Skip to main content

Optimization of Transmission Range for a Fault Tolerant Wireless Sensor Network

  • Conference paper
  • First Online:
  • 1061 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11319))

Abstract

Applications of wireless sensor network face many censorious issues, fault tolerance being a prominent one. The problem of missing communication link(s), sensor node(s) and data is unavoidable in such networks. Fault tolerance is important for reliable delivery of data in WSN applications. This ensures the system’s availability for use in case of any interruption or occurrence of fault, thus enhancing the availability and reliability. Current work introduces the fault-tolerance behavior of a dynamically generated system of wireless sensor network that comprises of super-nodes and sensor nodes having k - vertex disjoint paths. As the parameters involved in the process of determination of fault-tolerance of a network change, the capacity of the network to tolerate the fault changes accordingly. This paper proposes an algorithm that evaluates the fault tolerance of randomly generated networks based on k - vertex disjoint path connectivity and also evaluates the results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bagci, H., Korpeoglu, I., Yazici, A.: A distributed fault-tolerant topology control algorithm for heterogeneous wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 26(4), 914–923 (2015)

    Article  Google Scholar 

  2. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)

    Article  Google Scholar 

  3. Anastasi, G., Conti, M., Francesco, M., Passarella, A.: Energy conservation in wireless sensor networks: a survey. Ad Hoc Netw. 7(3), 537–568 (2009)

    Article  Google Scholar 

  4. Liu, H., Nayak, A., Stojmenovic, I.: Fault-tolerant algorithms/protocols in wireless sensor networks. In: Woungang, I., Misra, S., Misra, S. (eds.) Guide to Wireless Sensor Networks. CCN, pp. 261–291. Springer, London (2009). https://doi.org/10.1007/978-1-84882-218-4_10

    Chapter  Google Scholar 

  5. Wang, Y.: Topology control for wireless sensor networks. In: Li, Y., Thai, M.T., Wu, W. (eds.) Wireless Sensor Networks and Applications. SCT, pp. 113–147. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-49592-7_5

    Chapter  Google Scholar 

  6. Rodolfo, C., Azzedine, B., Luiz, V., Antonio, L.: Underwater wireless sensor networks: a new challenge for topology control based systems. ACM Comput. Surv. (CSUR) 51(1), 1–36 (2018)

    Google Scholar 

  7. Cardei, M., Yang, S., Wu, J.: Algorithms for fault-tolerant topology in heterogeneous wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 19(4), 545–558 (2008)

    Article  Google Scholar 

  8. Yarvis, M., Kushalnagar, N., Singh, H., Rangarajan, A., Liu, Y., Singh, S.: Exploiting heterogeneity in sensor networks. In: Proceedings of IEEE International Conference on Computer and Communications, vol. 2, pp. 878–890 (2005)

    Google Scholar 

  9. Wang, D., et al.: A flow-weighted scale-free topology for wireless sensor networks. IEEE Commun. Lett. 19(2), 235–238 (2015)

    Article  Google Scholar 

  10. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  11. Deniz, F., Bagci, H., Korpeoglu, I., Yazici, A.: An adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks. Ad Hoc Netw. 44, 104–117 (2016)

    Article  Google Scholar 

  12. Ozaki, K., Watanabe, K., Itaya, S., Hayashibara, N., Enokido, T., Takizawa, M.: A fault-tolerant model for wireless sensor-actor system. In: Proceedings of the 20th International Conference on Advanced Information Networking and Applications, vol. 2, April 2006

    Google Scholar 

  13. Dima, S.M., Christos, A., Stavros, K.: Resource aware sensor-to-actor allocation framework for WSANs based on Voronoi cells theory. J. Sens. 2017 (2017)

    Google Scholar 

  14. Wu, J., Yang, S., Cardei, M.: On maintaining sensor-actor connectivity in wireless sensor and actor networks. In: Proceedings of IEEE International Conference on Computer and Communications, pp. 888–896 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aditi, Pai, R., Mini, S. (2019). Optimization of Transmission Range for a Fault Tolerant Wireless Sensor Network. In: Fahrnberger, G., Gopinathan, S., Parida, L. (eds) Distributed Computing and Internet Technology. ICDCIT 2019. Lecture Notes in Computer Science(), vol 11319. Springer, Cham. https://doi.org/10.1007/978-3-030-05366-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05366-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05365-9

  • Online ISBN: 978-3-030-05366-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics