Skip to main content

Autonomous Control Through the Level of Fatigue Applied to the Control of Autonomous Vehicles

  • Conference paper
  • First Online:
Book cover Social Robotics (ICSR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11357))

Included in the following conference series:

Abstract

In this article we present the detection of fatigue level of a vehicle driver and according to this level the autonomous driving assistance is implemented, the detection of fatigue level is based on facial recognition using deep learning (Deep Learning) developed in the Matlab software, applying neural networks previously trained and designed, this detection sends us a metric that comprises four levels, according to the metric the position and velocity control of a simulated Car-Like vehicle in the Unity3D software is performed which presents a user friendly environment with the use of haptic devices, the development of the control algorithm is based on path correction which calculates the shortest distance to reenter the desired path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei, W., Hanbo, F.: Traffic accident automatic detection and remote alarm device. In: 2011 International Conference on Electric Information and Control Engineering, Wuhan, pp. 910–913 (2011)

    Google Scholar 

  2. Lia, C.: Intelligent traffic accident detection system based on mobile edge computing. In: 2017 3rd IEEE International Conference on Computer and Communications, China, pp. 2110–2115 (2017)

    Google Scholar 

  3. World Health Organization: Global status report on road safety 2015. World Health Organization (2015)

    Google Scholar 

  4. Agencia Nacional de Transito del Ecuador. Estadísticas de Siniestros. https://ant.gob.ec

  5. Agencia Nacional de Transito del Ecuador. Estadísticas de mortalidad. https://ant.gob.ec

  6. Traffic Incident Management: Federal Highway Administration. http://ops.fhwa.dot.gov/aboutus/one_pagers/tim.htm. Accessed 15 Oct 2013

  7. The Royal Society for the Prevention of Accidents: Driver fatigue and road accidents: a literature review and position paper, Birmingham, U.K. (2001)

    Google Scholar 

  8. Eriksson, M., Papanikotopoulos, N.P.: Eye-tracking for detection of driver fatigue. In: 1997 IEEE Conference on Intelligent Transportation System. LTSC 1997. IEEE (1997)

    Google Scholar 

  9. Shu-ming, S., et al.: Driver mouth monitoring method based on machine vision. J. Jilin Univ. Technol. (Nat. Sci. Ed.) 2, 014 (2004)

    Google Scholar 

  10. Tomlin, R., Villa, V.: Attention in Cognitive Science and Second Language Acquisition. Stud. Sec. Lang. Acquis. 16, 183–203 (2008)

    Article  Google Scholar 

  11. Shia, V., et al.: Semiautonomus vehicular control using driver modeling. IEEE Trans. Intell. Transp. Syst. 15(6), 2696–2709 (2014)

    Article  Google Scholar 

  12. Tomas-Gabarron, J.B., Lopez, E., García, J.: Vehicular trajectory optimization for cooperative collision avoidance at high speeds. IEEE Trans. Intell. Transp. Syst. 14(4), 1930–1941 (2013)

    Article  Google Scholar 

  13. Lin, C.-T., et al.: EEG-based drowsiness estimation for safety driving using independent component analysis. IEEE Trans. Circ. Syst. I: Regul. Pap. 52(12), 2726–2738 (2005)

    Article  Google Scholar 

  14. Swarnkar, V., Abeyratne, U., Hukins, C.: Objective measure of sleepiness and sleep latency via bispectrum analysis of EEG. Med. Biol. Eng. Comput. 48(12), 1203–1213 (2010)

    Article  Google Scholar 

  15. Roy, R.N., Charbonnier, S., Bonnet, S.: Eye blink characterization from frontal EEG electrodes using source separation and pattern recognition algorithms. Biomed. Signal Process. Control 14, 256–264 (2014)

    Article  Google Scholar 

  16. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19, 1635–1650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zeng, J.: Deep learning based forensic face verification in videos. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 77–80 (2017)

    Google Scholar 

  18. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Proceedings of the British Machine Vision Conference, pp. 41.1–41.12 (2015)

    Google Scholar 

  19. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  20. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NIPs Proceedings of Neural Information Processing Systems Conference (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia –CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017- 06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GI-ARSI, for the support to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oscar A. Mayorga or Víctor H. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mayorga, O.A., Andaluz, V.H. (2018). Autonomous Control Through the Level of Fatigue Applied to the Control of Autonomous Vehicles. In: Ge, S., et al. Social Robotics. ICSR 2018. Lecture Notes in Computer Science(), vol 11357. Springer, Cham. https://doi.org/10.1007/978-3-030-05204-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05204-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05203-4

  • Online ISBN: 978-3-030-05204-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics