Skip to main content

Defect Detection in Textiles with Co-occurrence Matrix as a Texture Model Description

  • Conference paper
  • First Online:
  • 515 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11255))

Abstract

Automatized inspection at textile production lines becomes very important. However, there is still a need to design methods which meet not only demands concerning accuracy of defect detection, but also ones related to the processing time. In this work, a novel approach for defect model definition is presented. It is derived from the idea of co-occurrence matrix. Due to scale incorporation and binarization of the model content it proved to be a very powerful descriptor of the novelties. Moreover, it also satisfies the requirements of short processing time. The defect mask achieved with the introduced method was compared visually to other popular solutions and show a very high accuracy and quality of defect description. The processing time is real-time as the response for a 1MP (megapixel) image is reached within tens of milliseconds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24670-1_36

    Chapter  Google Scholar 

  2. Amadasun, M., King, R.: Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19(5), 1264–1274 (1989)

    Article  Google Scholar 

  3. Blanchard, G., Lee, G., Scott, C.: Semi-supervised novelty detection. J. Mach. Learn. Res. 11, 2973–3009 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Böttger, T., Ulrich, M.: Real-time texture error detection on textured surfaces with compressed sensing. Pattern Recogn. Image Anal. 26(1), 88–94 (2016)

    Article  Google Scholar 

  5. Ding, X., Li, Y., Belatreche, A., Maguire, L.P.: An experimental evaluation of novelty detection methods. Neurocomputing 135, 313–327 (2014)

    Article  Google Scholar 

  6. Han, Y., Shi, P.: An adaptive level-selecting wavelet transform for texture defect detection. Image Vis. Comput. 25(8), 1239–1248 (2007)

    Article  Google Scholar 

  7. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973)

    Article  Google Scholar 

  8. Hoseini, E., Farhadi, F., Tajeripour, F.: Fabric defect detection using auto-correlation function. Int. J. Comput. Theory Eng. 5, 114–117 (2013)

    Article  Google Scholar 

  9. Hu, G.H.: Automated defect detection in textured surfaces using optimal elliptical gabor filters. Optik - Int. J. Light Electron Opt. 126(14), 1331–1340 (2015)

    Article  Google Scholar 

  10. Iyer, M., Janakiraman, S.: Defect detection in pattern texture analysis. In: 2014 International Conference on Communication and Signal Processing, pp. 172–175, April 2014

    Google Scholar 

  11. Latif-Amet, A., Ertüzün, A., Erçil, A.: An efficient method for texture defect detection: sub-band domain co-occurrence matrices. Image Vis. Comput. 18(6), 543–553 (2000)

    Article  Google Scholar 

  12. Navarro, P., Fernandez-Isla, C., Alcover, P., Suardiaz, J.: Defect detection in textures through the use of entropy as a means for automatically selecting the wavelet decomposition level. Sensors (Bassel) 16, 1178 (2016)

    Article  Google Scholar 

  13. Nurzynska, K., Kubo, M., Muramoto, K.: Snow particle automatic classification with texture operators. In: 2011 IEEE International Geoscience and Remote Sensing Symposium, pp. 2892–2895, July 2011

    Google Scholar 

  14. Nurzynska, K., Kubo, M., Muramoto, K.: Texture operator for snow particle classification into snowflake and graupel. Atmos. Res. 118, 121–132 (2012)

    Article  Google Scholar 

  15. Ojala, T., Pietikäinen, M., Mäenpää, T.: Gray scale and rotation invariant texture classification with local binary patterns. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 404–420. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45054-8_27

    Chapter  Google Scholar 

  16. Pimentel, M.A.F., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Signal Process. 99, 215–249 (2014)

    Article  Google Scholar 

  17. Randen, T., Husoy, J.H.: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)

    Article  Google Scholar 

  18. Sari, L., Ertüzün, A.: Texture defect detection using independent vector analysis in wavelet domain. In: 2014 22nd International Conference on Pattern Recognition, pp. 1639–1644, August 2014

    Google Scholar 

  19. Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. In: Proceedings of the 12th International Conference on Neural Information Processing Systems, NIPS 1999, pp. 582–588. MIT Press, Cambridge (1999)

    Google Scholar 

  20. Vaidelienė, G., Valantinas, J.: The use of Haar wavelets in detecting and localizing texture defects. Image Anal. Stereol. 35(3), 195–201 (2016)

    Article  Google Scholar 

  21. Xie, X., Mirmehdi, M.: TEXEMS: texture exemplars for defect detection on random textured surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1454–1464 (2007)

    Article  Google Scholar 

  22. Xie, X., Mirmehdi, M.: Texture exemplars for defect detection on random textures. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 404–413. Springer, Heidelberg (2005). https://doi.org/10.1007/11552499_46

    Chapter  Google Scholar 

  23. Yuan, X., Wu, L., Peng, Q.: An improved Otsu method using the weighted object variance for defect detection. Appl. Surface Sci. 349(Suppl. C), 472–484 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been based on the results of the project “Opracowanie systemu do efektywnej integracji aplikacji wizyjnych przez użyt- kowników końcowych” co-financed by the European Regional Development Fund under Operational Programme Innovative Economy 2007–2013, based on the Agreement no. UDA-POIG.01.04.00-24-067/11-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolina Nurzynska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nurzynska, K., Czardybon, M. (2018). Defect Detection in Textiles with Co-occurrence Matrix as a Texture Model Description. In: Barneva, R., Brimkov, V., Tavares, J. (eds) Combinatorial Image Analysis. IWCIA 2018. Lecture Notes in Computer Science(), vol 11255. Springer, Cham. https://doi.org/10.1007/978-3-030-05288-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05288-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05287-4

  • Online ISBN: 978-3-030-05288-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics