Skip to main content

The Role of Deep Learning in Improving Healthcare

  • Chapter
  • First Online:

Abstract

Healthcare is transforming through adoption of information technologies (IT) and digitalization. Machine learning (ML) and artificial intelligence (AI) are two of the IT technologies that are leading this transformation. In this chapter we focus on Deep Learning (DL), a subfield of ML that relies on deep artificial neural networks to deliver breakthroughs in long-standing AI problems. DL is about working with high-dimensional data (e.g., images, speech recording, natural language) and learning efficient representations that allow for building successful models. We present a structured overview of DL methods applied to healthcare problems based on their suitability of the different technologies to the available modalities of healthcare data. This data-centric perspective reflects the data-driven nature of DL methods and allows side-by-side comparison with different domains in healthcare. Challenges, in broad adoption of DL, are commonly related to some of its main drawbacks, particularly lack of interpretability and transparency. We discuss the drawbacks and limitations of DL technology that specifically come to light in the domain of healthcare. We also address the need for a considerable amount of data and annotations to successfully build these models that can be a particularly expensive and time-consuming effort. Overall, the chapter offers insights into existing applications of DL to healthcare on their suitability for specific types of data and their limitations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33(8), 831–838 (2015). https://doi.org/10.1038/nbt.3300.

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan (2017). arXiv preprint arXiv:1701.07875

    Google Scholar 

  3. Asgari, E., Mofrad, M.R.K.: Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS One 10(11), e0141287 (2015)

    Google Scholar 

  4. Bahrami, K., Shi, F., Rekik, I., Shen, D.: Convolutional neural network for reconstruction of 7T-like images from 3T MRI using appearance and anatomical features. In: Deep Learning and Data Labeling for Medical Applications, pp. 39–47. Springer, New York (2016)

    Google Scholar 

  5. Baldi, P., Pollastri, G.: The principled design of large-scale recursive neural network architectures–DAG-RNNs and the protein structure prediction problem. J. Mach. Learn. Res. 4, 575–602 (2003)

    MATH  Google Scholar 

  6. Baldi, P., Brunak, S., Frasconi, P., Soda, G., Pollastri, G.: Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 15(11), 937–946 (1999)

    Google Scholar 

  7. Banks, G.: Artificial intelligence in medical diagnosis: the INTERNIST/CADUCEUS approach. Crit. Rev. Med. Inf. 1(1), 23–54 (1986)

    Google Scholar 

  8. Beaulieu-Jones, B.K., Greene, C.S., et al.: Semi-supervised learning of the electronic health record for phenotype stratification. J. Biomed. Inf. 64, 168–178 (2016)

    Google Scholar 

  9. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, pp. 153–160 (2007)

    Google Scholar 

  10. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013). https://doi.org/10.1109/TPAMI.2013.50

    Google Scholar 

  11. Benou, A., Veksler, R., Friedman, A., Raviv, T.R.: De-noising of contrast-enhanced MRI sequences by an ensemble of expert deep neural networks. In: Deep Learning and Data Labeling for Medical Applications, pp. 95–110. Springer, New York (2016)

    Google Scholar 

  12. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2392–2399. IEEE, New York (2012)

    Google Scholar 

  13. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 6085 (2018)

    Google Scholar 

  14. Cheng, J.Z., Ni, D., Chou, Y.H., Qin, J., Tiu, C.M., Chang, Y.C., Huang, C.S., Shen, D., Chen, C.M.: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep. 6, 24454 (2016)

    Google Scholar 

  15. Cheng, Y., Wang, F., Zhang, P., Hu, J.: Risk prediction with electronic health records: a deep learning approach. In: Proceedings of the 2016 SIAM International Conference on Data Mining, pp. 432–440. SIAM, Philadelphia (2016)

    Google Scholar 

  16. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734 (2014). https://doi.org/10.3115/v1/D14-1179; http://arxiv.org/abs/1406.1078

  17. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: predicting clinical events via recurrent neural networks. In: Machine Learning for Healthcare Conference, pp. 301–318 (2016)

    Google Scholar 

  18. Choi, E., Bahadori, M.T., Searles, E., Coffey, C., Thompson, M., Bost, J., Tejedor-Sojo, J., Sun, J.: Multi-layer representation learning for medical concepts. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1495–1504. ACM, New York (2016)

    Google Scholar 

  19. Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Medical concept representation learning from electronic health records and its application on heart failure prediction (2016). arXiv preprint arXiv:1602.03686

    Google Scholar 

  20. Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inf. Assoc. 24(2), 361–370 (2016)

    Google Scholar 

  21. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 539–546 (2005). https://doi.org/10.1109/CVPR.2005.202

    Google Scholar 

  22. Çiçek, z., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 424–432. Springer, New York (2016)

    Google Scholar 

  23. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 411–418. Springer, New York (2013)

    Google Scholar 

  24. de Vos, B.D., Wolterink, J.M., de Jong, P.A., Viergever, M.A., Išgum, I.: 2D image classification for 3D anatomy localization: employing deep convolutional neural networks. In: International Society for Optics and Photonics (2016), 97841Y. https://doi.org/10.1117/12.2216971; http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2216971

  25. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009, CVPR 2009, pp. 248–255. IEEE, New York (2009)

    Google Scholar 

  26. Dernoncourt, F., Lee, J.Y., Uzuner, O., Szolovits, P.: De-identification of patient notes with recurrent neural networks. J. Am. Med. Inf. Assoc. 24(3), 596–606 (2017)

    Google Scholar 

  27. Di Lena, P., Nagata, K., Baldi, P.: Deep architectures for protein contact map prediction. Bioinformatics 28(19), 2449–2457 (2012)

    Google Scholar 

  28. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016). https://doi.org/10.1109/TPAMI.2015.2439281

    Google Scholar 

  29. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Esteban, C., Staeck, O., Baier, S., Yang, Y., Tresp, V.: Predicting clinical events by combining static and dynamic information using recurrent neural networks. In: 2016 IEEE International Conference on Healthcare Informatics (ICHI), pp. 93–101. IEEE, New York (2016)

    Google Scholar 

  31. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115 (2017)

    Google Scholar 

  32. Fakoor, R., Ladhak, F., Nazi, A., Huber, M.: Using deep learning to enhance cancer diagnosis and classification. In: Proceedings of the International Conference on Machine Learning, vol. 28 (2013)

    Google Scholar 

  33. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010). https://doi.org/10.1109/TPAMI.2009.167. http://ieeexplore.ieee.org/document/5255236/

    Google Scholar 

  34. Geman, S., Doursat, R., Bienenstock, E.: Neural networks and the bias/variance dilemma. Neural Comput. 4(1), 1–58 (1992). https://doi.org/10.1162/neco.1992.4.1.1

    Google Scholar 

  35. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation (2013). http://arxiv.org/abs/1311.2524

  36. Goodfellow, I.J.: On distinguishability criteria for estimating generative models (2014). arXiv preprint arXiv:1412.6515

    Google Scholar 

  37. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  38. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. 1–26 (2014). arXiv. https://doi.org/10.3389/neuro.12.006.2007. http://arxiv.org/abs/1410.5401

  39. Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recurrent models for human activity recognition using wearables. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 1533–1540. AAAI Press, Palo Alto (2016)

    Google Scholar 

  40. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  41. Hinton, G.E., McClelland, J.L., Rumelhart, D.E.: Distributed representations. In: Rumelhart, D.E., McClelland, J.L., CORPORATE PDP Research Group (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1. MIT Press, Cambridge (1986)

    Google Scholar 

  42. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  44. Hochreiter, S., Heusel, M., Obermayer, K.: Fast model-based protein homology detection without alignment. Bioinformatics 23(14), 1728–1736 (2007)

    Google Scholar 

  45. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: International Workshop on Similarity-Based Pattern Recognition, pp. 84–92. Springer, New York (2015)

    Google Scholar 

  46. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    MATH  Google Scholar 

  47. Hosseini-Asl, E., Gimel’farb, G., El-Baz, A.: Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network (2016). arXiv preprint arXiv:1607.00556

    Google Scholar 

  48. Huanhuan, M., Yue, Z.: Classification of electrocardiogram signals with deep belief networks. In: 2014 IEEE 17th International Conference on Computational Science and Engineering (CSE), pp. 7–12. IEEE, New York (2014)

    Google Scholar 

  49. Jacobson, O., Dalianis, H.: Applying deep learning on electronic health records in Swedish to predict healthcare-associated infections. In: Proceedings of the 15th Workshop on Biomedical Natural Language Processing, pp. 191–195 (2016)

    Google Scholar 

  50. Jagannatha, A.N., Yu, H.: Bidirectional RNN for medical event detection in electronic health records. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics Meeting, vol. 2016, p. 473. NIH Public Access (2016)

    Google Scholar 

  51. Jagannatha, A.N., Yu, H.: Structured prediction models for RNN based sequence labeling in clinical text. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, vol. 2016, p. 856. NIH Public Access (2016)

    Google Scholar 

  52. Janowczyk, A., Basavanhally, A., Madabhushi, A.: Stain normalization using sparse autoencoders (StaNoSA): application to digital pathology. Comput. Med. Imag. Graph. 57, 50–61 (2017)

    Google Scholar 

  53. Jia, X., Li, K., Li, X., Zhang, A.: A novel semi-supervised deep learning framework for affective state recognition on EEG signals. In: 2014 IEEE International Conference on Bioinformatics and Bioengineering (BIBE), pp. 30–37. IEEE, New York (2014)

    Google Scholar 

  54. Kallenberg, M., Petersen, K., Nielsen, M., Ng, A.Y., Diao, P., Igel, C., Vachon, C.M., Holland, K., Winkel, R.R., Karssemeijer, N., et al.: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imag. 35(5), 1322–1331 (2016)

    Google Scholar 

  55. Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. In: ICLR, pp. 1–13 (2016). https://doi.org/10.1007/978-3-319-10590-1_53

    Google Scholar 

  56. Kawahara, J., Brown, C.J., Miller, S.P., Booth, B.G., Chau, V., Grunau, R.E., Zwicker, J.G., Hamarneh, G.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038–1049 (2017)

    Google Scholar 

  57. Kelley, D.R., Snoek, J., Rinn, J.L.: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26(7), 990–999 (2016)

    Google Scholar 

  58. Kendra, R.L., Karki, S., Eickholt, J.L., Gandy, L.: Characterizing the discussion of antibiotics in the twittersphere: what is the bigger picture? J. Med. Internet Res. 17(6), e154 (2015)

    Google Scholar 

  59. Keogh, E., Mueen, A.: Curse of dimensionality. In: Encyclopedia of Machine Learning, pp. 257–258. Springer, New York (2011)

    Google Scholar 

  60. Khademi, M., Nedialkov, N.S.: Probabilistic graphical models and deep belief networks for prognosis of breast cancer. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 727–732. IEEE, New York (2015)

    Google Scholar 

  61. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2014). http://arxiv.org/abs/1412.6980

  62. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2013). arXiv preprint arXiv:1312.6114

    Google Scholar 

  63. Koh, P.W., Pierson, E., Kundaje, A.: Denoising genome-wide histone ChIP-seq with convolutional neural networks. Bioinformatics (Oxford, England) 33(14), i225–i233 (2017)

    Google Scholar 

  64. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS’12), pp. 1097–1105. Curran Associates Inc., Red Hock (2012)

    Google Scholar 

  65. Längkvist, M., Karlsson, L., Loutfi, A.: Sleep stage classification using unsupervised feature learning. Adv. Artif. Neural Syst. 2012, 9 (2012)

    Google Scholar 

  66. Lasko, T.A., Denny, J.C., Levy, M.A.: Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS One 8(6), e66341 (2013)

    Google Scholar 

  67. LeCun, Y., Jackel, L., Cortes, C.: Learning algorithms for classification: a comparison on handwritten digit recognition. https://pdfs.semanticscholar.org/943d/6db0c56a5f4d04a3f81db633fec7cc4fde0f.pdf

  68. Lee, T., Yoon, S.: Boosted categorical restricted Boltzmann machine for computational prediction of splice junctions. In: International Conference on Machine Learning, pp. 2483–2492 (2015)

    Google Scholar 

  69. Lei, T., Barzilay, R., Jaakkola, T.: Rationalizing neural predictions. In: EMNLP 2016, Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 107–117 (2016). http://arxiv.org/abs/1606.04155

  70. Li, R., Zhang, W., Suk, H.I., Wang, L., Li, J., Shen, D., Ji, S.: Deep learning based imaging data completion for improved brain disease diagnosis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 305–312. Springer, New York (2014)

    Google Scholar 

  71. Li, X., Zhang, Y., Li, M., Marsic, I., Yang, J., Burd, R.S.: Deep neural network for RFID-based activity recognition. In: Pour, Y.G. (ed.) S3@MobiCom, pp. 24–26. ACM, New York (2016)

    Google Scholar 

  72. Liao, R., Miao, S., de Tournemire, P., Grbic, S., Kamen, A., Mansi, T., Comaniciu, D.: An artificial agent for robust image registration. In: Proceedings of the Thirty-First {AAAI} Conference on Artificial Intelligence, February 4–9, 2017, San Francisco, CA, pp. 4168–4175 (2017). http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14751

  73. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.: Learning to diagnose with LSTM recurrent neural networks (2015). arXiv preprint arXiv:1511.03677

    Google Scholar 

  74. Liu, F., Ren, C., Li, H., Zhou, P., Bo, X., Shu, W.: De novo identification of replication-timing domains in the human genome by deep learning. Bioinformatics 32(5), 641–649 (2015)

    Google Scholar 

  75. Liu, Y., Ge, T., Mathews, K.S., Ji, H., McGuinness, D.L.: Exploiting task-oriented resources to learn word embeddings for clinical abbreviation expansion (2018). arXiv preprint arXiv:1804.04225

    Google Scholar 

  76. Lo, S.C., Lou, S.L., Lin, J.S., Freedman, M.T., Chien, M.V., Mun, S.K.: Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans. Med. Imag. 14(4), 711–718 (1995)

    Google Scholar 

  77. Lyons, J., Dehzangi, A., Heffernan, R., Sharma, A., Paliwal, K., Sattar, A., Zhou, Y., Yang, Y.: Predicting backbone C$α$ angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. J. Comput. Chem. 35(28), 2040–2046 (2014)

    Google Scholar 

  78. Menegola, A., Fornaciali, M., Pires, R., Avila, S., Valle, E.: Towards automated melanoma screening: exploring transfer learning schemes (2016). arXiv preprint arXiv:1609.01228

    Google Scholar 

  79. Miao, S., Wang, Z.J., Liao, R.: A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med. Imag. 35(5), 1352–1363 (2016)

    Google Scholar 

  80. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 3111–3119. Curran Associates, Inc., Red Hook (2013)

    Google Scholar 

  81. Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)

    Google Scholar 

  82. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinform. 19(6), 1236–1246 (2018)

    Google Scholar 

  83. Mirowski, P., Madhavan, D., LeCun, Y., Kuzniecky, R.: Classification of patterns of EEG synchronization for seizure prediction. Clin. Neurophysiol. 120(11), 1927–1940 (2009)

    Google Scholar 

  84. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  85. Nguyen, S.P., Shang, Y., Xu, D.: DL-PRO: a novel deep learning method for protein model quality assessment. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 2071–2078. IEEE, New York (2014)

    Google Scholar 

  86. Nguyen, P., Tran, T., Wickramasinghe, N., Venkatesh, S.: Deepr: a convolutional net for medical records. IEEE J. Biomed. Health Inf. 21(1), 22–30 (2017)

    Google Scholar 

  87. Nie, L., Wang, M., Zhang, L., Yan, S., Zhang, B., Chua, T.S.: Disease inference from health-related questions via sparse deep learning. IEEE Trans. Knowl. Data Eng. 27(8), 2107–2119 (2015)

    Google Scholar 

  88. Nie, D., Cao, X., Gao, Y., Wang, L., Shen, D.: Estimating CT image from MRI data using 3D fully convolutional networks. In: Deep Learning and Data Labeling for Medical Applications, pp. 170–178. Springer, New York (2016)

    Google Scholar 

  89. Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., Shen, D.: Medical image synthesis with context-aware generative adversarial networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 417–425. Springer, New York (2017)

    Google Scholar 

  90. Nurse, E., Mashford, B.S., Yepes, A.J., Kiral-Kornek, I., Harrer, S., Freestone, D.R.: Decoding EEG and LFP signals using deep learning: heading TrueNorth. In: Proceedings of the ACM International Conference on Computing Frontiers, pp. 259–266. ACM, New York (2016)

    Google Scholar 

  91. Oktay, O., Bai, W., Lee, M., Guerrero, R., Kamnitsas, K., Caballero, J., de Marvao, A., Cook, S., O’Regan, D., Rueckert, D.: Multi-input cardiac image super-resolution using convolutional neural networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 246–254. Springer, New York (2016)

    Google Scholar 

  92. Oord, A.V.D., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: International Conference on Machine Learning (ICML) (2016). http://arxiv.org/abs/1601.06759

  93. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: ICML (3), vol. 28, pp. 1310–1318 (2013)

    Google Scholar 

  94. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. pp. 230–238. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_27.

    Google Scholar 

  95. Peng, C.Y.J., Lee, K.L., Ingersoll, G.M.: An introduction to logistic regression analysis and reporting. J. Educ. Res. 96(1), 3–14 (2002)

    Google Scholar 

  96. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP, vol. 14, pp. 1532–1543 (2014)

    Google Scholar 

  97. Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R., Wunsch II, D.: Recurrent neural network based prediction of epileptic seizures in intra-and extracranial EEG. Neurocomputing 30(1–4), 201–218 (2000)

    Google Scholar 

  98. Pham, T., Tran, T., Phung, D., Venkatesh, S.: Deepcare: a deep dynamic memory model for predictive medicine. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 30–41. Springer, Berlin (2016)

    Google Scholar 

  99. Pourbabaee, B., Roshtkhari, M.J., Khorasani, K.: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients. IEEE Trans. Syst. Man Cybernet. Syst. 48(12), 2095–2104 (2017)

    Google Scholar 

  100. Razavian, N., Marcus, J., Sontag, D.: Multi-task prediction of disease onsets from longitudinal lab tests (2016). arXiv preprint arXiv:1608.00647

    Google Scholar 

  101. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection (2015). http://arxiv.org/abs/1506.02640

  102. Ribeiro, M.T., Singh, S., Guestrin, C.: “ Why should I trust you?”: explaining the predictions of any classifier (2016). arXiv preprint arXiv:1602.04938

    Google Scholar 

  103. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer, Cham (2015)

    Google Scholar 

  104. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems, pp. 3859–3869 (2017)

    Google Scholar 

  105. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS, pp. 1–10 (2016). arXiv:1504.01391

    Google Scholar 

  106. Sathyanarayana, A., Joty, S., Fernandez-Luque, L., Ofli, F., Srivastava, J., Elmagarmid, A., Arora, T., Taheri, S.: Sleep quality prediction from wearable data using deep learning. JMIR mHealth and uHealth 4(4), e130 (2016)

    Google Scholar 

  107. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003. http://arxiv.org/abs/1404.7828

    Google Scholar 

  108. Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., Dean, J.: Outrageously large neural networks: the sparsely-gated mixture-of-experts layer (2017). arXiv preprint arXiv:1701.06538

    Google Scholar 

  109. Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural networks for lung nodule classification. In: International Conference on Information Processing in Medical Imaging, pp. 588–599. Springer, Cham (2015)

    Google Scholar 

  110. Shen, W., Zhou, M., Yang, F., Dong, D., Yang, C., Zang, Y., Tian, J.: Learning from Experts: Developing Transferable Deep Features for Patient-Level Lung Cancer Prediction. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9901, pp. 124–131 (2016). https://doi.org/10.1007/978-3-319-46723-8_15. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84996497545&doi=10.1007%2F978-3-319-46723-8_15&partnerID=40&md5=e5253c871ee40426de6895cf297af84b

    Google Scholar 

  111. Shwartz-Ziv, R., Tishby, N.: Opening the Black Box of Deep Neural Networks via Information. CoRR:abs/1703.0 (2017). http://arxiv.org/abs/1703.00810

  112. Simonovsky, M., Gutiérrez-Becker, B., Mateus, D., Navab, N., Komodakis, N.: A deep metric for multimodal registration. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 10–18. Springer, Basel (2016)

    Google Scholar 

  113. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). ArXiv e-prints

    Google Scholar 

  114. Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. Technical report, Colorado Univ at Boulder Dept of Computer Science (1986)

    Google Scholar 

  115. Sønderby, S.K., Winther, O.: Protein secondary structure prediction with long short term memory networks (2014). arXiv preprint arXiv:1412.7828

    Google Scholar 

  116. Sønderby, S.K., Sønderby, C.K., Nielsen, H., Winther, O.: Convolutional LSTM networks for subcellular localization of proteins. In: International Conference on Algorithms for Computational Biology, pp. 68–80. Springer, Heidelberg (2015)

    Google Scholar 

  117. Spencer, M., Eickholt, J., Cheng, J.: A deep learning network approach to ab initio protein secondary structure prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(1), 103–112 (2015)

    Google Scholar 

  118. Stober, S., Cameron, D.J., Grahn, J.A.: Using convolutional neural networks to recognize rhythm stimuli from electroencephalography recordings. In: Advances in Neural Information Processing Systems, pp. 1449–1457 (2014)

    Google Scholar 

  119. Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation. In: Advances in Neural Information Processing Systems, pp. 2998–3006 (2015)

    Google Scholar 

  120. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07–12 June, pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594

  121. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning (2017). http://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14806/14311

  122. Taylor, K.: Connected Health: How Digital Technology is Transforming Health and Social Care. Deloitte Centre for Health Solutions, London (2015)

    Google Scholar 

  123. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

    Google Scholar 

  124. Tran, T., Nguyen, T.D., Phung, D., Venkatesh, S.: Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM). J. Biomed. Inf. 54, 96–105 (2015)

    Google Scholar 

  125. Turner, J.T., Page, A., Mohsenin, T., Oates, T.: Deep belief networks used on high resolution multichannel electroencephalography data for seizure detection. In: 2014 AAAI Spring Symposium Series (2014)

    Google Scholar 

  126. van Tulder, G., de Bruijne, M.: Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted Boltzmann machines. IEEE Trans. Med. Imag. 35(5), 1262–1272 (2016)

    Google Scholar 

  127. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning - ICML ’08, pp. 1096–1103. ACM, New York (2008). https://doi.org/10.1145/1390156.1390294. http://portal.acm.org/citation.cfm?doid=1390156.1390294

  128. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2015)

    Google Scholar 

  129. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 9 (2016)

    Google Scholar 

  130. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)

    Google Scholar 

  131. Wu, G., Kim, M., Wang, Q., Gao, Y., Liao, S., Shen, D.: Unsupervised deep feature learning for deformable registration of MR brain images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 649–656. Springer, New York (2013)

    Google Scholar 

  132. Wu, Y., Jiang, M., Lei, J., Xu, H.: Named entity recognition in Chinese clinical text using deep neural network. Stud. Health Technol. Inf. 216, 624 (2015)

    Google Scholar 

  133. Wulsin, D., Blanco, J., Mani, R., Litt, B.: Semi-supervised anomaly detection for EEG waveforms using deep belief nets. In: 2010 Ninth International Conference on Machine Learning and Applications (ICMLA), pp. 436–441. IEEE, New York (2010)

    Google Scholar 

  134. Wulsin, D.F., Gupta, J.R., Mani, R., Blanco, J.A., Litt, B.: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement. J. Neural Eng. 8(3), 36015 (2011)

    Google Scholar 

  135. Xing, Z., Pei, J., Keogh, E.: A brief survey on sequence classification. ACM SIGKDD Explorations Newsletter 12(1), 40–48 (2010)

    Google Scholar 

  136. Xu, L., Ren, J., Yan, Q., Liao, R., Jia, J.: Deep edge-aware filters. In: International Conference on Machine Learning, pp. 1669–1678 (2015)

    Google Scholar 

  137. Yang, X., Kwitt, R., Niethammer, M.: Fast predictive image registration. In: Deep Learning and Data Labeling for Medical Applications, pp. 48–57. Springer, Cham (2016)

    Google Scholar 

  138. Yang, W., Chen, Y., Liu, Y., Zhong, L., Qin, G., Lu, Z., Feng, Q., Chen, W.: Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain. Med. Image Anal. 35, 421–433 (2017)

    Google Scholar 

  139. Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration–a deep learning approach. NeuroImage 158, 378–396 (2017)

    Google Scholar 

  140. Zeng, H., Edwards, M.D., Liu, G., Gifford, D.K.: Convolutional neural network architectures for predicting DNA–protein binding. Bioinformatics 32(12), i121–i127 (2016)

    Google Scholar 

  141. Zhang, S., Zhou, J., Hu, H., Gong, H., Chen, L., Cheng, C., Zeng, J.: A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res. 44(4), e32–e32 (2015)

    Google Scholar 

  142. Zhang, Q., Xiao, Y., Dai, W., Suo, J., Wang, C., Shi, J., Zheng, H.: Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics 72, 150–157 (2016)

    Google Scholar 

  143. Zhao, Y., He, L.: Deep learning in the EEG diagnosis of Alzheimer’s disease. In: Asian Conference on Computer Vision, pp. 340–353. Springer, Heidelberg (2014)

    Google Scholar 

  144. Zhou, J., Troyanskaya, O.G.: Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12(10), 931 (2015)

    Google Scholar 

  145. Zhu, J., Pande, A., Mohapatra, P., Han, J.J.: Using deep learning for energy expenditure estimation with wearable sensors. In: 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), pp. 501–506. IEEE, New York (2015)

    Google Scholar 

  146. Zou, B., Lampos, V., Gorton, R., Cox, I.J.: On infectious intestinal disease surveillance using social media content. In: Proceedings of the 6th International Conference on Digital Health Conference, pp. 157–161. ACM, New York (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Thaler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thaler, S., Menkovski, V. (2019). The Role of Deep Learning in Improving Healthcare. In: Consoli, S., Reforgiato Recupero, D., Petković, M. (eds) Data Science for Healthcare. Springer, Cham. https://doi.org/10.1007/978-3-030-05249-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05249-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05248-5

  • Online ISBN: 978-3-030-05249-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics