
multiplications.

Communication: There shall be a one time communication necessary to send
the randomized data to the respective servers. Without loss of generality, we
may assume that the data provider divides the data set into t − 1 parts each of
size n1, n2, ..., nt−1. The communication cost will depend on the size of the data
transferred. In this and all further cases that we discuss, we will deal with the

Privacy Preserving Multi-server k-means Computation 201

worst case, i.e. we assume that the size of the data is the upper bound for all
the possible values. Say this upper bound is U .

Servers 1 to (t − 1) Computation: The main computations being done here are
finding distance and comparing distance before assigning the necessary clusters.
Here the operations that dominate the performance are performing squares and
doing comparisons to find which cluster a point should belong to.

Communication: Sending x ∗ di,j and y ∗ mi,j (see expressions (3) and (4)
respectively) to server t uses up some bandwidth. Here consider that all values
sent by a server i in the form of (3) and (4) shall have an upper bound Ni and
Mi. This communication cost will be accounted for m number of times where m
is the number of iterations needed for the algorithm to converge.

Server t Computation: Computing the intermediate cluster centres (see (5))
requires division operation that will be the main computational cost in this
case.

Communication: Returns k many values of intermediate cluster centres to
each server m number of times. Assumption is that the value of those centres
will always be less than C, where C is the upper bound of all values to be
returned by server t.

Comparison with [31]. Since our model is closest to the one proposed by
Upmanyu et al., it is fair to compare the efficiency of both the approaches.
Instead of using three layers of interaction like us, they use only two levels
of interaction. Their communication cost for sending data from data owner to
servers is same as ours because they have to send secret shares of each data point
to the servers similar to our sharing of data points to servers. Computationally,
our algorithm beats theirs because of the following. (i) In [31], the data owner
needs to shatter the data points leading to performing t modulo operations for
each data point. Hence, nt modulo operations are to be performed, whose com-
putation cost is similar to inversion that is heavier than multiplication. (ii) At
the server level, in order to assign clusters, the servers need to merge their share
of secrets together and then proceed with distance computation and comparison.
This process in whole involves two main operations, sharing common secret keys
using group key sharing and merging the shared secrets. The merging operation
uses Chinese Remainder Theorem (CRT), which has a complexity of O(N2),
where N is the modulus in CRT. Repeating this for all n data points and for m
many rounds makes the complexity O(nN2m). In addition to this, the usage of
a common group key sharing algorithm further increases the computation cost
significantly. Thus the amount of computations to be done by [31] is much heav-
ier than in our case. We summarize in the tables below, the comparison between
computation cost of the two algorithms.

Performance Comparison When Data Owner Locally Compute k-
means. If the data provider did not outsource the computation of k-means and
instead did the entire process on his/her own, the complexity would be O(nkdm).
The performance would be dominated by multiplications and inversions. When-
ever the number of clusters to be formed becomes large, the efficiency would

202 R. Ghosal and S. Chatterjee

Table 2. Our algorithm

Computational Communication

Data provider O(nd)(Multiplication) O(nU)

Servers 1 to (t − 1) O(knidm)(Multiplication) O(m(Ni + Mi))

Server t O(mk)(Inversion) O(mkC)

Table 3. Algorithm in [31]

Computational Communication

Data provider O(nt) (Inversion) O(nU)

Servers O(nN2m) (Chinese Remainder Theorem) O(niNi)

be affected. By outsourcing, one will also be relieved of performing numerous
inversions and comparisons that will be taken care of by the servers. Moreover,
along with time complexity, another constraint might be space complexity as
well. If the entire algorithm is performed locally, then the data owner needs
storage space in order to keep all the intermediate information recorded at every
round of iteration. In this case, all that the data provider needs is storage for
the data set for only the first round (Tables 2 and 3).

4 Choice of Parameters for Practical Implementation

It may seem that pre-processing the data for randomization will require a signif-
icant amount of computation. Following the naive approach, the first step would
be selecting values of ri and ε. Following (11), to find the strict bound of r shall
take O(n3) many inversions. This would go against our claim of having a very
efficient algorithm. However, the problem can be easily solved by using a weaker
bound instead of using the strict bound that we have derived in (11) and (12).
From (11) we have,

r > max
∑d

l=1 (x2
il − (xil − xkl)2)

2
∑d

l=1 (xil − xkl)2 − xil(xil − xjl)
,∀i, j, k.

Note that,

max
∑d

l=1 (x2
il − (xil − xkl)2)

2
∑d

l=1 0(xil − xkl)2 − xil(xil − xjl)
≤ max

∑d
l=1 (x2

il − (xil − xkl)2)

2
∑d

l=1 (xil − xkl)2 − x2
il)

≤ −1
2
.

Since (11) gives the range for correctness, r > − 1
2 will retain the correctness.

From (12), we have,

min
r2k−1(xik − xjk)

2xik
≥ min

r2k−1

2
.

Privacy Preserving Multi-server k-means Computation 203

Since we are dealing with only positive values of ε, one can choose any non-
negative real number w. Then choosing r > w and ε < w

2 will ensure correctness.
This process helps us get the value of the parameters in constant time. The

next step would be performing multiplications to randomize the data. Our aim is
to optimize security and efficiency. We use the bit length of ri and εi to analyze
the efficiency and the security. The efficiency is dominated by the multiplica-
tions to be performed. Multiplying two numbers of �-bits has a complexity of
O(�2). Total nd many multiplications are needed to be performed that will be a
complexity of O(nd�2). Let the bit length of the maximum value of ri be �1 and
that of the maximum value of εi be �2. We assume that our algorithm is deemed
secure if the adversary cannot guess the random numbers with probability more
that 2−80. We analyze the security of two expressions. In the first, the adversary
needs to guess two values of ris and one value of εi to get to know about one of
the coordinates of a data point from expression 1:

X ′
i = ((r1 + εi) ∗ xi1 + r2, (r3 + εi) ∗ xi2 + r4, ..., (r2d−1 + εi) ∗ xid + r2d).

For the second case, the adversary has to guess one value of ri and three values
of εis with non negligible probability from Eq. 13 as reproduced below:

r1(x11 − x21) + ε1x11 − ε2x21

r1(x41 − x31) + ε4x41 − ε3x31
.

In the following table we demonstrate some plausible values of �1, �2 that will
optimize security along with correctness. The way of choosing �1 and �2 has been
talked about in details in AppendixB.

We consider n = 216 and d = 24. One assumption is that �1 > �2 as we do
not want the noise to surpass the scaling factor (Table 4).

Table 4. Parameters for practical implementation

�1 �2 Probability of guessing (1) Probability of guessing (13) O(nd�21)

34 32 2−77 2−80 230

40 32 2−89 2−82 231

64 32 2−137 2−110 232

128 8 2−241 2−102 234

5 Conclusion

In this work, we have proposed a solution to perform cloud-based k-means clus-
tering in the multi-server setting. The main aim was to perform clustering as
efficiently as possible without compromising with the privacy of the data to the
extent possible. We have provided a technique that is easy to understand and

204 R. Ghosal and S. Chatterjee

implement along with being robust. In our work, we have analyzed the cor-
rectness and security of the algorithm in details. Our analysis shows that the
proposed technique is secure against a passive adversary. Our method is very
efficient as it does not include any heavy cryptographic computation. The k-
means process we have described is similar to the iterative k-means used over
original data set. Hence the efficiency of both the algorithms is comparable.
We also discussed practical parameter choices for our algorithm. One interesting
future work would be to extend the perturbation based approach to allow partial
collusion among the servers.

A Detailed Computations

A.1 Lower Bound for ri, 1 ≤ i ≤ 2d

max 2

√√
√√

d∑

i=1

(r22i−1(x1i − x2i)2 + (ε1x1i − ε2x2i)2 + 2r2i−1(x1i − x2i)(ε1x1i − ε2x2i))

< min 2

√√
√
√

d∑

i=1

(r22i−1(x1i − x3i)2 + (ε1x1i − ε3x3i)2 + 2r2i−1(x1i − x3i)(ε1x1i − ε3x3i))

To maximize LHS and minimize RHS, we take ε1=ε, ε2=0, ε3 = ε and thus,

d∑

i=1

(r22i−1(x1i − x2i)2 + (ε2x2
1i + 2r2i−1(x1i − x2i)(εx1i))

<
d∑

i=1

(r22i−1(x1i − x3i)2 + (ε2(x1i − x3i)2 + 2r2i−1ε(x1i − x3i)2)

Using (10), we further get,

ε

d∑

i=1

[x2
1i − (x1i − x3i)2] + 2

d∑

i=1

r2i−1[x1i(x1i − x2i) − (x1i − x3i)2] < 0

⇒ 2
d∑

i=1

r2i−1[(x1i − x3i)2 − x1i(x1i − x2i)] > ε

d∑

i=1

[x2
1i − (x1i − x3i)2]

⇒ r > max(ε
∑d

l=1 (x2
il − (xil − xkl)2)

2
∑d

l=1 (xil − xkl)2 − xil(xik − xjl)
),∀i, j, k. (20)

Given that ε is sufficiently small, it can be safely assumed to be less than 1. Hence
if (12) is satisfied, (20) is satisfied as well. Although (20) is a better bound, we
use (12) to make it independent of ε.

Privacy Preserving Multi-server k-means Computation 205

A.2 Kullback Leibler Distance

The Kullback Leibler Distance (KD) is defined to be −∑
i P (i) log Q(i)

P (i) where

P (i) =
x1i − x2i

x4i − x3i
andQ(i) =

r2i−1(x1i − x2i) + ε1x1i − ε2x2i

r2i−1(x4i − x3i) + ε4x4i − ε3x3i
.

KD = −
∑

i

x1i − x2i

x4i − x3i
log

r2i−1 + ε1x1i−ε2x2i
x1i−x2i

r2i−1 + ε4x4i−ε3x3i
x4i−x3i

=
∑

i

x2i − x1i

x4i − x3i
log

r2i−1 + ε1x1i−ε2x2i
x1i−x2i

r2i−1 + ε4x4i−ε3x3i
x4i−x3i

. (21)

Without loss of generality, we assume that for i = 1, the above expression attains
minima,

≥ d
x21 − x11

x41 − x31
log

r1 + ε1x11−ε2x21
x11−x21

r1 + ε4x41−ε3x31
x41−x31

Let,

D1 =
KD

dx21−x11
x41−x31

≥ log
r1 + ε1x11−ε2x21

x11−x21

r1 + ε4x41−ε3x31
x41−x31

.

Hence,

eD1 ≥ r1 + ε1x11−ε2x21
x11−x21

r1 + ε4x41−ε3x31
x41−x31

≥ r1 − εx21
x11−x21

r1 + εx41
x41−x31

.

Finally,

KD ≥ d
x11 − x21

x41 − x31
log

r1 + εx41
x41−x31

r1 − εx21
x11−x21

.

B Range of Bit Length of the Parameters

The probability of correctly guessing the random numbers from Eq. (1) is com-
puted as follows. The adversary may arbitrarily fix the choice of two indices from
{1, . . . , 2d} for the ris and the corresponding index from {1, . . . , n} for the choice
of ε. Fixing the two ri from 2d many ri’s can be done in

(
2d
2

)
ways. Similarly

choosing one εi from n many εi’s can be done in n ways. Hence the probability
is: (

2d

2

)(
n

1

)
1

22�1

1
2�2

.

Similarly, the probability of correctly guessing from Eq. (13) is:
(

2d

1

)(
n

3

)
1

2�1

1
23�2

.

206 R. Ghosal and S. Chatterjee

Fixing n and d as chosen, for the probability to be less than 2−80, the following
two equations must be satisfied,

2�1 + �2 ≥ 103, (22)

and
�1 + 3�2 ≥ 130. (23)

Hence the above two equations give us the range for the bit length of the
parameters.

References

1. Agrawal, R., Srikant, R: Privacy-preserving data mining, vol. 29. ACM (2000)
2. Alsabti, K., Ranka, S., Singh, V.: An efficient k-means clustering algorithm (1997)
3. Beye, M., Erkin, Z., Lagendijk, R.L.: Efficient privacy preserving k-means cluster-

ing in a three-party setting. In: 2011 IEEE International Workshop on Information
Forensics and Security, pp. 1–6 (2011)

4. Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Offline assisted group key
exchange. Cryptology ePrint Archive, Report 2018/114 (2018). https://eprint.iacr.
org/2018/114

5. Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: Proceedings of
the 14th ACM Conference on Computer and Communications Security, CCS 2007,
pp. 486–497, ACM, New York (2007)

6. Celik, T.: Unsupervised change detection in satellite images using principal com-
ponent analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 6(4),
772–776 (2009)

7. Chen, K., Liu, L.: Privacy preserving data classification with rotation perturbation.
In: Fifth IEEE International Conference on Data Mining (ICDM 2005), 4 p. (2005)

8. Cranor, L.F.: Internet privacy. Commun. ACM 42(2), 28–38 (1999)
9. Doganay, M.C., Pedersen, T.B., Saygin, Y., Savaş, E., Levi, A.: Distributed privacy

preserving k-means clustering with additive secret sharing. In: Proceedings of the
2008 International Workshop on Privacy and Anonymity in Information Society,
PAIS 2008, pp. 3–11. ACM, New York (2008)

10. Goldreich, O., Ron, D., Sudan, M.: Chinese remaindering with errors. In: Proceed-
ings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp.
225–234. ACM (1999)

11. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J.
R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

12. Hershey, J.R., Olsen, P.A.: Approximating the Kullback Leibler divergence between
Gaussian mixture models. In: IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2007, vol. 4, p. IV–317. IEEE (2007)

13. Jagannathan, G., Pillaipakkamnatt, K., Wright, R.N.: A new privacy-preserving
distributed k-clustering algorithm. In: Proceedings of the 2006 SIAM International
Conference on Data Mining, pp. 494–498. SIAM (2006)

14. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering
over arbitrarily partitioned data. In: Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, KDD 2005, pp.
593–599. ACM, New York (2005)

https://eprint.iacr.org/2018/114
https://eprint.iacr.org/2018/114

Privacy Preserving Multi-server k-means Computation 207

15. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8),
651–666 (2010)

16. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: An efficient k-means clustering algorithm: analysis and implementation.
IEEE Trans. Pattern Anal. Mach. Intell. (7), 881–892 (2002)

17. Kaplan, E., Gursoy, M.E., Nergiz, M.E., Saygin, Y.: Known sample attacks on
relation preserving data transformations. IEEE Trans. Dependable Secure Comput.
(2017)

18. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving
properties of random data perturbation techniques. In: Third IEEE International
Conference on Data Mining, ICDM 2003, pp. 99–106. IEEE (2003)

19. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: Random-data perturbation
techniques and privacy-preserving data mining. Knowl. Inf. Syst. 7(4), 387–414
(2005)

20. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm.
Pattern Recogn. 36(2), 451–461 (2003)

21. Liu, D., Bertino, E., Yi, X.: Privacy of outsourced k-means clustering. In: Proceed-
ings of the 9th ACM Symposium on Information, Computer and Communications
Security, ASIA CCS 2014, pp. 123–134. ACM, New York (2014)

22. Liu, K.: Random projection-based multiplicative data perturbation for privacy
preserving distributed data mining. IEEE Trans. Knowl. Data Eng. 18(1), 92–106
(2006)

23. Liu, K., Giannella, C., Kargupta, H.: An attacker’s view of distance preserv-
ing maps for privacy preserving data mining. In: Fürnkranz, J., Scheffer, T.,
Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 297–308.
Springer, Heidelberg (2006). https://doi.org/10.1007/11871637 30

24. Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data
perturbation for privacy preserving distributed data mining. IEEE Trans. Knowl.
Data Eng. 18, 92–106 (2006)

25. Mignotte, M.: How to share a secret. In: Beth, T. (ed.) EUROCRYPT 1982. LNCS,
vol. 149, pp. 371–375. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-
39466-4 27

26. Mitra, S.K.: On a generalised inverse of a matrix and applications. Sankhyā: Indian
J. Stat. Ser. A, 107–114 (1968)

27. Oyelade, O.J., Oladipupo, O.O., Obagbuwa, I.C.: Application of k means clus-
tering algorithm for prediction of students academic performance. arXiv preprint
arXiv:1002.2425 (2010)

28. Samet, S., Miri, A., Orozco-Barbosa, L.: Privacy preserving k-means clustering in
multi-party environment. In: SECRYPT (2007)

29. Tellaeche, A., BurgosArtizzu, X.-P., Pajares, G., Ribeiro, A.: A vision-based hybrid
classifier for weeds detection in precision agriculture through the Bayesian and
fuzzy k-means paradigms. In: Corchado, E., Corchado, J.M., Abraham, A. (eds.)
Innovations in Hybrid Intelligent Systems. AINSC, vol. 44, pp. 72–79. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74972-1 11

30. Turow, J.: Americans online privacy: the system is broken (2003)
31. Upmanyu, M., Namboodiri, A.M., Srinathan, K., Jawahar, C.V.: Efficient privacy

preserving k-means clustering. In: Chen, H., Chau, M., Li, S., Urs, S., Srinivasa, S.,
Wang, G.A. (eds.) PAISI 2010. LNCS, vol. 6122, pp. 154–166. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13601-6 17

https://doi.org/10.1007/11871637_30
https://doi.org/10.1007/3-540-39466-4_27
https://doi.org/10.1007/3-540-39466-4_27
http://arxiv.org/abs/1002.2425
https://doi.org/10.1007/978-3-540-74972-1_11
https://doi.org/10.1007/978-3-642-13601-6_17

208 R. Ghosal and S. Chatterjee

32. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically parti-
tioned data. In: Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2003, pp. 206–215. ACM, New
York (2003)

33. Yu, T.-K., Lee, D.T., Chang, S.-M., Zhan, J.Z.: Multi-party k-means clustering
with privacy consideration. In: International Symposium on Parallel and Dis-
tributed Processing with Applications, pp. 200–207 (2010)

	Privacy Preserving Multi-server k-means Computation over Horizontally Partitioned Data
	1 Introduction
	1.1 Our Contribution

	2 Proposed Solution
	2.1 Problem Setup
	2.2 Our Protocol
	2.3 Group Key Sharing and Hash Function
	2.4 Dynamic Setting

	3 Analysis
	3.1 Correctness
	3.2 Security
	3.3 Efficiency

	4 Choice of Parameters for Practical Implementation
	5 Conclusion
	A Detailed Computations
	A.1 Lower Bound for ri, 1 i 2d
	A.2 Kullback Leibler Distance

	B Range of Bit Length of the Parameters
	References

