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Abstract. The number of devices of the so-called Internet of Things
(IoT) is heavily increasing. One of the main challenges for operators
of large networks is to autonomously and automatically identify any
IoT device within the network for the sake of computer security and,
subsequently, being able to better protect and secure those.
In this paper, we propose a novel approach to identify IoT devices based
on the unchangeable IoT hardware setup through device specific clock
behavior. One feature we use is the unavoidable fact that clocks experi-
ence “clock skew”, which results in running faster or slower than an exact
clock. Clock skew along with twelve other clock related features are suit-
able for our approach, because we can measure these features remotely
through TCP timestamps which many devices can add to their pack-
ets. We show that we are able to distinguish device models by Machine
Learning only using these clock characteristics. We ensure that measure-
ments of our approach do not stress a device or causes fault states at
any time.
We evaluated our approach in a large-scale real-world installation at the
European Organization for Nuclear Research (CERN) and show that the
above-mentioned methods let us identify IoT device models within the
network.

Keywords: Internet of Things; Identification; Security; Clock Charac-
teristics; Machine Learning.

1 Introduction

A problem we face today is that the number of embedded devices is exploding
and therefore introduces vulnerabilities on an uncountable number of networks.
Gartner, Inc. published a report that the world will face 20.4 billion connected
things by 2020 [1]. This indicates the breakthrough of integrating these devices
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into open enterprise networks. In large heterogeneous computer networks like at
CERN, we find tens of thousands of registered general purpose devices.
The specialty of an organization like CERN is that it pursues an open network
policy where staff can register a network device of any type needed for their work.
This results in an immense growth of various smart interconnected devices, like
closed-circuit television (CCTV) cameras, IP-phones, printers, network attached
storages, oscilloscopes, industrial control systems etc. and increases the complex-
ity of protecting this network against cyber-threats. IoT manufacturers approach
a short time-to-market and do not provide firmware updates for a longer time,
as PC operating system providers do. Furthermore, IoT manufacturers design
hardware, but they often re-use source code and libraries that are outdated at
the time of releasing a new IoT device. Due to this, IoT devices are generally
and intrinsically insecure and it becomes easier to compromise them. This is why
using them in home or open enterprise networks is so dangerous that it becomes
a serious threat, especially when the devices have security, safety or operational
implications.
A first step towards securing an open network is to know which IoT devices exist
within the network, which becomes most important if a new security vulnerabil-
ity comes up. The operator then needs to know which device models are affected
and endanger the overall network. Making an inventory of thousands of different
IoT devices by hand is not feasible, since there is no way to gather model related
information from devices easily. Moreover, getting this information for different
IoT device manufacturers over the network was not yet done in large scale.
To address this problem, we propose and evaluate a novel approach based only
on thirteen clock characteristics to remotely identify different IoT device models
of various manufacturers in a more reliable and non-invasive way compared to
related work. The approach will not harm the device or attached equipment and
works without any preconditions. The approach does not need a reference device
that is present all the time either. The widely used and simple TCP timestamp
feature allows us to identify multiple devices under test in parallel and a device
does not even need to be in the same subnet than the fingerprinter. These facts
point out the benefit of using our approach within a complex network environ-
ment.

1.1 Contributions

In this paper, we present a novel approach to identify IoT device models based
only on clock characteristics and evaluate it on a large heterogeneous network
with Machine Learning. We focus on interference-free network packets, the abil-
ity to scan large networks, being adaptable for heterogeneous devices and not
causing faults on remote devices. Installing or modifying anything on the device
under test (DUT) is not needed. In the following,

– we show a new approach to IoT device fingerprinting by measuring clock
behaviors of embedded devices;



– we fingerprint 562 physical IoT devices in a highly heterogeneous, large-scale
network at CERN;

– we validate our approach by distinguishing 51 different device models of our
network;

– our evaluation shows that we are able to detect IoT devices with 97.03% pre-
cision, 94.64% recall and 99.76% accuracy on a validation-set using Machine
Learning.

Section 2 introduces related work and background on computer clocks in general.
It shows clock characteristics and why these clock characteristics occur. After
that, it shows how one can measure them. Section 3 identifies clock character-
istics in TCP timestamps and how we can use them to identify devices. After
that, the section introduces our dataset and the features we use for Machine
Learning. Finally, we show our evaluation results before we conclude.

2 Background and Related Work

This section introduces related work and the origin of the features we use for
our approach. It begins with the definition of a timestamp clock that generates
the timestamp values we measure. Afterwards, the section points out how we
measure the clock characteristics and how clock skew is defined. The section
then shows timestamp overflows we recognized on several devices and how we
define this behavior.

2.1 Related Work

Most of the related work to identify network devices require preconditions on
the infrastructure. Passive fingerprinting approaches need a software-defined-
network [2] to interact with IoT devices or to mirror [3] the network traffic of
multiple routers. Thus, they distinguish by the generated network traffic of the
IoT device when it is in a setup process [2] or operation [3]. Active fingerprinting
approaches like port scanners are too inaccurate and bring up operational and
safety implications for IoT devices. Other approaches need to take over control
on the equipped auxiliary, e.g. measuring opening times [4] of a valve when
connected to a programmable logic controller to identify the IoT device. Another
active approach is to send malformed packets to an IoT device and detect the
device on the replied error message [5]. Other work focuses only on clock skew
approaches and calculate the clock skew based on a reference device that always
needs to be present [6] [7]. Researchers [8] also use clock skew to fingerprint the
users of a cloud environment via asynchronous JavaScript and XML (AJAX)
that is not adaptable for IoT environments, since IoT devices can not be forced
to open and process a JavaScript web-page. In addition, all before-mentioned
approaches were tested only on a few devices and therefore miss a large and
heterogeneous dataset for verification.



2.2 TCP’s Timestamp clock

A clock is a continuous counter triggered by an oscillator. The oscillator for the
majority of devices with a real-time clock is a quartz that oscillates with a fixed
frequency. We use the characteristic feature of how monotonic timestamp clocks
generate TCP [9] timestamp values to detect model specific characteristics. A
monotonic clock avoids clock corrections that would change the timestamp value
periodically, which leads to a systematic clock drift that one can measure over
time. The resolution [10] of the timestamp clock is defined to be in the range
between 1 millisecond up to 1 second per tick [11] that describes the step-size
of the counter. A timestamp clock is designed to generate incrementing values
which a system can use for different measurements. In case of our usage, the
timestamp values are stored in the option field [11] of TCP packets that let the
communication partner measure the round trip time.

2.3 Defining clock skew

Every clock experiences clock skew that one can measure as clock drift over
time. In comparison to an exact clock, the quartz crystal, integrated in most
IoT devices, can have a typical error of ±100 parts per million which results in
a clock drift of ±8.64 sec per day. The clock drift rate at a point in time is the
clock skew and can be positive or negative, if the clock is faster or slower than an
exact clock. This positive or negative skew remains constant over time as Kohno
et al. [12] showed. The clock skew becomes measurable by periodically sending
TCP packets to the DUT and processing the included TCP timestamps. The
clock skew α(t) is a derivation over time and is defined as follows:

θ(t) = CB(t)− CA(t) (1)

α(t) =
dθ(t)

dt
= δB(t)− δA(t) (2)

CA and CB in Equation 1 are the current clock values of a computer and the DUT
in absolute time t. We calculate the relative clock offset between these clocks for
our approach. Equation 2 specifies δB(t) and δA(t) that is the frequency error of a
clock at an absolute point in time t. Moreover, Equation 2 shows that clock skew
is calculated by the frequency error of an oscillator. We use these equations to
calculate the clock skew of every device model and add it as a feature for Machine
Learning in Section 3.2.

2.4 Timestamp overflows

A conspicuous feature we detected on longer scans is an overflow of the TCP
timestamp values that happened on several IoT devices during our tests. This
overflow of the timestamp values is caused, because the monotonic timestamp
clock does not synchronize the time periodically. Thus, the timestamp values
will not be corrected if the clock drifts and timestamp overflows will happen



more often. In the following, we show how we detect timestamp overflows and
how we take advantage of this behavior. Figure 1 shows timestamp overflows of
a printer and a telepresence device. The Hewlett-Packard Laserjet P3010 printer
drops from the maximum timestamp value dm of 114, 221, 300 to a lower value db
with 34, 731 at packet number 25. The Matrox Monarch HD telepresence device
drops from the maximum of 8, 598, 140 to the lower value 18, 775 at packet
number 144. We detect these overflows by multiple Machine Learning features
and use this behavior to identify devices more accurate.
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Fig. 1. Overflows of timestamp clocks

We specify the observed clock characteristics in the following formula:

clockd(n) = db + n ∗ dr mod dm (3)

db =

{
db = 0, initially

db = ϕ and n = 0, ≥ dm
(4)

We define Equation 3 that calculates the timestamp clock value clockd in rela-
tion to n ticks that happened during start. This equation is device model specific
and starts on boot with db set to zero. When an overflow occurred, it is set to an
implementation specific value ϕ. The device specific constant dr is the resolution
of the timestamp clock. Every iteration n adds this constant dr, where n zeroes
after an overflow has occurred. The upper limit of dm is defined by RFC1323 [11]
to the upper limit for unsigned 32 bit integers, but implementations sometimes
differ and set a smaller value where they wrap. We observed that the drops in
Figure 1 occur in a device-model-specific periodicity. This shows us that dm in
Equation 3 corresponds not always to the highest value defined by RFC1323.
An additional implementation specific behavior occurs, when a timestamp clock
begins to increment after an overflow greater than zero as 0 < db < dm. It is



obvious that the closer dm is to the upper limit for unsigned 32 bit integers,
the longer the scans need to be to detect an overflow. Using this information
about overflows and lower value characteristics increases the preciseness for dis-
tinguishing specific models.

3 Clock-characteristic-based Device Identification using
Random Forest classifier

This section introduces the different device classes of our approach along with
the amount of scans in the different data sets. After that, the section lists which
Machine Learning features we define to detect the different clock characteristics.
The section then shows the comparison of different Machine Learning algorithms
for our approach and points out the results we achieved with the Random Forest
classifier.

3.1 Dataset of devices at CERN

CERN has a large-scale infrastructure with tens of thousands of devices, where
1000 of them are IoT devices. For our evaluation, we use a subset of these devices
and limit our dataset to 562 devices. We encountered that 100 of the devices are
only sporadically online. Hence, we are currently not able to gather enough scans
for the training phase of Machine Learning. We also found four device models of
different manufacturers that do not support TCP timestamps or reply with zero
continuously. The remaining amount of 300 IoT devices are within a restricted
network for accelerator purposes only. Therefore, one is not able to get access
to this network due to security and safety restrictions. The device classes and
physical quantities of our dataset are listed in Table 1. This table represents 51
device models categorized by their device class. Summing all quantities together
results in 562 physical devices for our dataset. All network devices at CERN are
registered at a database, where we extracted hostnames, device manufacturer
and model information of all IoT devices. Since device manufacturer and model
information are not mandatory fields, we investigated manually for certain de-
vices to identify them correctly. Correct labeled information is mandatory for
the training and validation phase of Machine Learning.
Due to the high quantity of Printers one can find at CERN, our dataset con-
tains a comparatively larger amount of scans for this device class. On the one
hand, more devices help us to generate our dataset faster. On the other hand,
we mention in Section 3.3 that the classification algorithm is not biased by this
fact. Table 1 also shows scans of the training and test set that we use in Section
3.3 for the Machine Learning algorithm. We hereby point out that a single scan
consists of 576 values taken over time from the TCP timestamps. Our evaluation
showed that the first timestamp overflows happen within this range for different
devices. Before we can start with Machine Learning in Section 3.3, we split the
dataset into a training and test set first as we show in Table 1. We train the
Machine Learning algorithm after this split on the training set and use the test



Table 1. Device overview with physical quantity and scans per data-set

Device Class Models Quantity Training set Test set Validation set

Arduino 1 4 225 49 14

IP to serial converter 1 4 787 224 58

IP phone 1 2 68 9 7

Light management 1 11 63 22 3

Network attached storage 16 35 4021 1054 294

Oscilloscope 1 2 70 21 9

Printer 11 390 78903 21006 5231

Projector 3 12 384 111 28

Telepresence system 4 37 2934 795 195

Video streaming system 1 25 12177 3263 810

Webcam 11 40 2416 658 155

set to put the classifier to the proof. After that, we use the validation set shown
in Table 1 to verify our approach on never processed scans, point out the features
for Machine Learning in Section 3.2 and show the results in Section 3.3.

3.2 Defining features for Random Forest classifier

We first used clock skew as a single feature to identify devices of our dataset,
which was not giving us the intended results for our large dataset. One can
see in Figure 2 of Section 3.3 that clock skew is the fourth most important
feature for the Machine Learning algorithm to identify devices. This makes clear
that by using clock skew as the only feature, one would not be able to identify
the majority of devices within our dataset. Thus, we use 12 additional features
besides clock skew to better identify devices, which are specified in Table 2.
We defined these features to detect the changes of consecutive timestamps and
the properties of the overall scan. Timestamp overflows are also detected with
the combination of several features. All features are based on two types of sets.
First, we define the set A = a0, ..., an−1, an as the set of all timestamp values
of one scan period from a device model. One scan period is represented by 576
timestamp values; hence a is one single timestamp value of A. Secondly, we
define the set O = {ai+1 − ai}N−1

i=1 that represents the offset of two consecutive
timestamps of the set A.

3.3 Detection of devices

We take the dataset that we introduced in Section 3.1 and the features of Sec-
tion 3.2 as input and evaluated our approach with different Machine Learning
algorithms. We compared algorithms designed for classification problems, as in
multilayer perceptron [13], support vector machine [14] and Random Forest [15]
on the test set shown in Table 1. With the multilayer perceptron algorithm,
we get a precision [16] of 91.65%, a recall [16] of 92.47% and an accuracy [16]
of 99.22%. Support vector machine results in a precision of 92.05%, a recall of



Table 2. Features used for Random Forest classifier

ID Features Definition

0 Clock skew See Section 2.3

1 Increase over all consecutive timestamp values an − a1, where n = |A|
2 Largest increase of two consecutive timestamp values max(O)

3 Mean increase over all consecutive timestamp offsets mean(O)

4 Smallest increase of two consecutive timestamp values min(O)

5 Timestamp overflow occurred if ai+1 < ai, where a ∈ A

6 Sum over all consecutive timestamp offsets
∑N

i=1 oi
7 Last timestamp in A an, where n = |A|
8 Largest timestamp in A max(a)

9 Median over all timestamps median(A)

10 Smallest timestamp in A min(a)

11 Cardinality of timestamp values |A|
12 Sum over all timestamp values

∑N
i=1 ai

83.27% and an accuracy of 99.14%. The Random Forest algorithm shows a pre-
cision of 93.61%, a recall of 93.44% and an accuracy of 99.67%.
Our approach makes use of the uniqueness of device models in the TCP times-
tamp changes and makes them detectable. Distinguishing between different classes
is a typical classification problem [17], because the Machine Learning algorithm
needs to detect unique timestamp characteristics and assign it to a device model.
Thus, we chose features that clearly separate the devices what one can see in the
results above. The results for precision, recall and accuracy of Random Forest
reached in average higher values in comparison to other algorithms that we show
in the beginning. In the following, we continue with Random Forest.
Random Forest creates one decision tree classifier [18] for each device model
during the training phase. In the test phase, the algorithm takes new scans as
inputs. Each tree outputs the probability of every scan belonging to a certain
device model. Finally the predicted device model is the tree with the highest
mean probability estimate of all trees. Since our results are very distinct, we
already mentioned in Section 3.1 that the Machine Learning algorithm is not
biased. We examined this by splitting the training set into a test and validation
set. First, we trained the Machine Learning algorithm with the training and test
set. After that, the algorithm classified the scans of the validation set that were
never processed before. We even used our classifier to identify scans of never seen
devices and identified them successfully. The Random Forest results of predict-
ing the device models of the validation set reach a precision of 97.03%, a recall
of 94.64% and an accuracy of 99.76%.
As mentioned in related work, other researchers as Bratus et al. [5] or Kohno et
al. [12] rely only on clock skew as a feature to identify devices. We applied our
features related to TCP timestamp changes and the Random Forest algorithm
to the initial clock skew feature, which resulted in better results that we present
in this work. These additional features help us to identify different devices more
clearly on a large-scale network with a bigger dataset compared to related work
[2] [4] [19]. To increase our results, we performed several iterations of feature se-



lection on our dataset. Removing features by method [20] with low information
gain resulted in choosing the features in Table 2. Furthermore, we show in Figure
2 the importance [21] of every single feature, where 100% importance would be
1.0 on the y-axis. Our evaluation showed that even the feature with the lowest
importance correlates with other features; hence removing it would worsen our
results significantly. For reasons of clarity, we use the Feature-IDs of Table 2 to
match the numbers shown in Figure 2.

Fig. 2. Feature importance of the Random Forest classifier

4 Conclusion

We presented a novel approach to reliably identify various IoT device models
in a real-world environment. Preconditions on the infrastructure, like software-
defined-networks, network mirroring or reference devices are not needed. We
showed that the approach is working on a large-scale network with a larger
dataset compared to related work. Moreover, no other work was able to classify
this amount of heterogeneous IoT device models by using just a single and easy
accessible information source like TCP timestamps.
Due to the fact that our classification approach is non-intrusive, one can also
use this approach for other infrastructures as in industrial IoT environments.
For future work, we want to identify new types of IoT devices that come up
together with industrial IoT devices on our accelerator complex test bed.
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