Skip to main content

Dual-Arm Construction Robot with Remote-Control Function

  • Chapter
  • First Online:
Disaster Robotics

Abstract

In disaster areas, operating heavy construction equipment remotely and autonomously is necessary, but conventional remote-controlled heavy equipment has problems such as insufficient operability, limited mobility on slopes and stairs, and low work efficiency because of difficult remote control. As part of the ImPACT-TRC Program, a group of Japanese researchers attempts to solve these problems by developing a construction robot for disaster relief tasks with a new mechanism and new control methods. This chapter presents the overview of construction robot and the details of main elemental technologies making up the robot. Section 5.1 describes the basic configuration of the robot and the teleoperation system. Section 5.2 is a tether powered drone which provides extra visual information. Sections 5.4 and 5.3 are force and tactile feedback for skillful teleoperation. Section 5.5 is visual information feedback which consists of an arbitrary viewpoint visualization system and a visible and LWIR camera system to observe surrounding of the robot in a dark night scene and/or a very foggy scene. These functions can dramatically increase construction equipment’s capacity to deal with large-scale disasters and accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Araki, R., Okada, T., Tazaki, Y., Yokokohji, Y., Yoshinada, H., Nakamura, S., Kurashiki, K.: External force estimation of a hydraulically-driven robot in the disaster area for high fidelity teleoperation. In: 2018 JSME Conference on Robotics and Mechatronics (ROBOMECH 2018), 2A1-J05 (2018). (In Japanese)

    Google Scholar 

  2. Bensmaïa, S., Hollins, M.: Pacinian representations of fine surface texture. Percept. Psychophys. 67(5), 842–854 (2005)

    Article  Google Scholar 

  3. Bolanowski Jr., S.J., Gescheider, G.A., Verrillo, R.T., Checkosky, C.M.: Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84(5), 1680–1694 (1988)

    Article  Google Scholar 

  4. Bry, A., Bachrach, A., Roy, N.: State estimation for aggressive flight in GPS-denied environments using onboard sensing. In: 2012 IEEE International Conference on Robotics and Automation, pp. 1–8 (2012)

    Google Scholar 

  5. Chayama, K., Fujioka, A., Kawashima, K., Yamamoto, H., Nitta, Y., Ueki, C., Yamashita, A., Asama, H.: Technology of unmanned construction system in Japan. J. Robot. Mechatron. 26(4), 403–417 (2014)

    Article  Google Scholar 

  6. Choi, S.Y., Choi, B.H., Jeong, S.Y., Gu, B.W., Yoo, S.J., Rim, C.T.: Tethered aerial robots using contactless power systems for extended mission time and range. In: 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 912–916 (2014)

    Google Scholar 

  7. Culbertson, H., Unwin, J., Kuchenbecker, K.J.: Modeling and rendering realistic textures from unconstrained tool-surface interactions. IEEE Trans. Haptics 7(3), 381–393 (2014)

    Article  Google Scholar 

  8. CyPhy: The future of high-powered commercial drones. https://www.cyphyworks.com/products/parc/. Accessed 8 Aug 2018

  9. del Sol, E., et al.: External force estimation for teleoperation based on proprioceptive sensors. Int. J. Adv. Robot. Syst. 11(52) (2014)

    Google Scholar 

  10. DJI: Phantom4. https://www.dji.com/jp/phantom-4. Accessed 8 Aug 2018

  11. Egawa, E., Kawamura, K., Ikuta, M., Eguchi, T.: Use of construction machinery in earthquake recovery work. Hitachi Rev. 62(2), 136–141 (2013)

    Google Scholar 

  12. He, S., Ye, J., Li, Z., Li, S., Wu, G., Wu, H.: A momentum-based collision detection algorithm for industrial robots. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1253–1259 (2015)

    Google Scholar 

  13. Heuer, H., Owens, A.: Vertical gaze direction and the resting posture of the eyes. Perception 18(3), 363–377 (1989)

    Article  Google Scholar 

  14. Higashi, K., Okamoto, S., Yamada, Y.: What is the hardness perceived by tapping? In: International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pp. 3–12. Springer, Berlin (2016)

    Chapter  Google Scholar 

  15. Hirabayashi, T., et al.: Teleoperation of construction machines with haptic information for underwater application. Autom. Constr. 15(5), 563–570 (2006)

    Article  Google Scholar 

  16. Hughes, C., Denny, P., Glavin, M., Jones, E.: Equidistant fish-eye calibration and rectification by vanishing point extraction. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2289–2296 (2010)

    Article  Google Scholar 

  17. Ide, T., Nabae, H., Hirota, Y., Yamamoto, A., Suzumori, K.: Preliminary test results of hydraulic tough multi finger robot hand. In: 2018 JSME Conference on Robotics and Mechatronics (ROBOMECH 2018), 2P1-L01 (2018). (In Japanese)

    Google Scholar 

  18. Iwataki, S., Fujii, H., Moro, A., Yamashita, A., Asama, H., Yoshinada, H.: Visualization of the surrounding environment and operational part in a 3DCG model for the teleoperation of construction machines. In: 2015 IEEE/SICE International Symposium on System Integration (SII), pp. 81–87 (2015)

    Google Scholar 

  19. James, C.A., Bednarz, T.P., Haustein, K., Alem, L., Caris, C., Castleden, A.: Tele-operation of a mobile mining robot using a panoramic display: an exploration of operators sense of presence. In: 2011 IEEE International Conference on Automation Science and Engineering, pp. 279–284 (2011)

    Google Scholar 

  20. Kiribayashi, S., Yakushigawa, K., Nagatani, K.: Design and development of tether-powered multirotor micro unmanned aerial vehicle system for remote-controlled construction machine. In: Preprints of the 11th International Conference on Field and Service Robotics, p. # 24 (2017)

    Google Scholar 

  21. Kiribayashi, S., Yakushigawa, K., Nagatani, K.: Design and development of tether-powered multirotor micro unmanned aerial vehicle system for remote-controlled construction machine. In: Proceedings of Field and Service Robotics, pp. 637–648 (2018)

    Google Scholar 

  22. Kiribayashi, S., Yakushigawa, K., Nagatani, K.: Position estimation of tethered micro unmanned aerial vehicle by observing the slack tether. In: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), pp. 159–165 (2017)

    Google Scholar 

  23. Komatsu, R., Fujii, H., Kono, H., Tamura, Y., Yamashita, A., Asama, H.: Bird’s-eye view image generation with camera malfunction in irradiation environment. In: 6th International Conference on Advanced Mechatronics (ICAM 2015), pp. 177–178 (2015)

    Article  Google Scholar 

  24. Kondo, D., Nakamura, S., Kurashiki, K., Yoshinada, H.: Immersive display for remote control of construction robot. In: Proceedings of the 62nd Annual Conference of System, Control and Information Engineers (ISCIE), pp. 131–135 (2018). (In Japanese)

    Google Scholar 

  25. Kontz, M.E., et al.: Pressure based exogenous force estimation. In: 2006 ASME International Mechanical Engineering Congress and Exposition, pp. 111–120 (2006)

    Google Scholar 

  26. Kuchenbecker, K.J., Fiene, J., Niemeyer, G.: Improving contact realism through event-based haptic feedback. IEEE Trans. Vis. Comput. Graph. 12(2), 219–230 (2006)

    Article  Google Scholar 

  27. Lamore, P., Muijser, H., Keemink, C.: Envelope detection of amplitude-modulated high-frequency sinusoidal signals by skin mechanoreceptors. J. Acoust. Soc. Am. 79(4), 1082–1085 (1986)

    Article  Google Scholar 

  28. Luh, J., Zheng, Y.F.: Computation of input generalized forces for robots with closed kinematic chain mechanisms. IEEE J. Robot. Autom. 1(2), 95–103 (1985)

    Article  Google Scholar 

  29. Makino, Y., Maeno, T., Shinoda, H.: Perceptual characteristic of multi-spectral vibrations beyond the human perceivable frequency range. In: 2011 IEEE World Haptics Conference (WHC), pp. 439–443. IEEE (2011)

    Google Scholar 

  30. McMahan, W., Kuchenbecker, K.J.: Spectral subtraction of robot motion noise for improved event detection in tactile acceleration signals. In: International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pp. 326–337. Springer (2012)

    Google Scholar 

  31. McMahan, W., Gewirtz, J., Standish, D., Martin, P., Kunkel, J.A., Lilavois, M., Wedmid, A., Lee, D.I., Kuchenbecker, K.J.: Tool contact acceleration feedback for telerobotic surgery. IEEE Trans. Haptics 4(3), 210–220 (2011)

    Article  Google Scholar 

  32. Minamoto, M., Nakayama, K., Aokage, H., Sako, S.: Development of a Tele-earthwork system. Autom. Robot. Constr. XI 269–275 (1994)

    Google Scholar 

  33. Moteki, M., Nishiyama, A., Yuta, S., Ando, H., Ito, S., Fujino, K.: Work efficiency evaluation on the various remote control of the unmanned construction. In: 15th Symposium on Construction Robotics in Japan, pp. O–21 (2015). (In Japanese)

    Google Scholar 

  34. Nagano, H., Takenouchi, H., Konyo, M., Tadokoro, S.: Haptic transmission using high-frequency vibration generated on body of construction robot -performance evaluation of haptic transmission system under construction robot teleoperation-. In: 2018 JSME Conference on Robotics and Mechatronics (ROBOMECH 2018), 2A1-J04 (2018). (In Japanese)

    Article  Google Scholar 

  35. Ogino, Y., Shibata, T., Tanaka, M., Okutomi, M.: Coaxial visible and FIR camera system with accurate geometric calibration. In: SPIE Defense + Commercial Sensing (DCS 2017), vol. 10214, pp. 1021415–1–6 (2017)

    Google Scholar 

  36. Okamoto, S., Yamada, Y.: An objective index that substitutes for subjective quality of vibrotactile material-like textures. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3060–3067. IEEE (2011)

    Google Scholar 

  37. Okamura, A.M., Dennerlein, J.T., Howe, R.D.: Vibration feedback models for virtual environments. In: Proceedings, 1998 IEEE International Conference on Robotics and Automation, vol. 1, pp. 674–679. IEEE (1998)

    Google Scholar 

  38. Okura, F., Ueda, Y., Sato, T., Yokoya, N.: Teleoperation of mobile robots by generating augmented free-viewpoint images. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 665–671 (2013)

    Google Scholar 

  39. Padgaonkar, A.J., et al.: Measurement of angular acceleration of a rigid body using linear accelerometers. ASME J. Appl. Mech. 42(3), 552–556 (1975)

    Article  Google Scholar 

  40. Papachristos, C., Tzes, A.: The power-tethered UAV-UGV team: a collaborative strategy for navigation in partially-mapped environments. In: 22nd Mediterranean Conference on Control and Automation, pp. 1153–1158 (2014)

    Google Scholar 

  41. Sato, T., Moro, A., Sugahara, A., Tasaki, T., Yamashita, A., Asama, H.: Spatio-temporal bird’s-eye view images using multiple fish-eye cameras. In: Proceedings of the 2013 IEEE/SICE International Symposium on System Integration, pp. 753–758 (2013)

    Google Scholar 

  42. Scaramuzza, D., Martinelli, A., Siegwart, R.: A toolbox for easily calibrating omnidirectional cameras. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5695–5701 (2006)

    Google Scholar 

  43. Shen, S., Michael, N., Kumar, V.: Autonomous multi-floor indoor navigation with a computationally constrained MAV. In: 2011 IEEE International Conference on Robotics and Automation, pp. 20–25 (2011)

    Google Scholar 

  44. Shibata, T., Tanaka, M., Okutomi, M.: Accurate joint geometric camera calibration of visible and far-infrared cameras. In: IS&T International Symposium on Electronic Imaging (EI 2017) (2017)

    Article  Google Scholar 

  45. Stephan, W., Davide, S., Roland, S.: Monocular-SLAM- based navigation for autonomous micro helicopters in gps-denied environments. J. Field Robot. 28(6), 854–874 (2011)

    Article  Google Scholar 

  46. Sun, W., Iwataki, S., Komatsu, R., Fujii, H., Yamashita, A., Asama, H.: Simultaneous tele-visualization of construction machine and environment using body mounted cameras. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO 2016), pp. 382–387 (2016). https://doi.org/10.1109/ROBIO.2016.7866352

  47. Tachi, S.: Telexistence. J. Robot. Soc. Jpn. 33(4), 215–221 (2015). (In Japanese)

    Article  Google Scholar 

  48. Tian, Y., Chen, Z., Jia, T., Wang, A., Li, L.: Sensorless collision detection and contact force estimation for collaborative robots based on torque observer. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 946–951 (2016)

    Google Scholar 

  49. Yamaguchi, T., et al.: A survey on the man-machine interface in remote operation. In: 59th Annual Conference of Japan Society of Civil Engineers, vol. 59, pp. 373–374 (2004)

    Google Scholar 

  50. Yamauchi, T., Okamoto, S., Konyo, M., Hidaka, Y., Maeno, T., Tadokoro, S.: Real-time remote transmission of multiple tactile properties through master-slave robot system. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1753–1760. IEEE (2010)

    Google Scholar 

  51. Yoshikawa, T.: Foundation of Robotics. MIT Press, Cambridge (1990)

    Google Scholar 

  52. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: 7th International Conference on Computer Vision (ICCV 1999), vol. 1, pp. 666–673 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yoshinada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshinada, H. et al. (2019). Dual-Arm Construction Robot with Remote-Control Function. In: Tadokoro, S. (eds) Disaster Robotics. Springer Tracts in Advanced Robotics, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-05321-5_5

Download citation

Publish with us

Policies and ethics