
Rover Descent: Learning to optimize by learning to
navigate on prototypical loss surfaces

Louis Faury ∗1,2 and Flavian Vasile †1

1Criteo Research, France
2Ecole Polytechnique Federale de Lausanne, Switzerland

Learning to optimize - the idea that we can learn from data algorithms that optimize a numerical
criterion - has recently been at the heart of a growing number of research efforts. One of the most
challenging issues within this approach is to learn a policy that is able to optimize over classes of
functions that are different from the classes that the policy was trained on. We propose a novel
way of framing learning to optimize as a problem of learning a good navigation policy on a partially
observable loss surface. To this end, we develop Rover Descent, a solution that allows us to learn a
broad optimization policy from training only on a small set of prototypical two-dimensional surfaces
that encompasses classically hard cases such as valleys, plateaus, cliffs and saddles and by using
strictly zeroth-order information. We show that, without having access to gradient or curvature
information, we achieve fast convergence on optimization problems not presented at training time,
such as the Rosenbrock function and other two dimensional hard functions. We extend our framework
to optimize over high dimensional functions and show good preliminary results.

1 Introduction
Finding the minimizer θ∗ of a function f over some domain Ω is a recurrent problem in a large variety of
engineering and scientific tasks. Instances of this problem appear in machine learning, optimal control,
inventory management, portfolio optimization, and many other applications. This great diversity of
problems has led over the years to the development of a large body of optimization algorithms, from very
general to problem-specific ones.

Recently, the advent of deep learning led to the creation of several methods targeting high-dimensional,
non-convex problems (the most famous ones being momentum [Nesterov, 1983], Adadelta [Zeiler, 2012]
and Adam [Kingma and Ba, 2014]), now used as black-box algorithms by a majority of practitioners.
Other attempts in this field use some additional problem-specific structure, like the work by [Martens,
2010] that leverages fast multiplication by the Hessian to yield better performing optimization policies,
though computationally demanding. A common point to all these algorithms is that they leverage human-
based understanding of loss surfaces, and usually require tuning hyper-parameters to achieve state-of-the-
art performance. This tuning process can sometimes reveal mysterious behavior of the handled optimizers,
making it reserved to human experts or the subject of a long and tedious search. Also, the process results
in a static optimizer which excels at the specific task, but is likely to perform poorly on others.

If the limitations of hand-designed algorithms come from poor human understanding of high-dimensional
loss landscapes, it is natural to ask what machine learning can do for the design of optimization algo-
rithms. Recently, [Andrychowicz et al., 2016] and [Li and Malik, 2016] both introduced two frameworks
for learning optimization algorithms. While the former proposes to learn task-specific optimizers, the
latter aims to produce task-independent optimization policies. While in the most general case this is
∗l.faury@criteo.com
†f.vasile@criteo.com

1

ar
X

iv
:1

80
1.

07
22

2v
3

 [
cs

.L
G

]
 2

0
Fe

b
20

18

bound to fail - as suggested by the No Free Lunch theorem for combinatorial optimization [Wolpert
and Macready, 1997] - we also believe that data driven techniques can be robust on a great variety of
problems.

Most optimization algorithms can be framed, for a given objective function f and a current iterate
θi, as the problem of finding an appropriate update ∆θi. This update can for instance depend on past
gradient information, rescaled gradient using curvature information or many other features. In a general
manner, we can write ∆θi = φ(θi, h(f, θi−1, . . . , θ0), ξ) where h(·) denotes the set of features accumulated
during the optimization procedure, and ξ denotes the optimization hyper-parameters.

In our approach, we aim to bypass computing gradient and curvature information and learn the
optimization features directly from data. This should allows us to obtain local state descriptors that
can outperform classical features in terms of generalization on unseen loss functions and input data
distributions. In this vein, we draw an analogy between learning an optimization algorithm and learning
a navigation policy while having access to raw local observations of the landscape, which is also the
inspiration for the name of our method, Rover Descent. Our algorithm contains three chained predictors
that compute the angle of the move, the magnitude of the move (e.g. learning rate) and the resolution
of the grid of the zeroth-order samples at the landing point. We train our navigation agent on hard
prototypical 2D surfaces in order to make sure we develop feature detectors and subsequent policies that
will be able to lead to good decisions in difficult areas of the loss function. We pose both the learning
rate and resolution predictor as reinforcement learning problems and introduce a reward-shaping formula
that allows us to learn from functions with different magnitude and from multiple proto-families. In our
experiments this was a crucial factor in being able to generalize on many different types of evaluation
functions.

We show that this setup leads to very good convergence speeds both in two and higher dimensions, on
evaluation functions that are not presented at training time. For a zeroth-order optimization algorithm,
the convergence performance is surprisingly good, leading to results comparative to or better than the
task-specific optimizer (e.g the best one out of set of specifically tuned first and second order optimizers).

In conclusion, we believe that our main contributions are the following: framing the learning to
optimize problem as a navigation task, proposing a zeroth-order information-based learning architecture,
coupled with a proper training procedure on prototypical two-dimensional surfaces and a reward shaping
formula and showing experimentally that it can match/outperform first and second order techniques on
meta-generalization tasks.

The rest of the paper is organized as follows. We first give a brief summary of past and recent related
work in the field of learning to learn and learning to optimize, and position our approach with respect
to existing work in Section 2. We then develop in 3.2 our approach in the two-dimensional case, before
extending it to a higher dimensional setting in 3.3. We present experimental results in Section 4 that
show the validity of our approach in a variety of setups. We finally develop potential ideas for future
work in Section 5.

2 Related work
The field of optimization has been studied for many years and for a great diversity of problems.

Providing a complete review of the subject would be out of the scope of this paper, and therefore we
provide only a short reminder on the different approaches of the domain.

Some simple settings (convexity, L-smoothness, ..) have been intensively exploited to devise a large
number of optimizers, derive upper-bound convergence rates ([Nesterov, 2013] and [Nemirovskii et al.,
1983]) and even some information theoretical complexity lower bounds for black-box optimizers [Agar-
wal et al., 2009]. More recently, motivated by the growing interest in deep learning, a lot of research
efforts were also invested in devising smart, adaptative optimizers for complicated, very high dimensional
objectives.

