Skip to main content

A Digital Forensic Technique for Inter–Frame Video Forgery Detection Based on 3D CNN

  • Conference paper
  • First Online:
Information Systems Security (ICISS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11281))

Included in the following conference series:

Abstract

With the present-day rapid growth in use of low-cost yet efficient video manipulating software, it has become extremely crucial to authenticate and check the integrity of digital videos, before they are used in sensitive contexts. For example, a CCTV footage acting as the primary source of evidence towards a crime scene. In this paper, we deal with a specific class of video forgery detection, viz., inter-frame forgery detection. We propose a deep learning based digital forensic technique using 3D Convolutional Neural Network (3D-CNN) for detection of the above form of video forgery. In the proposed model, we introduce a difference layer in the CNN, which mainly targets to extract the temporal information from the videos. This in turn, helps in efficient inter-frame video forgery detection, given the fact that, temporal information constitute the most suitable form of features for inter-frame anomaly detection. Our experimental results prove that the performance efficiency of the proposed deep learning 3D CNN model is \(97\%\) on an average, and is applicable to a wide range of video quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A video shot is a sequence of frames, which are captured over an uninterrupted period of time, by a single video recording device.

References

  1. Yu, L., et al.: Exposing frame deletion by detecting abrupt changes in video streams. Neurocomputing 205, 84–91 (2016)

    Article  Google Scholar 

  2. Shanableh, T.: Detection of frame deletion for digital video forensics. Digit. Investig. 10(4), 350–360 (2013). https://doi.org/10.1016/j.diin.2013.10.004

    Article  Google Scholar 

  3. Su, Y., Zhang, J., Liu, J.: Exposing digital video forgery by detecting motion-compensated edge artifact. In: International Conference on Computational Intelligence and Software Engineering, pp. 1–4, December 2009. https://doi.org/10.1109/CISE.2009.5366884

  4. Aghamaleki, J.A., Behrad, A.: Inter-frame video forgery detection and localization using intrinsic effects of double compression on quantization errors of video coding. Sig. Process.: Image Commun. 47, 289–302 (2016)

    Google Scholar 

  5. Zhang, Z., Hou, J., Ma, Q., Li, Z.: Efficient video frame insertion and deletion detection based on inconsistency of correlations between local binary pattern coded frames. Secur. Commun. Netw. 8(2), 311–320 (2015)

    Article  Google Scholar 

  6. Li, Z., Zhang, Z., Guo, S., Wang, J.: Video inter-frame forgery identification based on the consistency of quotient of MSSIM. Secur. Commun. Netw. 9(17), 4548–4556 (2016)

    Article  Google Scholar 

  7. Liu, Y., Huang, T.: Exposing video inter-frame forgery by Zernike opponent chromaticity moments and coarseness analysis. Multimed. Syst. 23(2), 223–238 (2017)

    Article  MathSciNet  Google Scholar 

  8. Sitara, K., Mehtre, B.: Digital video tampering detection: an overview of passive techniques. Digit. Investig. 18(Supplement C), 8–22 (2016). https://doi.org/10.1016/j.diin.2016.06.003

    Article  Google Scholar 

  9. Bakas, J., Naskar, R., Dixit, R.: Detection and localization of inter-frame video forgeries based on inconsistency in correlation distribution between Haralick coded frames. Multimed. Tools Appl. 2018, 1–31 (2018). https://doi.org/10.1007/s11042-018-6570-8

    Article  Google Scholar 

  10. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)

  11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  13. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  14. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013)

    Article  Google Scholar 

  15. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  16. Long, C., Smith, E., Basharat, A., Hoogs, A.: A C3D-based convolutional neural network for frame dropping detection in a single video shot. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1898–1906, July 2017. https://doi.org/10.1109/CVPRW.2017.237

  17. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, ICCV 2015, pp. 4489–4497. IEEE Computer Society, Washington (2015). https://doi.org/10.1109/ICCV.2015.510

  18. Wu, Y., Jiang, X., Sun, T., Wang, W.: Exposing video inter-frame forgery based on velocity field consistency. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2674–2678, May 2014. https://doi.org/10.1109/ICASSP.2014.6854085

  19. Wang, Q., Li, Z., Zhang, Z., Ma, Q.: Video inter-frame forgery identification based on consistency of correlation coefficients of gray values. J. Comput. Commun. 2(04), 51 (2014)

    Article  Google Scholar 

  20. Su, Y., Nie, W., Zhang, C.: A frame tampering detection algorithm for MPEG videos. In: 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, vol. 2, pp. 461–464 (2011). https://doi.org/10.1109/ITAIC.2011.6030373

  21. D’Avino, D., Cozzolino, D., Poggi, G., Verdoliva, L.: Autoencoder with recurrent neural networks for video forgery detection. Electron. Imaging 2017(7), 92–99 (2017)

    Article  Google Scholar 

  22. Zhao, D.N., Wang, R.K., Lu, Z.M.: Inter-frame passive-blind forgery detection for video shot based on similarity analysis. Multimed. Tools Appl. 77, 1–20 (2018)

    Article  Google Scholar 

  23. Hall, G.: Pearson’s correlation coefficient. Other Words 1(9) (2015). http://www.hep.ph.ic.ac.uk/~hallg/UG_2015/Pearsons.pdf. Accessed 3 Oct 2018

  24. Aghamaleki, J.A., Behrad, A.: Malicious inter-frame video tampering detection in mpeg videos using time and spatial domain analysis of quantization effects. Multimed. Tools Appl. 76(20), 20691–20717 (2017)

    Article  Google Scholar 

  25. Kingra, S., Aggarwal, N., Singh, R.D.: Inter-frame forgery detection in H. 264 videos using motion and brightness gradients. Multimed. Tools Appl. 76(24), 25767–25786 (2017)

    Article  Google Scholar 

  26. Chen, J., Kang, X., Liu, Y., Wang, Z.J.: Median filtering forensics based on convolutional neural networks. IEEE Sig. Process. Lett. 22(11), 1849–1853 (2015)

    Article  Google Scholar 

  27. Walia, A.S.: Activation functions and it’s types-which is better? (2017). https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f. Accessed 13 Aug 2018

  28. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Kingma, D.P., Ba, L.: J., : ADAM: a method for stochastic optimization. In: Learning Representations (2015)

    Google Scholar 

  30. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  31. Developers, F.: FFmpeg tool (Version 3.2.4) [Software] (2017). https://www.ffmpeg.org

Download references

Acknowledgment

This work is funded by Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Govt. of India, Grant No. 34/20/22/2016-BRNS/34363, dated: 16/11/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamimamul Bakas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bakas, J., Naskar, R. (2018). A Digital Forensic Technique for Inter–Frame Video Forgery Detection Based on 3D CNN . In: Ganapathy, V., Jaeger, T., Shyamasundar, R. (eds) Information Systems Security. ICISS 2018. Lecture Notes in Computer Science(), vol 11281. Springer, Cham. https://doi.org/10.1007/978-3-030-05171-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05171-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05170-9

  • Online ISBN: 978-3-030-05171-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics