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Abstract. We consider an iterative computation of negative curvature
directions, in large scale optimization frameworks. We show that to the
latter purpose, borrowing the ideas in [1], [3] and [4], we can fruitfully
pair the Conjugate Gradient (CG) method with an algebraic approach
involving the use of grossone [5]. In particular, though in principle the
CG method is well-posed only on positive definite linear systems, the
use of grossone can enhance the performance of the CG, allowing the
computation of negative curvature directions, too. The overall method in
our proposal significantly generalizes the theory proposed for [1] and [3],
and straightforwardly allows the use of a CG-based method on indefinite
Newton’s equations.
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1 Introduction

When considering the solution of the unconstrained optimization problem

min
x∈IRn

f(x), (1)

where f : IRn → IR is a nonlinear smooth function and n is large, specific meth-
ods should be applied in case stationary points satisfying second order necessary
optimality conditions are sought. Moreover, additional cares on the algorithms
adopted are definitely mandatory, since standard stationarity conditions in gen-
eral do not ensure the convexity of the objective function in a neighborhood of



critical points. In this regard, the computation of negative curvature directions
for the objective function is an essential tool, to guarantee convergence to second
order points.

Observe that convergence towards second order stationary points, where
the Hessian matrix is positive semidefinite, requires to efficiently explore the
eigenspaces of the Hessian matrix at the solution. Thus, the optimization method
adopted to solve (1) should be able to cope also with nonconvexities of the ob-
jective function. In particular, as showed in [3], this can be accomplished by
suitable Krylov-subspace methods, such that at each iteration j, a pair of direc-
tions (sj , dj) is computed satisfying specific properties. The vector sj must be a
direction which approximately solves Newton’s equation ∇2f(xj) s = −∇f(xj)
at xj . Its purpose is essentially to ensure convergence to stationary points. On
the other hand, the direction dj is a so called negative curvature direction, which
is used to possibly force convergence to stationary points which satisfy second
order necessary optimality conditions [9]. This implies that the sequence {dj} is
expected to satisfy the next assumption.

Assumption 1 The vectors in the sequence {dj} are bounded and

dTj ∇2f(xj)dj < 0

dTj ∇2f(xj)dj −→ 0 =⇒ min
[
0, λmin(∇2f(xj))

]
−→ 0,

being λmin(∇2f(xj)) the smallest eigenvalue of the Hessian matrix ∇2f(xj).

Roughly speaking, the conditions in Assumption 1 imply that the negative cur-
vature directions {dj} need to eventually approximate an eigenvector associated
with the smallest negative eigenvalue of the Hessian matrix. In [3] indications
on the computation of the pair (sj , dj) were given, though the computation of
dj involved the use of Planar-CG methods, which impose an heavy computation
in case some (so called) planar iterations are performed. This approach proved
to be effective but required a complex analysis involving different articulated
subcases. Here, we aim at describing a strong simplification in the computation
the directions {dj}, by using a novel approach which extends some ideas in [4].

2 Our proposal

To this purpose, we use the Krylov-subspace method in [1], for indefinite New-
ton’s equations. This method alternates standard CG iterations and planar it-
erations, each of them being equivalent to a double CG iteration. This method
is used to satisfy the next lemma (the proof follows from Theorem 3.2 in [3]).

Lemma 1. Given problem (1), suppose at iteration n (being n the space dimen-
sion) of the Krylov-subspace method used to solve Newton’s equation ∇2f(xj)s =
∇f(xj), the decompositions

∇2f(xj)Rj = RjTj , Tj = LjBjL
T
j



are available, where Rj ∈ IRn×n is orthogonal, Tj ∈ IRn×n has the same eigen-
values of ∇2f(xj), with at least one negative eigenvalue, and Lj , Bj ∈ IRn×n are
nonsingular. Let z be the unit eigenvector corresponding to the smallest eigen-
value of Bj, and ȳ ∈ IRn be the bounded solution of the linear system LTj y = z.
Then, the vector dj = Rj ȳ satisfies Assumption 1.

The main drawback of the latter approach is that the eigenvector z of Bj and
the solution of the linear system LTny = z should be of easy computation, which
is hardly guaranteed uniquely using the instruments in [1], [2] and [3]. To fill this
gap, let us consider the following matrices, obtained applying the method in [1]:

Ln =



1

−
√

β1 ·

· 1

−
√

βk−1 1 0

0 1

−
√

βkβk+1 0 1

0 −
√

βk+2 ·

· 1

−
√

βn−1 1


,

Bn =


1/a1

·
1/ak−1 0

0

√
βk

0

√
βk ek+1

·
1/an

 ,

where {ai}, {βi}, ek+1 are suitable scalars, and we assume (for the sake of
simplicity) that the method performed all CG iterations, with the exception
of only one planar iteration (namely the k-th iteration - see [1]and [2]). Then,
our novel approach proposes to introduce the numeral grossone, as in [5–8],
and follow some guidelines from [4], so that we can compute the lower block
triangular matrix

L̄n =



1
−
√
β1 ·
· 1

−
√
βk−1

VkC
−1
k

0 (
−βk
√
βk+1√

βk+λ2
k

− βk
√
βk+1√

βk+λ2
k+1

)
C−1k 1

0 −
√
βk+2 ·

· 1

−
√
βn−1 1





and the diagonal matrix

B̄n =



1/a1
·

1/ak−1 0
1

αks¬

0 s¬
αk+1

·
1/an


,

such that LnBnL
T
n = L̄nB̄nL̄

T
n and the symbol ¬ indicates grossone. Moreover,

Ck =

(
1/
√
λkαks¬ 0

0
√

s¬
λk+1αk+1

)
∈ IR2×2,

being λk, λk+1 the two eigenvalues (with λkλk+1 < 0) of the 2× 2 matrix(
0

√
βk√

βk ek+1

)
, (2)

and the columns of the orthogonal matrix Vk ∈ IR2×2 correspond to the normal-
ized eigenvectors of the matrix in (2). We can prove that the latter arrangement
can easily allow the computation of the sequence {dj} of negative curvature
directions complying with Assumption 1 and Lemma 1.
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