Part of the diversity of existing optimizers is explained by the different type of oracles (possibly noisy,
second, first, zeroth order evaluation oracles or even comparison oracle) available for a given problem.
The case of noisy first order oracles has been widely adopted in the machine learning community and
led to many innovations (a detailed survey can be found in [Bottou et al., 2016]). Noisy zeroth order
oracles also received a lot of attention from the bandit, the Bayesian optimization and the evolutionary
optimization communities (one of the most successful method being Covariance Matrix Adaptation Evo-
lutionary Strategy [Hansen, 2016a]), and have also seen a few heuristics approaches (the Nelder-Meald
heuristic [Nelder and Mead, 1965] being one of them).

2

Learning to learn (or meta-learning) is not a recent idea. [Schmidhuber, 1987] thought of a Recurrent
Neural Network (RNN) able to modify its own weights, building a fully differentiable system allowing the
training to be learned by gradient descent. [Hochreiter et al., 2001] proposed to discover optimizers by
gradient descent, optimizing RNNs modeling the optimization sequence with a learning signal emerging
from backpropagation on a first network.

Recently, some meta-learning tentatives have shown great progress in different optimization fields.
Various attempt tried to dynamically adapt the hyper-parameters of hand-designed algorithms, like
[Daniel et al., 2016] or [Hansen, 2016b]. Using gradient statistics as an input for a recurrent neural
net, [Li and Malik, 2017] were able to reinforcement learn a policy effective for training deep neural net-
works. In [Andrychowicz et al., 2016], the authors show that when leveraging first-order information one
could learn by gradient-descent optimizers that outperforms current state-of-the-art of existing problems
- however only when the meta-train dataset is made of the same class of problem. When confronted
to a different class of functions, the meta-learner is unable to infer efficient optimization moves. With
the same idea of using gradient-descent for training the optimizer, [Chen et al., 2017] use zeroth order
information in order to learn an optimizer for the Bayesian optimization setting.

However, one could think that by showing enough examples to a meta-learner (namely made up of
instances where traditional optimizers reach their limits), and adapting its structure to cover a large
number of classes of functions, it could adapt to unknown loss landscapes. This idea was exploited
by [Wichrowska et al., 2017], who manage to learn optimizers that generalizes to completely unseen
data, while still being able to scale up to high-dimensional problems. Their process namely involves
training by gradient descent hierarchical RNNs and showing it a great variety of examples. However,
their optimizer’s structure remains quite complicated, and doesn’t provide human-level understanding
of the features leveraged by the meta-learner. We believe that a more intelligible architecture could
enable us to understand better what the network is learning, while still being effective on a large class of
functions, when trained on a selected number of meta-examples.

3 Our approach

3.1 Intuition
In this paper, we propose framing the problem of learning to optimize as a problem of navigation on the
partially observable error surface. The error surface is defined by the values of the loss function taken
over the range of its inputs. In this framework, the optimizer is an agent that starting from the initial
point, attempts to reach the lowest point on the surface with the smallest number of actions (where an
action is a move to an arbitrary point on the landscape), while observing only a set of points sampled
from the loss surface. Our goal is to learn the navigation policy that maps the current state of the agent
to a move on the surface.

To this end, we decide to divide the architecture of our agent in three sequential modules: the
normalized update direction predictor ∆, that predicts the angle of the update, the learning rate predictor
that predicts the magnitude of the update α, and the resolution predictor, that predicts the scale δ of the
observation set at the landing point. This choice is motivated by our intuition that these steps can be
approached in a hierarchical way (first choose a direction, then a step size accordingly for instance) and
therefore might involve different training methods and procedures. Furthermore, each of the modules
can act as a correction factor on the other two modules. For example, if the update angle is not correct,
the learning rate module can compensate by making the move very small and the resolution module can
zoom out/in to make the next angle prediction task easier. Figure 1 sums up the architecture we just
devised in the two-dimensional case.

3.2 Architecture: the two-dimensional case
In the following subsection, we consider the simple case d = 2 to develop our experimental set-up. A
generalization for higher dimensions can be found in Section 3.3.

3.2.1 Choosing the prototypical landscapes and the input representation

Prototypical landscapes Because our end goal is to be able to optimize complex loss landscapes, we
are interested in selecting a small but sufficiently large set of prototypical landscapes as our meta-training
set Ftrain. More precisely, we decide to target surface degeneracies that are common when learning the

3

Figure 1 – Decomposition of the optimization step in three independent modules: angle prediction,
step-size prediction and resolution prediction.

weights of deep neural networks. These namely include valleys, plateaus, but also cliffs ([Bengio et al.,
1994]) and saddles ([Dauphin et al., 2014]). We also consider it useful to add quadratic bowls to that list,
to provide simpler and saner landscapes. Figure 3 provides a visualisation of each of these landscapes as
generated by our meta-training algorithm, for which details can be found in Appendix 6.1. Interestingly
enough, all of these landscapes were listed in [Schaul et al., 2013], which provides a collection of unit tests
for optimization. In the line of this work, we estimate that learning a optimizer over such landscapes can
result in a robust algorithm. Also, because it is frequent in real world applications to only have access to
noisy samples of the function we wish to optimize, our framework should therefore provide noisy versions
of the landscapes described hereinbefore.

Input design Let us consider two classical optimizers: gradient-descent and Newton descent (see
[Nocedal and Wright, 2006] for complete details). While gradient descend can escape non-strict saddle
points but shows shattering behavior insides valleys (see Figure 2), second-order methods can leverage
curvature to make quick progress inside valleys. However, saddles are attraction points for such methods.

To get the best of both worlds, we want our local descriptor to be able to represent both first and
second order information. Finite difference provides an easy way to approximate them from zeroth
order sample of a function. However, the precision of finite difference can be severely impacted by noisy
oracles, although this can be alleviated by a pre-filtering of the function samples (like low-pass filtering
for removing white noise).

Figure 2 – Left : gradient descent has a shattering behavior in narrow valleys. Right : saddle points are
attractors for Newton descent.

Let f the loss landscape we are optimizing, mapping Ωf ⊂ Rd into R, and θ ∈ Ωf . A natural way to
describe the surroundings of θ is to sample a grid centered on θ. Given a budget of n2 samples and a
resolution δ, we note snδ (f, θ) the resulting two-dimensional grid.

snδ (f, θ) ,

(
f

((
θ1

θ2

)
− δ ·

(
i− n/2
j − n/2

)))
i,j∈{1,...,n}2

(1)

This state representation has three advantages; it allows us to have a human-understandable input
to our model, represent the surroundings of the current iterate and can approximate the inputs taken

4

by gradient descent and Newton descend via finite difference. Another advantage is that pre-filtering
can be efficiently applied by convolutions. For this state representation to represent compactly various
functions, independent of their magnitude, we linearly rescale it to take its values in [0, 1].

It is important to note that such an input becomes extremely expensive to compute as the dimen-
sionality of the problem grows, as the size of snδ (·) grows exponentially with d. Therefore, we will use
this solution for d = 2, and discuss different ways of scaling to higher dimension in 3.3.

One could argue that using noisy zeroth order oracle for optimization is uncompetitive compared
to higher order methods. Indeed, the study of convergence rates and lower bounds for convex opti-
mization problem show the superiority of first-order oracles over single zeroth-order function evaluation
([Nemirovskii et al., 1983]). However, it was proven in [Duchi et al., 2015] that by using two function
evaluations, the oracle complexity of the latter type of algorithms could compete with the former, up
to a low-order polynomial of the dimension factor (in the convex case). Because we use many of such
samples, we are confident that we will be competitive against higher order oracles.

Figure 3 – Instances of Ftrain. In order: quadratic bowl, valley, (plateau+cliff), saddle. Best viewed in
color.

3.2.2 Learning the update direction/angle

The first step of our three-step optimizer is to determine a good direction of update, given a grid of
samples snδ (f, θ). In light of the previous discussion, we decided to learn this angle prediction by imitation
learning, provided two teachers: gradient descent and Newton descent. The field of imitation learning
is large, though dominated by two antagonist approaches: behavioral cloning and inverse reinforcement
learning. The latter recovers the cost function that a teacher or expert is minimizing, while the former
involves training a complex model (usually a deep neural network) in a supervised fashion so that it
mimics a teacher. Thorough details on both these methods, as well as a complete survey of the field of
imitation learning can be found in [Billard et al., 2016]. Behavioral cloning, while being straight forward
and simple to implement, is known to require a large amount of data and to be prone to compounding
errors, leading to divergence between the teacher’s and the imitation followed paths. On the other side,
inverse reinforcement learning allows the imitator to interact with the environment, and fit its behavior
over whole trajectories (therefore is not affected by the compounding error issue). However, it often
implies using reinforcement learning in a inner loop, making this technique rather costly to use. In our
set-up, we decided to use a behavioral cloning approach. We can indeed easily generate large amounts
of training data, and are not trying to fit the entire teacher behavior but only a subpart - the direction,
not the step-size.

We collect our training data by launching optimization runs, where we follow the best out of the
teachers (here best means leading to the largest decrease of the objective function). At each step, we
record the local grid sample with a pre-determined resolution, as well as two opposite directions of update:
the optimal one d∗ (given by the best teacher) and a set of opposite randomly generated ones d̃∗ (sampled
to lie in the half-space defined by {d | dT d∗ < 0}). The expert move d∗ and its negative counterparts d̃∗
are normalized to create two actions a∗ = d∗/‖d∗‖2 and ã∗ similarly. We then create two state-action
pairs with respective label t = 1 and t = 0, corresponding to a positive and a negative sample. In practice,
we sampled 5 · 104 functions from Ftrain and let the optimization procedure run for 10 steps on each
functions, creating 106 (state,action,label) tuples to train on, stored in Dtrain.

To fit the resulting (state-action) pairs, we design a simple neural network made of two convolutional
layers followed by two fully connected layers. The idea of using convolutional layer is related to the
problem of filtering we mentioned earlier, and to the idea that the learnt filters in the convolutional layer

5

can act as identifiers for the different landscapes encountered during an optimization run. For a given grid
of sample s, we denote y(ω, s) the output of this model, parametrized by the weights ω of the network.
We use batch-normalization layers after the convolutional layers, and train the model to minimize the
cross-entropy loss:

J(Dtrain, ω) =
∑

(s,a,t)∈Dtrain

[
t log {σ(y(ω, s), a)}+ (1− t) log {1− σ(y(ω, s), a)}

]
(2)

with σ(y(s), a) = (1 + e−y(ω,s)T a)−1. The objective is to learn to correlate the output of the model when
the action a has a positive label (it was sampled from the best teacher). The idea of storing negative
versions of that optimal action can be understood as negative sampling, or noise contrasted estimation
[Gutmann and Hyvärinen, 2010]. We found that this approach, over the other ones we tried, lead to
better performances while greatly reducing overfitting. Because we only want to use this model as an
angle predictor, we will use a normalized version of the output: ∆(s) = y(s)/‖y(s)‖2.

3.2.3 Learning the step-size and the resolution

At this point, we have learnt a good angle predictor. We now want to learn two new behaviors: the step-
size to apply to the update, as well as the next resolution of the sample grid. Learning the step-size is
obviously crucial for the optimization step. Learning the resolution is also extremely important: far from
an optimum, we’d like to zoom-out to get a better understanding of the landscape. Close to an optimum,
we expect an efficient system to zoom in to refine its estimation of the localization of the optimal point.
Those two behaviors can’t be learnt efficiently from a teacher (line-search is an unfairly good teacher for
the step-size, and we simply don’t have available a hand-designed teacher for the resolution).

Reinforcement learning preliminaries Reinforcement learning is a framework in which an agent
learns its actions from interaction with its environment. The environment generates scalar values called
rewards, that the agent is seeking to maximize over time. The environment is modeled as a Partially
Observable Markov Decision Process (POMDP), defined to be the tuple (O,S,A, p0, p, q, r) where O is the
set of observations, S the set of states and A the set of actions. p0(s) is the initial probability distribution
over the states, p(s′|s, a) the transition model, p(o|s) the distribution of an observation conditionally to
a state and r : S → R a function that assigns a reward to each state. The objective is to learn a policy
π(a|s) : S → A providing the probability of choosing action a in state s. This policy should maximize
the discounted expected return R̄:

R̄ = Eρ

[
T∑
t=0

γtr(st)

]
(3)

where γ ∈ (0, 1) is a discount factor allowing the agent to be more sensitive to rewards it will get in a
close future, and the expectation being taken with respect to the state-action distribution ρ. A complete
introduction to the reinforcement learning framework can be found in [Sutton and Barto, 1998].

Policy search is a family of algorithm that directly search in the policy space for π∗ = argmax
π

{
R̄
}
.

To make this search tractable, π is usually tied to some parametrized family. A popular algorithm to
perform that search is the Deterministic Policy Gradient [Silver et al., 2014] where we learn a deterministic
parametrized policy πη(a|s) = µ(η, s) in a fully observable Markov decision process (O = S). The system
is composed of two entities, an actor and a critic. The critic, parametrized by ω, has the role to evaluate
the Q-values (expected return when taking an action a in state s) of the current policy induced by the actor
(parametrized by η). As it is common in actor-critic approaches, the critic is updated by batch of logged
experience to minimize the squared temporal difference (TD) error (rt + γQω(st+1, at+1)−Qω(st, at))

2.
The actor’s parameters are updated in the direction that maximizes the Q-values for a batch of logged
states: ∆η ∝ ∇aQω(s, a)T∇ηµ(η, s). [Lillicrap et al., 2015] applied this algorithm to deep neural networks
as function approximators, using techniques that were proven successful in deep Q-learning [Mnih et al.,
2015], like target networks and experience replay. [Heess et al., 2015] also extended this approach for
POMDP, where it is useful to use Recurrent Neural Networks as models for the policy.

Reinforcement learning formulation We consider the following environment for our problem. Let,
for a given loss function f , the full state space Sf = {θ, α, δ} and the observations Of = (snδ (f, x)). The
agent hence only has access to the current grid of samples around θ with resolution δ, but not to the
current iterate position θ, the current-step size α or the current resolution δ. The idea behind this is to be

6

able to generalize to unseen landscapes, and be robust to transformations such as rescaling or translations.
The only events that should impact the agent’s behavior is a sharp change in the neighboring landscape
around the current iterate. The action space is set to be A = {∆α,∆δ} ⊆ [−0.5, 1]2 which constitutes
the update rate of the step-size and the resolution. We consider deterministic transitions:

θt+1 = θt + αt∆(snδt(f, θt))

αt+1 = αt(1 + ∆αt)

δt+1 = δt(1 + ∆δt)

(4)

where the current iterate θt is updated along the direction ∆(snδt(f, θt)) with step-size αt.
We have several options for the reward function. One possibility is be to consider a budgeted optimiza-

tion scheme, with reward r(s) = −f(θt)1t=T (the reward is only given by the final value of the function
at the last step). In this case, the reward is rather sparse, and leads the trajectory search in ambiguous
ways. We can prefer another solution, where the whole trajectory of the agent over the landscapes is
evaluated: rf (st) = −f(θt). This leads the policy search to optimize for the following return:

Rf = −
T∑
t=0

γtf(θt) (5)

Note that for γ = 1 this leads us to optimize over the same criterion that [Li and Malik, 2017] and
[Andrychowicz et al., 2016] (in the former, the authors call this the meta-loss).

It is important to note that the previously described POMDP, that we will denote as Mf , is
parametrized by a function f sampled inside Ftrain. This induces a distributionMtrain over POMDPs.
In the following experiments, we won’t make that distinction and train a single parametrized policy on
the resulting POMDP distribution - that implies that every new episode is generated withMf ∼Mtrain.
This induces a difficulty over the learning task: both the transitions and the reward defined in (4) and
(5) change between every episode. To help the agent figure out optimal moves, we can change the reward
so that it becomes insensitive to the magnitude of the sampled function f and the position of the initial
iterate θ0:

rf (st) = −
f(θt)− f(θ∗f)

f(θ0)− f(θ∗f)
(6)

with θ∗f = argmin
θ
{f(θ)}. To also help the agent optimize over long trajectories where the magnitude of

f(θ0) largely surpasses f(θ∗f), we propose a second version of the reward function:

rf (st) = −
f(θt)− f(θ∗f)

f̄k − f(θ∗f)
(7)

with f̄k being the mean value of the objective function over the last k iterates (we found that in our
set-up, k = 5 provides good results). The use of this reward function was a crucial element in the success
of our reinforcement learning approach.

We model the agent policy by a recurrent neural network, made up of two convolutional layers, followed
by a Long-Short Term-Memory cell (LSTM, introduced by [Hochreiter and Schmidhuber, 1997]), followed
itself by two hidden layers. The critic is modeled by a similar network, and both were trained using the
DPG algorithm. During training, we sample f ∼ Ftrain at the beginning of each episode. The initial
iterate is randomly sampled in the landscape so that it is far away enough from the optimum of the loss
function. The episode is ran for a fixed horizon T = 30 and we fix the discount factor γ to 1.

3.3 Architecture for d > 2

The idea of using grid samples snδ (f, θ) can’t be exploited in high-dimensional problems as its size grows
exponentially with d. To extend our framework for d > 2, we consider the following set-up: let f : Rd → R
and θ the initial iterate. We note s(f, θ, i, j) the vector that contains the two-dimensional grid sampled
at θ along the dimensions i and j. In other words, with δi the d-dimensional vector whose entries are all
0 but the ith one that is set to 1, and Ei,j = (δi, δj) a d× 2 matrix, we note: snδ (f, θ, i, j) = snδ (f,ETi,jθ).

By considering all pairs of dimensions, we can compute d(d − 1)/2 of such grids, leading to the
prediction of as many angles ∆i,j(f, θ) = ∆(snδ (f, θ, i, j)), step-size updates ∆αi,j and resolution updates
∆δi,j - all predicted with the models trained in the two dimensional case. Therefore, if we keep record of

7

all step-size and resolution for every pair of dimension (i, j) we can compute d(d− 1)/2 updates ∆θi,j =
αi,j∆i,j(f, θ). We can consider each of these outputs like the d(d − 1)/2 two-dimensional projections of
the true d-dimensional update ∆θ so that ∆θi,j = ETi,j∆θ. We can therefore try to retrieve ∆θ by a
least-square approach, and find ∆θ̂:

∆θ̂ , argmin
δθ

 ∑
1≤i<j≤d

(
ETi,jδθ −∆θi,j

)2 (8)

Solving this equation leads to the analytical expression:

∆θ̂ =
1

d− 1

∑
1≤i<j≤d

αi,jEi,j∆i,j(f, θ) (9)

Each pair of dimension has a corresponding step-size αi,j and resolution δi,j , which are updated by
running the associated two-dimensional grid through the system described in 3.2.3. This computation
requires maintaining d(d − 1)/2 learning rates and resolutions, and computing as many grid samples.
Because of this quadratical growth with the dimension, this leads to clock-time and memory issues for
large values of d. A simple way round this problem is to sample k < d pairs of dimensions, compute ∆θ̂
based only on these k pairs and update their corresponding learning rates and resolutions. If we note Θk

the set of k pairs we sampled:

∆θ̂k =
1

k − 1

∑
(i,j)∈Θk

αi,jEi,j∆i,j(f, θ) (10)

Different strategies can be employed to sample Θk, possibly leveraging some knowledge about the opti-
mization problem’s structure. Such strategies are experimentally investigated in 4.3.2.

4 Results

4.1 Behavioral analysis
Angle predictor The training of the angle predictor is straight forward and leads to robust angle
prediction. Table 1 shows the mean angle dissimilarity between the learnt angle predictor and the best
teacher (as defined in 3.2.2) on a set of held-out functions from Ftrain. We show these results when
training and testing on either single modalities (e.g only quadratic, only valleys, ..) of Ftrain, or all of
them at the same time. We see that training the angle predictor on the whole meta-dataset does not
impact its predictions abilities compared to landscape-specific training. Indeed, we only see a small drop
in the quality of the predictions, which we attribute to the partial observability of the local landscapes
(a valley seen under a small resolution can locally appear like a quadratic bowl, for instance).

PPPPPPPPTrain
Test Quadratics Valleys Saddles Plateaus+cliffs

Quadratics 1.2 89.2 43.1 34.8
Valleys 83.5 4.9 94.1 86.9
Saddles 44.7 85.8 3.8 57.2

Plateaus+cliffs 29.4 94.3 53.9 1.9
All 3.1 6.4 5.1 3.8

Table 1 – Mean angle dissimilarity in degrees on held-out functions from Ftrain when training on both
single modalities and the whole meta-dataset.

Resolution and step-size predictor Evaluating exhaustively the learnt policy for updating the res-
olution and the step-size is complicated. We provide in Appendix 6.2 the trajectories of the step-size
and resolution under the learnt policy, for functions of Ftrain. Independently of the quality of this policy
(which will be evaluated in the following sections), we can notice it follows our intuition of what is a good
policy in this context: it zooms out in the beginning of the iteration procedure, while zooming in near
the end when the local landscapes indicates the presence of a minimum nearby. The step-size evolution

8

follows a similar logic. We also present in Appendix 6.2 some visualization of the dynamics when the
initial state (i.e initial learning or resolution) is purposely set to a misleading value, and show how the
policy recovers from this poor initialization.

4.2 Two-dimensional experiments
We first want to evaluate the optimizer resulting from the model we introduced on Ftrain to evaluate its
behavior on known landscapes. This already can be seen as some kind of meta-testing on some hold-out
since we only sample in Ftrain, which contain an infinite number of functions. Therefore, we can assume
that whenever we sample in Ftrain, we will obtain a function that the optimizer has not seen during
training.

(a) Quadratic (b) Valley

(c) Plateau+cliff (d) Saddle

Figure 4 – Tests runs on instances of modalities of Ftrain. The shades represents the envelope of the
trajectories over an entire 20-fold. Best viewed in color.

We follow a simple procedure: we sample f ∈ Ftrain, an initial point θ0 ∈ Ω0, and sample uniformly
at random an initial step-size and an initial resolution inside the distribution used at meta-training time.
We then add a small perturbation to the initial iterate and run an optimization trajectory with a fixed
horizon. We repeat this procedure many times to evaluate the global sensitivity of our algorithm to
the position of the first iterate. To compare its performance with a broad variety of optimizers, we
decide to evaluate with the same procedure a collection of optimization algorithms that include: gradient
descent, Nesterov accelerated gradient descent, Newton Descent, Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) and the Nelder-Meald method. The results are regrouped in Figure 4. The lines
represent the mean trajectory of each optimizer, while the shaded areas represent the envelope of all its
trajectories (that were generated from noisy versions of the initial iterate). The results, shown here for
a single function f and iterate point θ0 are consistent in our experiments: we have learnt to compete
with a wide variety of hand-designed algorithms. The hyper-parameters of hand-designed optimizers are
modified at each time to perform as well as possible on the whole modality of Ftrain we are testing on.
This means that our learnt optimizer sometimes compete with unfairly good algorithms (like Newton
descent on a quadratic loss, that hits the optimum after just one iteration). In some cases, the apparent
lack of trajectory envelope is due to the fact that the perturbation on the initial point sometimes have
to be reduced for visualization purposes.

To evaluate the meta-generalization abilities of our learnt optimizer, we also evaluate it on a two-
dimensional meta-testing dataset Ftest. We selected various two-dimensional optimization problems

9

known to be challenging for general optimization methods. The complete list contains Rosenbrock,
Ackley, Rastrigin, Maccornick, Beale and Styblinksi’s function, for which the literal expressions and
surface plots can be found in Appendix 6.3. It is important to note that none of these landscapes were
seen by the optimizer during its training.

For each of those functions, we select a starting point that constitute a challenge for all compared
optimizers (also indicated on the surface plot in Appendix 6.3). We then followed the previously described
procedure, and set the hand-designed optimizers hyper-parameters to show good behavior for every small
perturbation of the initial iterate. The results are displayed in Figure 5, and remains consistent when
changing the starting point for each of the meta-test function. Our learnt optimizer can generalize
to new landscapes, even multimodal ones, and compete with a wide variety of optimizers. On these
multimodal landscapes, CMA-ES and the Nelder-Meald method provide two strong baselines (only the
mean trajectory appear for such functions for vizualisation purposes). On 5e, they are the only two
algorithms with our method that find the global optimum. However, in 5f, only our method finds for
every perturbation of the initial iterate the global minimum. 0ur optimizer starts by zooming out to
get a better understanding of the landscape, leading it to quickly cover an area where lays the global
minimum.

(a) Styblinksi (b) Beale (c) Rosenbrock

(d) Maccornick (e) Ackley (f) Rastrigin

Figure 5 – Tests runs on instances of modalities of Ftest. The shades represents the envelope of the
trajectories over an entire 20-fold. Best viewed in color.

4.3 High-dimensional experiments
We now test the procedure described in Section 3.3 for problem of dimensions d > 2. We propose to do
this by considering a linear classifier for a binary classification task, and a small neural network classifier.

4.3.1 Linear binary classification

We generate random binary classification tasks in dimension d > 2, according to the framework described
in [Guyon, 2003]. We want to optimize over the cross-entropy loss induced by this dataset. We therefore
sample an initial iterate θ0, an initial learning rate and an initial resolution for our optimizer, and launch
an optimization run. We test against two fairly good optimizers for this task: tuned gradient descent
and Newton descent. We use a fixed budget k = 10 of dimensions we can sample at each iteration - as
described in 3.3. The results for three different randomly generated datasets of different dimensions are
presented in Figure 6.

The results presented here are consistent in our experiments: our learnt procedure competes with
tuned optimizers that use respectively first and second order information. However, one major downside
of our optimizer is clock-time performances - one optimization run in this simple set-up can take up to a

10

minute for d > 50, against a few seconds for gradient descent on the machine used for our experiments.
Also, its performance is impacted by the under sampling that happens when the budget k is significantly
smaller than the dimension d. Increasing the budget k improves the per-iteration performance but
greatly impact the algorithm’s clock-time (as the number of operations grows quadratically with k). In
the following experiments, we propose sampling strategies for the pairs of dimensions used at every update
that take advantage of the problem’s structure to cope with this limitation.

(a) d=10 (b) d=20 (c) d=50

Figure 6 – Test runs for cross entropy loss of randomly generated binary classifications tasks of dimension
d, with budget k = 10 of pair samples per iterations. Best viewed in color.

4.3.2 Small neural network

We now want to use Rover Descent for a more complicated task. We consider using a small neural network
in order to solve the Iris dataset [Fisher, 1936], which consists of 150 instances of 4-dimensional inputs
and their respectives labels (1,2, or 3). The neural network we use is a small neural network, with two
hidden-layer of width 10 and a softmax output activation, alongside a cross-entropy loss. The dimension
of its loss landscape is d = 193. We compare our results with tuned gradient descent and Adam.

Figure 7a show the results we obtained using the same sampling strategy as presented earlier (i.e
we sample uniformly at random k dimensions for which we create all possible k(k − 1)/2 pairs to create
two-dimensional slices). It now appears that simply increasing k is not enough to ensure good behavior.
Because some dimensions are visited by the algorithm only late in the procedure, their corresponding
learning rate is still equal to the initial one, which can lead to erratic behaviors close to local minimum.
Also, increasing k implies that for every dimension we sample, we increase the number of two-dimensional
moves our algorithm receives. Unlike for the convex case of linear binary classification, it appears that
taking their mean value is a poor strategy as it leads to a slight decrease in performance.

To improve those results, we decide to use a slightly different sampling strategy. For every dimension,
we are going to create pairs with l other dimensions, sampled uniformly at random. The difference is
that now every dimension will be used at least once at every update. The number of pairs we create is
now l×d. Figure 7b present the result obtained for different values of l and proves the superiority of this
approach over the previous one.

Finally, we decide to use the special structure of the neural network to improve our algorithm. We use
the same sample strategy we just presented, except that now the l dimensions needed for every dimensions
are sampled within a pre-defined subset. More precisely, we want to leverage a block-diagonal structure
of the Hessian of the neural network: for every dimension (which correspond to a weight or a bias of
the neural network), we only create pairs with dimensions corresponding to a weight or bias belonging
to the same layer. Figure 7c present the results obtained, which again improves against the last one and
compete with Adam on this task. Leveraging a block-diagonal approximation of the Hessian is not a new
idea and was recently used to obtained state-of-the-art result on neural network optimization ([Martens
and Grosse, 2015],[Zhang et al., 2017])

5 Conclusion
We introduced a new framework in order to achieve meta-generalization when learning to optimize. By
combining tools from imitation learning and reinforcement learning, and defining the meta-dataset as
a small set of prototypical functions that frequently appear in optimization problems, we were able to
learn an optimization algorithm that generalizes well to unseen loss landscapes. Though this learnt

11

(a) Pair sampling (b) Per-dimension sampling (c) Per-dimension block sampling

Figure 7 – Test runs on a small neural network for Iris dataset, with different sampling strategies for the
two-dimensional slices. Best viewed in color.

optimizer is dependent on the setting of some hyper-parameters, we showed that their tuning doesn’t
have a meaningful impact on performance, as the learnt optimizer is quite robust and can recover from
bad initializations.

In future work, we plan on running our framework on more complex, high-dimensional non-convex
problems - such as the training of deep neural networks, which will require some adaptations for reducing
the clock-time of our optimizer. Also, we can imagine having more control on the meta-train dataset
in order to scan for such complicated landscapes. For instance, following a leave-one-out procedure,
we could try to estimate the prototypical landscapes that are needed by a learnt optimizer to train a
deep neural network, and therefore make further assumptions over the composition of the related loss
landscapes. Furthermore, we wish to develop adaptative methods of dimension sampling in order to
make our optimizer more efficient in very high dimensional problems. A more thorough evaluation of its
performances will then involve testing it against other baselines that were recently develop in the learning
to learn community to optimize deep neural networks.

References
[Agarwal et al., 2009] Agarwal, A., Wainwright, M. J., Bartlett, P. L., and Ravikumar, P. K. (2009).

Information-theoretic lower bounds on the oracle complexity of convex optimization. In Advances in
Neural Information Processing Systems, pages 1–9.

[Andrychowicz et al., 2016] Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul,
T., and de Freitas, N. (2016). Learning to learn by gradient descent by gradient descent. In Advances
in Neural Information Processing Systems, pages 3981–3989.

[Bengio et al., 1994] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE transactions on neural networks.

[Billard et al., 2016] Billard, A. G., Calinon, S., and Dillmann, R. (2016). Learning from Humans, pages
1995–2014. Springer International Publishing, Cham.

[Bottou et al., 2016] Bottou, L., Curtis, F. E., and Nocedal, J. (2016). Optimization methods for large-
scale machine learning. arXiv preprint arXiv:1606.04838.

[Chen et al., 2017] Chen, Y., Hoffman, M. W., Colmenarejo, S. G., Denil, M., Lillicrap, T. P., Botvinick,
M., and Freitas, N. (2017). Learning to learn without gradient descent by gradient descent. In
International Conference on Machine Learning.

[Daniel et al., 2016] Daniel, C., Taylor, J., and Nowozin, S. (2016). Learning step size controllers for
robust neural network training. In AAAI, pages 1519–1525.

[Dauphin et al., 2014] Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y.
(2014). Identifying and attacking the saddle point problem in high-dimensional non-convex optimiza-
tion. In Advances in neural information processing systems.

12

[Duchi et al., 2015] Duchi, J. C., Jordan, M. I., Wainwright, M. J., and Wibisono, A. (2015). Optimal
rates for zero-order convex optimization: The power of two function evaluations. IEEE Transactions
on Information Theory.

[Fisher, 1936] Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals
of human genetics, 7(2):179–188.

[Gutmann and Hyvärinen, 2010] Gutmann, M. and Hyvärinen, A. (2010). Noise-contrastive estimation:
A new estimation principle for unnormalized statistical models. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, pages 297–304.

[Guyon, 2003] Guyon, I. (2003). Design of experiments for the NIPS 2003 variable selection benchmark.

[Hansen, 2016a] Hansen, N. (2016a). The CMA evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772.

[Hansen, 2016b] Hansen, S. (2016b). Using deep Q-learning to control optimization hyperparameters.
arXiv preprint arXiv:1602.04062.

[Heess et al., 2015] Heess, N., Hunt, J. J., Lillicrap, T. P., and Silver, D. (2015). Memory-based control
with recurrent neural networks. arXiv preprint arXiv:1512.04455.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term mem-
ory. Neural computation.

[Hochreiter et al., 2001] Hochreiter, S., Younger, A. S., and Conwell, P. R. (2001). Learning to learn
using gradient descent. In International Conference on Artificial Neural Networks.

[Kingma and Ba, 2014] Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[Li and Malik, 2016] Li, K. and Malik, J. (2016). Learning to optimize. arXiv preprint arXiv:1606.01885.

[Li and Malik, 2017] Li, K. and Malik, J. (2017). Learning to optimize neural nets. arXiv preprint
arXiv:1703.00441.

[Lillicrap et al., 2015] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., and Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

[Martens, 2010] Martens, J. (2010). Deep learning via Hessian-free optimization. In ICML.

[Martens and Grosse, 2015] Martens, J. and Grosse, R. (2015). Optimizing neural networks with
Kronecker-factored approximate curvature. In International conference on machine learning, pages
2408–2417.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533.

[Nelder and Mead, 1965] Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization.
The computer journal, 7(4):308–313.

[Nemirovskii et al., 1983] Nemirovskii, A., Yudin, D. B., and Dawson, E. R. (1983). Problem complexity
and method efficiency in optimization.

[Nesterov, 1983] Nesterov, Y. (1983). A method of solving a convex programming problem with conver-
gence rate O(1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376.

[Nesterov, 2013] Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic course,
volume 87. Springer Science & Business Media.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. (2006). Numerical optimization. Springer Science
& Business Media.

13

[Rasmussen and Williams, 2006] Rasmussen, C. E. and Williams, C. K. (2006). Gaussian processes for
machine learning, volume 1. MIT press Cambridge.

[Schaul et al., 2013] Schaul, T., Antonoglou, I., and Silver, D. (2013). Unit tests for stochastic optimiza-
tion. arXiv preprint arXiv:1312.6055.

[Schmidhuber, 1987] Schmidhuber, J. (1987). Evolutionary principles in self-referential learning. on learn-
ing now to learn: The meta-meta-meta...-hook. Master’s thesis.

[Silver et al., 2014] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).
Deterministic policy gradient algorithms. In Proceedings of the 31st International Conference on Ma-
chine Learning (ICML-14).

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduc-
tion. MIT press Cambridge.

[Wichrowska et al., 2017] Wichrowska, O., Maheswaranathan, N., Hoffman, M. W., Colmenarejo, S. G.,
Denil, M., de Freitas, N., and Sohl-Dickstein, J. (2017). Learned optimizers that scale and generalize.
CoRR.

[Wolpert and Macready, 1997] Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for
optimization. IEEE transactions on evolutionary computation.

[Zeiler, 2012] Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

[Zhang et al., 2017] Zhang, H., Xiong, C., Bradbury, J., and Socher, R. (2017). Block-diagonal Hessian-
free optimization for training neural networks. arXiv preprint arXiv:1712.07296.

14

6 Appendix

6.1 Landscape generation in details
We generate random instances of five landscapes: saddles, valleys, plateaus, cliffs and quadratic bowls.
The quadratic bowls are generated by sampling random matrices A and vectors b and aggregating them
in a quadratic loss ‖Ax − b‖22. The other four landscapes are generated by creating random gaussian
fields with Mahalanobis-norm covariance functions. More precisely, we carefully sample a given number
of points x which are attributed a random value f(x). We then sample a covariance function k(x, x′) =
1
2x

TS−1x with S being a randomly generated definite positive matrix, carefuly set to generate the targeted
landscape.We therefore create a class of functions Ftrain, from which we can sample random instances of
the different targeted landscapes. We also add randomness inside each of these instances by not always
taking the mean of the generated random fields, but by sampling inside the resulting distribution over
space.

We hereinafter describe precisely how we generated samples of each modality in Ftrain (except
quadratic bowls). This procedure is extremely similar to the one that is followed when one makes
inference with Gaussian Processes - see [Rasmussen and Williams, 2006]. It starts by carefully sampling
a collections of points X = {x1, . . . , xk} and their associated values V = {v1, . . . , vk} to create a specificly
targeted landscape. We then sample a positive definite scaling matrix S for the normalized Gaussian
covariance function:

k(x, x′) =
1

|2πS|1/2
exp

(
−1

2
xTS−1x′

)
(11)

Once these steps are completed, and for F (x) , (f(x), v1, . . . , vk), we make a Gaussian hypothesis over
the joint distribution:

p(F) = N
(
F | 0,

(
K
k(x)

))
(12)

where K = (k(xi, xj))i,j and k(x) = (k(x, xi))i. We then can evaluate the conditional distribution
p(f(x) | v1, . . . , vk) (which is also a Gaussian) and sample from it to create a noisy version of f(x). We
repeat this procedure whenever we need to access to the value of one of the loss in Ftrain at a point x.

The following lists details how X and V were sampled for each modalities of Ftrain.

• Valleys: We set X = {0R2} and sample v1 uniformly at random in [−5, 0]. We sample one value
λ1 in a positive truncated Gaussian distribution centered at 10 with variance 2. We then multiply
it by a ratio ρ uniformly sampled at random inside the interval [100, 200] to obtain λ2 = ρλ1.
We sample uniformly at random φ in [0, 2π], and create S = RTφdiag(λ1, λ2)Rφ where Rφ is the
two-dimensional rotation matrix of angle φ. By that mean, we are able to create valleys of different
width and orientation.

• Saddles : we sample 4 points x1, . . . , x4 uniformly at random within each quarter of the square
[−1, 1]2 and place them in X . We assign a random value to each one (sampled from a Gaussian
distribution) so that to opposite points have values of similar signs. We then sample λ1, λ2 in a
truncated positive Gaussian distribution centered at 10 and with variance 2. We sample a random
angle φ and compute S = RTφdiag(λ1, λ2)Rφ.

• Plateau+cliffs: X = {0R2} and generate a single value v1 from a positive truncated Gaussian
distribution centered in -5 with variance 2. We then create a matrix S in the same fashion as for
the previously described landscape.

6.2 Policy evaluation
We describe here the learnt policy behavior’s for the step-size and resolution updates. The procedure we
follow is simple: we sample a functions from each modality of Ftrain as well as an initial iterate for each
one. We then run an iteration procedure and record the evolution of the step-size and the resolution.
Figure 8 display those evolutions for quadratic bowls, valleys, saddles and (plateaus+cliffs). We can see
a variety of behaviors, that tends to remain constant for every instance of a modality. In valleys - 8b,
the incentive of the policy is to keep a large resolution until it detects the optimum is near, in order to
get the best representation of the axis of the valley. It then decreases the resolution and the step-size to
safely approach the optimum. We see a similar behavior in saddles - 10c. For quadratic bowls 8a and

15

(plateaus+cliffs) 10d, we see a constant decrease of the resolution in order to be as precise as possible for
the angle prediction, and after a acceleration of the step-size we see its global decrease to approach the
minimum.

(a) Quadratic (b) Valley

(c) Saddle (d) Plateau+cliff

Figure 8 – Step-size and resolution trajectories for different instances of Ftrain

This curves could suggest that the policy has only learnt good scheduling schemes for each of the
modalities in Ftrain. We show here that this is not the case, by showing that the policy is able to adapt
to sharp changes of its initial state. In Figure 9, we sample this initial state far from the distribution that
was used at training time (typically, a learning rate that is 100 times smaller that it usually is at training
time, and a resolution 100 bigger), for a quadratic bowl. We can see that the schedule adapts to these
changes, and therefore that only changes in the local landscape seen by the agent affects its decision (and
not a fixed schedule learnt by the RNN).

Figure 9 – Step-size and resolution can recover from a poorly set initial state

We also show in Figure 10 similar runs on contour plots, with a visualization of the sample grid.

16

(a) Quadratic (b) Valley

(c) Saddle (d) Plateau+cliff

Figure 10 – Contour plot of optimization runs for policy vizualisation on Ftrain

6.3 Precisions on Ftest

We provide here some contour plots for the functions used in the meta-test dataset. We also provide
their mathematical expression, as well as the position of their global optimum and the position of the
initial iterate we used in our experiment.

6.3.1 Rosenbrock’s function

Rosenbrock’s function’s analytical expression is:

f(x) = 100(x1 − x2
0)2 + (x0 − 1)2 (13)

and its contour plot is shown in 11.

Figure 11 – Contour plot of the Rosenbrock’s function. The black circle indicates the position of the
optimum and the blue square the position of the initial iterate.

17

6.3.2 Ackley’s function

Acley’s function’s analytical expression is:

f(x) = −20 exp

(
−0.2

√
1

2
(x2

1 + x2
2)

)
− exp

(
1

2
cos 2πx1 +

1

2
cos 2πx2

)
+ 20 + e1 (14)

and its contour plot is shown in 12.

Figure 12 – Contour plot of the Ackley’s function. The black circle indicates the position of the optimum
and the blue square the position of the initial iterate.

6.3.3 Rastrigin’s function

Rastrigin’s function’s analytical expression is:

f(x) = 20 +

2∑
i=1

(x2
i − 10 cos (2πxi)) (15)

and its contour plot is shown in 13.

Figure 13 – Contour plot of the Rastrigin function. The black circle indicates the position of the optimum
and the blue square the position of the initial iterate.

6.3.4 Maccornick’s function

Maccornick’s function’s analytical expression is:

f(x) = sin (x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1 (16)

and its contour plot is shown in 14.

6.3.5 Styblinski’s function

Styblinski’s function’s analytical expression is:

f(x) =
1

2

2∑
i=1

(x4
i − 16x2

i + 5xi) (17)

and its contour plot is shown in 15.

18

Figure 14 – Contour plot of the Maccornick function. The black circle indicates the position of the
optimum and the blue square the position of the initial iterate.

Figure 15 – Contour plot of the Styblinski function. The black circle indicates the position of the optimum
and the blue square the position of the initial iterate.

6.3.6 Beale’s function

Beale’s function’s analytical expression is:

f(x) = (1.5− x1 + x1x2)2 + (2.25− x1 + x1x
2
2)2 + (2.625− x1 + x1x

3
2)2 (18)

and its contour plot is shown in 16.

Figure 16 – Contour plot of the Beale function. The black circle indicates the position of the optimum
and the blue square the position of the initial iterate.

19

	1 Introduction
	2 Related work
	3 Our approach
	3.1 Intuition
	3.2 Architecture: the two-dimensional case
	3.2.1 Choosing the prototypical landscapes and the input representation
	3.2.2 Learning the update direction/angle
	3.2.3 Learning the step-size and the resolution

	3.3 Architecture for d>2

	4 Results
	4.1 Behavioral analysis
	4.2 Two-dimensional experiments
	4.3 High-dimensional experiments
	4.3.1 Linear binary classification
	4.3.2 Small neural network

	5 Conclusion
	6 Appendix
	6.1 Landscape generation in details
	6.2 Policy evaluation
	6.3 Precisions on Ftest
	6.3.1 Rosenbrock's function
	6.3.2 Ackley's function
	6.3.3 Rastrigin's function
	6.3.4 Maccornick's function
	6.3.5 Styblinski's function
	6.3.6 Beale's function

