Skip to main content

A Half-Full Transmit-Diversity Spatial Modulation Scheme

  • Conference paper
  • First Online:
Book cover Broadband Communications, Networks, and Systems (BROADNETS 2018)

Abstract

One of the main limitations in Spatial Modulation (SM) systems is the lack of transmit diversity, which directly impacts its error rate performance. The lack of the transmit diversity refers to activating only a single transmit antenna in SM systems. In this paper, we propose a novel scheme that aims at improving the performance of SM systems by achieving half-full transmit diversity. The proposed scheme, called Half-Full Transmit-Diversity SM (HFTD-SM), divides the transmit antennas into two-antenna groups. From each group, only a single antenna is activated, and all active transmit antennas emits one modulated symbol. The proposed HFTD-SM scheme is shown to outperform the conventional SM performance in terms of spectral efficiency, error rate, and design flexibility, while maintaining the main property of SM representing by the need of only a single RF chain. Simulation results corroborate the superior performance of the proposed scheme as compared to other SM variants in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishikawa, N., et al.: 50 years of permutation, spatial and index modulation: from classic RF to visible light communications and data storage. IEEE Commun. Surv. Tuts. 20, 1905–1938 (2018)

    Article  Google Scholar 

  2. Basar, E., et al.: Index modulation techniques for next-generation wireless networks. IEEE Access 5(1), 16693–16746 (2017)

    Article  Google Scholar 

  3. Mesleh, R.Y., et al.: Spatial modulation. IEEE Trans. Veh. Technol. 57(4), 2228–2241 (2008)

    Article  Google Scholar 

  4. Yang, P., et al.: Design guidelines for spatial modulation. IEEE Commun. Surv. Tuts. 17(1), 6–26 (2015)

    Article  Google Scholar 

  5. Younis, A., et al.: Generalised spatial modulation. Asilomar Pacific Grove, CA, pp. 1498–1502 (2010)

    Google Scholar 

  6. Mesleh, R., et al.: Quadrature spatial modulation. IEEE Trans. Veh. Technol. 64(6), 2738–2742 (2015)

    Article  Google Scholar 

  7. Althunibat, S., Mesleh, R.: Cooperative decode-and-forward quadrature spatial modulation over correlated and imperfect \(\eta -\mu \) fading channels. Wireless Networks (2017). https://doi.org/10.1007/s1127

  8. Younis, A., et al.: Quadrature spatial modulation performance over nakagami- \(m\) fading channels. IEEE Trans. Veh. Technol. 65(12), 10227–10231 (2016)

    Article  Google Scholar 

  9. Afana, A., et al.: Performance of quadrature spatial modulation in amplify-and-forward cooperative relaying. IEEE Commun. Lett. 20(2), 240–243 (2016)

    Article  Google Scholar 

  10. Badarneh, O.S., Mesleh, R.: A comprehensive framework for quadrature spatial modulation in generalized fading scenarios. IEEE Trans. Commun. 64(7), 2961–2970 (2016)

    Article  Google Scholar 

  11. Xiao, L., et al.: Low-complexity signal detection for large-scale quadrature spatial modulation systems. IEEE Commun. Lett. 20(11), 2173–2176 (2016)

    Article  Google Scholar 

  12. Mesleh, R., et al.: Generalized space modulation techniques: Hardware design and considerations. Phys. Commun. 26, 87–95 (2018)

    Article  Google Scholar 

  13. Althunibat, S.: A mapping technique for Space Shift Keying with arbitrary number of transmit antennas. IEEE CAMAD, Lund (2017)

    Google Scholar 

  14. Serafimovski, N., et al.: Fractional bit encoded spatial modulation (FBE-SM). IEEE Commun. Lett. 14(5), 429–431 (2010)

    Article  Google Scholar 

  15. Yang, Y., Aissa, S.: Information guided channel hopping with an arbitrary number of transmit antennas. IEEE Commun. Lett. 16(10), 1552–1555 (2012)

    Article  Google Scholar 

  16. Al Sukkar, G., Althunibat, S.: Gray codes for Spatial Modulation systems: an open research issue. IEEE CAMAD, Lund, pp. 1–6 (2017)

    Google Scholar 

  17. Yang, P., et al.: Hybrid bit-to-symbol mapping for spatial modulation. IEEE Trans. Veh. Technol. 65, 5804–5810 (2015)

    Article  Google Scholar 

  18. Althunibat, S., Mesleh, R.: A bit-to-symbol mapping scheme for spatial modulation with partial channel state information. IEEE Commun. Lett. 21(5), 995–998 (2017)

    Article  Google Scholar 

  19. Mesleh, R., et al.: Performance analysis of spatial modulation and space-shift keying with imperfect channel estimation over generalized \(eta{-}mu\) fading channels. IEEE Trans. Veh. Technol. 64(1), 88–96 (2015)

    Article  Google Scholar 

  20. Jeganathan, J., et al.: Spatial modulation: optimal detection and performance analysis. IEEE Commun. Lett. 12(8), 545–547 (2008)

    Article  Google Scholar 

  21. Mesleh, R., et al.: Transmitter design and hardware considerations for different space modulation techniques. IEEE Trans. Wirel. Commun. 16(11), 7512–7522 (2017)

    Article  Google Scholar 

  22. Afana, A., et al.: Quadrature Spatial Modulation for Cooperative MIMO 5G Wireless Networks, pp. 1–5. IEEE Globecom Workshops, Washington, DC (2016)

    Google Scholar 

  23. Althunibat, S., Mesleh, R.: Performance analysis of quadrature spatial modulation in two-way relaying cooperative networks. IET Commun. 12(4), 466–472 (2018)

    Article  Google Scholar 

  24. Yu, X., et al.: Power allocation and performance analysis of cooperative spatial modulation in wireless relay networks. IEEE Access 6, 12145–12155 (2018)

    Article  Google Scholar 

  25. Ustunbas, S., et al.: Performance analysis of cooperative spectrum sharing for cognitive radio networks using spatial modulation at secondary users. IEEE VTC Spring, Nanjing, pp. 1–5 (2016)

    Google Scholar 

  26. Bouida, Z., et al.: Adaptive spatial modulation for spectrum sharing systems with limited feedback. IEEE Trans. Commun. 63(6), 2001–2014 (2015)

    Article  Google Scholar 

  27. Althunibat, S., et al.: On the performance of wireless sensor networks with QSSK modulation in the presence of co-channel interference. Telecommun. Syst. 68(1), 105–113 (2018)

    Article  Google Scholar 

  28. Althunibat, S., Mesleh, R.: Index modulation for cluster-based wireless sensor networks. IEEE Trans. Veh. Technol. PP(99), 1. https://doi.org/10.1109/TVT.2018.2820602

    Article  Google Scholar 

  29. Bian, Y., et al.: Differential spatial modulation. IEEE Trans. Veh. Technol. 64(7), 3262–3268 (2015)

    Google Scholar 

  30. Mesleh, R., et al.: Differential quadrature spatial modulation. IEEE Trans. Commun. 65(9), 3810–3817 (2017)

    Article  Google Scholar 

  31. Nguyen, T.D., et al.: A spatial modulation scheme with full diversity for four transmit antennas. In: ATC Conference, Ho Chi Minh City, pp. 16–19 (2015)

    Google Scholar 

  32. Masouros, C.: Improving the diversity of spatial modulation in MISO channels by phase alignment. IEEE Commun. Lett. 18(5), 729–732 (2014)

    Article  Google Scholar 

  33. Renzo, M.D., Haas, H.: On transmit diversity for spatial modulation MIMO: impact of spatial constellation diagram and shaping filters at the transmitter. IEEE Trans. Veh. Technol. 62(6), 2507–2531 (2013)

    Article  Google Scholar 

  34. Wang, L., et al.: Diversity-achieving quadrature spatial modulation. IEEE Trans. Veh. Technol. 66(12), 10764–10775 (2017)

    Article  Google Scholar 

  35. Althunibat, S., Mesleh, R.: Enhancing spatial modulation system performance through signal space diversity. IEEE Commun. Lett. 22(6), 1136–1139 (2018). https://doi.org/10.1109/LCOMM.2018.2817621

    Article  Google Scholar 

  36. Simon, M.K., et al.: Digital Communication Techniques: Signal Design and Detection. Prentice Hall PTR, Englewood Cliffs (1995)

    Google Scholar 

  37. Abramnowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. US Dept. of Commerce, National Bureau of Standards, Washington, DC (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saud Althunibat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

AbuTayeh, S., Alsalahat, M., Kaddumi, I., Alqannas, Y., Althunibat, S., Mesleh, R. (2019). A Half-Full Transmit-Diversity Spatial Modulation Scheme. In: Sucasas, V., Mantas, G., Althunibat, S. (eds) Broadband Communications, Networks, and Systems. BROADNETS 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-05195-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05195-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05194-5

  • Online ISBN: 978-3-030-05195-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics