Skip to main content

Solving Scalarized Subproblems within Evolutionary Algorithms for Multi-criteria Shortest Path Problems

  • Conference paper
  • First Online:
  • 1510 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11353))

Abstract

The \(\mathcal {NP}\)-hard multi-criteria shortest path problem (mcSPP) is of utmost practical relevance, e. g., in navigation system design and logistics. We address the problem of approximating the Pareto-front of the mcSPP with sum objectives. We do so by proposing a new mutation operator for multi-objective evolutionary algorithms that solves single-objective versions of the shortest path problem on subgraphs. A rigorous empirical benchmark on a diverse set of problem instances shows the effectiveness of the approach in comparison to a well-known mutation operator in terms of convergence speed and approximation quality. In addition, we glance at the neighbourhood structure and similarity of obtained Pareto-optimal solutions and derive promising directions for future work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Other objective types are possible, e. g., bottleneck objectives, but not considered in this work.

  2. 2.

    https://github.com/jakobbossek/grapherator.

  3. 3.

    Note, that we do not consider the topologies of generated instances due to space limitations. A detailed analysis of the topology’s influence cannot be thought without considering the distribution of weights and the locations of start and destination notes. Therefore, this aspect is left for rigorous analysis in future work.

  4. 4.

    https://www.ercis.org/.

References

  1. Bossek, J.: ecr 2.0: a modular framework for evolutionary computation in R. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017, pp. 1187–1193 (2017). https://doi.org/10.1145/3067695.3082470

  2. Bossek, J.: grapherator: a modular multi-step graph generator. J. Open Source Softw. 3(22), 528 (2018). https://doi.org/10.21105/joss.00528

  3. Bossek, J., Grimme, C.: A pareto-beneficial sub-tree mutation for the multi-criteria minimum spanning tree problem. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 3280–3287. IEEE, Honolulu (2017). https://doi.org/10.1109/SSCI.2017.8285183

  4. Bossek, J., Grimme, C.: An extended mutation-based priority-rule integration concept for multi-objective machine scheduling. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 3288–3295. IEEE, Honolulu (2017). https://doi.org/10.1109/SSCI.2017.8285224

  5. Chitra, C., Subbaraj, P.: Multiobjective optimization solution for shortest path routing problem. Int. Sch. Sci. Res. Innov. 4(1) (2010)

    Google Scholar 

  6. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation, 2nd edn. Springer, New York (2007). https://doi.org/10.1007/978-0-387-36797-2

    Book  MATH  Google Scholar 

  7. Coutinho-Rodrigues, J., Clmaco, J., Current, J.: An interactive bi-objective shortest path approach: searching for unsupported nondominated solutions. Comput. Oper. Res. 26(8), 789–798 (1999). https://doi.org/10.1016/S0305-0548(98)00094-X

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  10. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000). https://doi.org/10.1007/s002910000046

    Article  MathSciNet  MATH  Google Scholar 

  11. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000). https://doi.org/10.1007/s002910000046

  12. Emmerich, Michael, Beume, Nicola, Naujoks, Boris: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, Carlos A., Hernández Aguirre, Arturo, Zitzler, Eckart (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_5

    Chapter  MATH  Google Scholar 

  13. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962). https://doi.org/10.1145/367766.368168

  14. Gandibleux, X., Beugnies, F., Randriamasy, S.: Martins’ algorithm revisited for multi-objective shortest path problems with a maxmin cost function. 4OR 4(1), 47–59 (2006). https://doi.org/10.1007/s10288-005-0074-x

  15. Martins, E.Q.V.: On a multicriteria shortest path problem. Eur. J. Oper. Res. 16(2), 236–245 (1984)

    Article  MathSciNet  Google Scholar 

  16. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science, vol. 12. Springer, New York (1998)

    MATH  Google Scholar 

  17. Mohamed, C., Bassem, J., Taicir, L.: A genetic algorithms to solve the bicriteria shortest path problem. Electron. Notes Discret. Math. 36, 851–858 (2010). https://doi.org/10.1016/j.endm.2010.05.108. ISCO 2010 - International Symposium on Combinatorial Optimization

  18. Müller-Hannemann, M., Weihe, K.: Pareto Shortest Paths is Often Feasible in Practice, pp. 185–197. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44688-5_15

    Book  MATH  Google Scholar 

  19. Pangilinan, J.M.A., Janssens, G.K.: Evolutionary algorithms for the multiobjective shortest path planning problem. In: International Journal of Computer and Information Science and Engineering, pp. 54–59 (2007)

    Google Scholar 

  20. Sanders, P., Mandow, L.: Parallel label-setting multi-objective shortest path search. In: 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, pp. 215–224 (2013). https://doi.org/10.1109/IPDPS.2013.89

  21. Tsaggouris, G., Zaroliagis, C.: Multiobjective Optimization: Improved FPTAS for Shortest Paths and Non-linear Objectives with Applications, pp. 389–398. Springer, Berlin (2006). https://doi.org/10.1007/11940128_40

    Book  MATH  Google Scholar 

  22. Warburton, A.: Approximation of pareto optima in multiple-objective, shortest-path problems. Oper. Res. 35(1), 70–79 (1987). https://doi.org/10.1287/opre.35.1.70

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evolu. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  24. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evolu. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the European Research Center for Information Systems (ERCIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Bossek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bossek, J., Grimme, C. (2019). Solving Scalarized Subproblems within Evolutionary Algorithms for Multi-criteria Shortest Path Problems. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 12 2018. Lecture Notes in Computer Science(), vol 11353. Springer, Cham. https://doi.org/10.1007/978-3-030-05348-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05348-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05347-5

  • Online ISBN: 978-3-030-05348-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics