Skip to main content

Comfortable Passing Distances for Robots

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11357))

Abstract

If autonomous robots are expected to operate in close proximity with people, they should be able to deal with human proxemics and social rules. Earlier research has shown that robots should respect personal space when approaching people, although the quantitative details vary with robot model and direction of approach. It would seem that similar considerations apply when a robot is only passing by, but direct measurement of the comfort of the passing distance is still missing. Therefore the current study measured the perceived comfort of varying passing distances of the robot on each side of a person in a corridor. It was expected that comfort would increase with distance until an optimum was reached, and that people would prefer a left passage over a right passage. Results showed that the level of comfort did increase with distance up to about 80 cm, but after that it remained constant. There was no optimal distance. Surprisingly, the side of passage had no effect on perceived comfort. These findings show that robot proxemics for passing by differ from approaching a person. The implications for modelling human-aware navigation and personal space models are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bemelmans, R., Gelderblom, G.J., Jonker, P., De Witte, L.: Socially assistive robots in elderly care: a systematic review into effects and effectiveness. J. Am. Med. Directors Assoc. 13(2), 114–120 (2012)

    Article  Google Scholar 

  2. Bitgood, S., Dukes, S.: Not another step! Economy of movement and pedestrian choice point behavior in shopping malls. Environ. Behav. 38(3), 394–405 (2006)

    Article  Google Scholar 

  3. Charalampous, K., Kostavelis, I., Gasteratos, A.: Robot navigation in large-scale social maps: an action recognition approach. Expert Syst. Appl. 66, 261–273 (2016)

    Article  Google Scholar 

  4. Elkmann, N., Hortig, J., Fritzsche, M.: Cleaning automation. In: Nof, S. (ed.) Springer Handbook of Automation, pp. 1253–1264. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Feil-Seifer, D., Mataric, M.J.: Defining socially assistive robotics. In: 9th International Conference on Rehabilitation Robotics, ICORR 2005, pp. 465–468. IEEE (2005)

    Google Scholar 

  6. Gérin-Lajoie, M., Richards, C.L., Fung, J., McFadyen, B.J.: Characteristics of personal space during obstacle circumvention in physical and virtual environments. Gait Posture 27(2), 239–247 (2008)

    Article  Google Scholar 

  7. Hall, E.T.: The Hidden Dimension. Anchor Books, New York (1966)

    Google Scholar 

  8. Hayduk, L.A.: The shape of personal space: an experimental investigation. Can. J. Behav. Sci./Revue Canadienne des sciences du comportement 13(1), 87 (1981)

    Article  Google Scholar 

  9. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. 51(5), 4282–4286 (1995)

    Google Scholar 

  10. Kanda, A., Arai, M., Suzuki, R., Kobayashi, Y., Kuno, Y.: Recognizing groups of visitors for a robot museum guide tour. In: 2014 7th International Conference on Human System Interactions (HSI), pp. 123–128. IEEE (2014)

    Google Scholar 

  11. Kirby, R., Simmons, R., Forlizzi, J.: Companion: a constraint-optimizing method for person-acceptable navigation. In: Robot and Human Interactive Communication, RO-MAN 2009, pp. 607–612. IEEE (2009)

    Google Scholar 

  12. Koay, K.L., Syrdal, D., Bormann, R., Saunders, J., Walters, M.L., Dautenhahn, K.: Initial design, implementation and technical evaluation of a context-aware proxemics planner for a social robot. In: Kheddar, A., et al. (eds.) ICSR 2017. LNCS, vol. 10652, pp. 12–22. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70022-9_2

    Chapter  Google Scholar 

  13. Lam, C.P., Chou, C.T., Chiang, K.H., Fu, L.C.: Human-centered robot navigation: towards a harmoniously human-robot coexisting environment. IEEE Trans. Robot. 27(1), 99–112 (2011)

    Article  Google Scholar 

  14. Mead, R., Matarić, M.J.: Robots have needs too: how and why people adapt their proxemic behavior to improve robot social signal understanding. J. Hum.-Robot Interact. 5(2), 48–68 (2016)

    Article  Google Scholar 

  15. Pacchierotti, E., Christensen, H.I., Jensfelt, P.: Evaluation of passing distance for social robots. In: The 15th IEEE International Symposium on Robot and Human Interactive Communication, ROMAN 2006, pp. 315–320. IEEE (2006)

    Google Scholar 

  16. Papadakis, P., Rives, P., Spalanzani, A.: Adaptive spacing in human-robot interactions. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 2627–2632. IEEE (2014)

    Google Scholar 

  17. Rios-Martinez, J., Spalanzani, A., Laugier, C.: From proxemics theory to socially-aware navigation: a survey. Int. J. Soc. Robot. 7(2), 137–153 (2015)

    Article  Google Scholar 

  18. Robins, B., Dautenhahn, K., Te Boekhorst, R., Billard, A.: Robotic assistants in therapy and education of children with autism: can a small humanoid robot help encourage social interaction skills? Univ. Access Inf. Soc. 4(2), 105–120 (2005)

    Article  Google Scholar 

  19. Rossi, S., Staffa, M., Bove, L., Capasso, R., Ercolano, G.: User’s personality and activity influence on HRI comfortable distances. In: Kheddar, A., et al. (eds.) ICSR 2017. LNCS, vol. 10652, pp. 167–177. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70022-9_17

    Chapter  Google Scholar 

  20. Ruijten, P.A.M., Cuijpers, R.H.: Stopping distance for a robot approaching two conversating persons. In: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 224–229. IEEE (2017)

    Google Scholar 

  21. Sisbot, E.A., Alami, R., Siméon, T., Dautenhahn, K., Walters, M., Woods, S.: Navigation in the presence of humans. In: 2005 5th IEEE-RAS International Conference on Humanoid Robots, pp. 181–188. IEEE (2005)

    Google Scholar 

  22. Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T.: A human aware mobile robot motion planner. IEEE Trans. Robot. 23(5), 874–883 (2007)

    Article  Google Scholar 

  23. Torta, E., Cuijpers, R.H., Juola, J.F.: Design of a parametric model of personal space for robotic social navigation. Int. J. Soc. Robot. 5(3), 357–365 (2013)

    Article  Google Scholar 

  24. Walters, M.L., et al.: The influence of subjects’ personality traits on personal spatial zones in a human-robot interaction experiment. In: IEEE International Workshop on Robot and Human Interactive Communication, ROMAN 2005, pp. 347–352. IEEE (2005)

    Google Scholar 

  25. Walters, M.L., Dautenhahn, K., Te Boekhorst, R., Koay, K.L., Syrdal, D.S., Nehaniv, C.L.: An empirical framework for human-robot proxemics. In: Proceedings of New Frontiers in Human-Robot Interaction (2009)

    Google Scholar 

  26. Zanlungo, F., Yücel, Z., Ferreri, F., Even, J., Saiki, L.Y.M., Kanda, T.: Social group motion in robots. In: Kheddar, A., et al. (eds.) ICSR 2017. LNCS, vol. 10652, pp. 474–484. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70022-9_47

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot M. E. Neggers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neggers, M.M.E., Cuijpers, R.H., Ruijten, P.A.M. (2018). Comfortable Passing Distances for Robots. In: Ge, S., et al. Social Robotics. ICSR 2018. Lecture Notes in Computer Science(), vol 11357. Springer, Cham. https://doi.org/10.1007/978-3-030-05204-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05204-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05203-4

  • Online ISBN: 978-3-030-05204-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics