
A Memory-Based Label Propagation Algorithm
for Community Detection

Antonio Maria Fiscarelli1, Matthias R. Brust2, Grégoire Danoy3, and Pascal
Bouvry4

1 C2DH, University of Luxembourg, 11 Porte des Sciences, Esch-sur-Alzette
SnT, University of Luxembourg, 6 avenue de la Fonte, Esch-sur-Alzette

antonio.fiscarelli@uni.lu
2 SnT, University of Luxembourg, 6 avenue de la Fonte, Esch-sur-Alzette

matthias.brust@uni.lu
3 FSTC-CSC-ILIAS, University of Luxembourg, 6 avenue de la Fonte,

Esch-sur-Alzette
gregoire.danoy@uni.lu

4 SnT, University of Luxembourg, 6 avenue de la Fonte, Esch-sur-Alzette
FSTC-CSC-ILIAS, University of Luxembourg, 6 avenue de la Fonte, Esch-sur-Alzette

pascal.bouvry@uni.lu

Abstract. The objective of a community detection algorithm is to group
similar nodes in a network into communities, while increasing the dis-
similarity between them. Several methods have been proposed but many
of them are not suitable for large-scale networks because they have high
complexity and use global knowledge. The Label Propagation Algorithm
(LPA) assigns a unique label to every node and propagates the labels lo-
cally, while applying the majority rule to reach a consensus. Nodes which
share the same label are then grouped into communities. Although LPA
excels with near linear execution time, it gets easily stuck in local optima
and often returns a single giant community. To overcome these problems
we propose MemLPA, a novel LPA where each node implements mem-
ory and the decision rule takes past states of the network into account.
We demonstrate through extensive experiments on the Lancichinetti-
Fortunato-Radicchi benchmark and a set of real-world networks that
MemLPA outperforms most of state-of-the-art community detection al-
gorithms.

Keywords: Network analysis, graph theory, community detection, label
propagation

1 Introduction

Real-world networks often exhibit a community structure where nodes in a com-
munity are highly connected and few links connect the different communities.
The objective of a community detection algorithm is to partition similar nodes
of the network in groups, while increasing the dissimilarity between the groups.

2 Antonio Maria Fiscarelli et al.

This problem is NP-hard [4], therefore it is important that community detec-
tion algorithms maintain a low complexity while possessing high scalability. Due
to growing interest, community detection has attracted many researchers from
different areas such as computer science [1], natural sciences [11] and social sci-
ences [23], making it a notably active research field.

Several community detection methods have been proposed in the literature
such as greedy algorithms that incorporate modularity optimization [3, 5, 9, 16],
spectral methods based on modularity matrix [15] and random walk-based meth-
ods [18, 22]. In particular, the Label Propagation Algorithm (LPA) assigns a
unique label to every node and propagates the labels locally, while applying
the majority rule to reach a consensus. Nodes sharing the same label are then
grouped into communities. This method runs in near linear time, is scalable and
requires only local information, thus it is especially suitable for large networks.
On the other hand, it gets easily stuck in local optima and is thus outperformed
by more sophisticated algorithms.

The method that we propose is called MemLPA, a variation of the classic
LPA where each node implements memory and the decision rule takes past states
of the network into account. We also adapt some of the improvements proposed
in the literature to our method such as neighborhood preference and termina-
tion criterion based on active nodes. The use of memory improves performance
and prevents a single label from flooding the network. We conducted extensive
experiments on the Lancichinetti-Fortunato-Radicchi benchmark and a set of
real-world networks. The algorithm is tested against state-of-the-art community
detection algorithms and it outperforms most of them for values between 0.5
and 0.8 of the mixing parameter.

The remainder of this article is organized as follows. Section 2 presents a
state-of-the-art analysis on community detection algorithms and label propaga-
tion algorithms. Our contribution, MemLPA, is introduced in Section 3 and its
performance is analyzed and compared to other community detection algorithms
on artificial and real-world networks in Section 4. Finally, Section 5 provides our
conclusions.

2 Related Work

In this Section we provide an overview of community detection algorithms that
do not require a priori information about the network, such as the number of
communities. In particular, we discuss LPA and several variations that have been
proposed in the literature.

Girvan and Newman [16] proposed a divisive hierarchical algorithm that re-
moves edges with high betweenness to enhance the separation of communities.
This algorithm runs in O(nm2). A faster version was proposed [5] that itera-
tively merges nodes into communities to optimize modularity. The complexity
for this method is O(md log n), where d is the depth of the dendrogram. Blon-
del, Guillaume, and Lambiotte [3] developed a similar method called Louvain. It
repeatedly merges nodes into communities that achieve the highest modularity

A Memory-Based Label Propagation Algorithm for Community Detection 3

improvement and builds a new network where nodes represent the communities
found. This method runs in O(n log n). Walktrap [18] defines a similarity be-
tween nodes according to the transition probability of random walkers. In fact,
random walkers are more likely to stay within the same community. It runs in
O(n2m) or O(n2 log n) on sparse networks. Infomap [22], similarly, models flow
patterns in networks using the transition probability of random walkers and runs
in O(m). Newman [15] proposed a spectral method based on the Eigenspectrum
of the modularity matrix that runs in O(n(m+n)) or O(n2) on sparse networks.
Finally, Reichardt and Bornhol [21] interpreted community detection as the min-
imization of the energy function of a spin model. It runs in O(n3.2) on sparse
networks.
Many of the algorithms proposed in the literature have downfalls that make them
inefficient on large-scale networks: they have high complexity and require global
information of the network. To overcome this problem, Raghavan [19] proposed
the Label Propagation Algorithm (LPA): it runs in near linear time, is scalable
and uses the network’s local information only, without the need of optimizing
any objective function. It assigns a unique label to every node and propagates
the labels locally, while applying the majority rule to reach a consensus. Nodes
sharing the same label are then grouped into communities. On the other hand,
LPA gets easily stuck in local optima and is thus outperformed by more re-
cent and sophisticated algorithms. Also, a certain label may “flood” the network
and create a single giant community. Several variations have been proposed.
Clark [2] developed a variation that includes modularity optimization to im-
prove performance. This method was further enhanced by Liu and Murata [14]
with a greedy method that allows it to escape from local optima. Leung [13]
introduced a decision rule based on node preference, such as node degree, to
improve performance and hop attenuation to prevent a label from flooding the
network. The algorithm is scalable and still runs in near linear time. Xie and Szy-
manski [27] proposed another node preference, based on neighborhood similarity,
that is related to the clustering coefficient. S̆ubelj and Bajec [24] elaborated two
particular strategies, defensive preservation and offensive expansion, that adapt
node preference to focus on core nodes and border nodes of communities. They
also found that the network structure affects the effectiveness of node preference
and hop attenuation. The algorithm runs in O(m1.19) and is highly scalable. Xie
and Szymanski [26] also developed LabelRank, a variation of the classic LPA
that takes inspiration from the MCL algorithm [8]. Each node maintains a list
of label distributions that are propagated through the network. An inflation and
a cutoff operator are applied to shorten these lists.

3 MemLPA: A Memory-Based Label Propagation
Algorithm

The classic LPA updates nodes’ labels according to the current state of the
network. During a certain iteration, each node collects its neighbors’ labels and
selects the most chosen one. At each iteration, all these labels are discarded

4 Antonio Maria Fiscarelli et al.

and new ones are collected. This mechanism makes the algorithm memory-less,
since it does not consider past states. In this Section we introduce MemLPA, a
variation of the classic LPA where nodes implement memory: the use of memory
increases performance with limited increase in complexity and without affecting
scalability.

3.1 Algorithm Description

When using memory, labels are not discarded but updated at each iteration.
Each node maintains a list of labels where every element of the list contains a
counter associated to that label. Initially, each node is assigned a unique label
(line 3 of the pseudocode) and their label lists are empty (line 4). At each
iteration, each node collects its neighbors’ labels (line 8) and updates its label
list according to weight (for weighted networks) and node preference (line 9). If a
new label appears, a new entry is created in the list, otherwise the counter for the
corresponding label is incremented. Each node then selects a label from the list
using a decision rule that takes into account the labels’ counters, the maximum
element in this case (line 11). This mechanism can be applied to directed or
undirected as well as to weighted or unweighted graphs. Figure 1 shows how
MemLPA works.

In order to keep MemLPA scalable, we propose a synchronous update rule:
each node independently updates its state according to the network’s state dur-
ing the previous iteration. It has been shown that a synchronous update can
cause LPA to oscillate between two different configurations and an asynchronous
update can lead to better results, but in Section 4 we show how the two differ-
ent update rules affect the convergence of MemLPA. As node preference, we
use a heuristic based on neighborhood similarity: we compute the percentage
of neighbors that a node shares with another. In Section 4 we show the impact
of this heuristic on performance. To speed up the algorithm, we define a cutoff
operator to prune label lists (line 10). At each iteration, all labels below a cer-
tain threshold are deleted, keeping only the most relevant ones. Regarding the
termination criterion, several options have been proposed in the literature that
are based on convergence, modularity improvement, active nodes and scarcity
of updates. Modularity is based on global information of the network, therefore
we decided to use a termination criterion based on the active node list: a node
is considered active if, in an attempt to update its label, it chooses a different
label. The active node list initially contains all nodes (line 1) and at each it-
eration a node is removed if it is no longer active or it is added if any of its
neighbors becomes active again (line 13). This keeps the algorithm decentralised
and speeds up the algorithm significantly. In Section 4 we show that using an
active node list allows the algorithm to stop right after NMI or modularity has
reached an optimal value.
To our knowledge, the only method that explicitly refers to memory in LPA is
the Speaker-Lister Label Propagation Algorithm (SLPA) [28]. We would like to
point out how our method is different: in SLPA, each node selects only one label
from the collection of labels received from its neighbors, while nodes in MemLPA

A Memory-Based Label Propagation Algorithm for Community Detection 5

Fig. 1: Iterations of MemLPA on a weighted undirected graph. Color and node
number represent labels. Columns in a table represents label lists maintained by
a node.

update their label lists with all the labels received. SLPA uses an asynchronous
update rule, while our method is synchronous. SLPA uses a thresholding pro-
cedure that is performed on label distributions once the algorithm converges,
while MemLPA applies a cutoff operator during each iteration. Finally, SLPA
terminates after a fixed number of iterations, while MemLPA’s termination cri-
terion is based on active nodes. Some work on consensus dynamics also refers to
memory. For example, a non-deterministic version of the Naming Game [20,25],
which is similar in some aspects to LPA, extends the agents with local memory
but also uses a shared memory, making it not decentralized, which is the main
difference to our approach.

3.2 Complexity

The complexity of MemLPA on a certain node, where k is the average degree
and h is the average label list length, can be assessed this way:

– Computing the neighborhood intersection for node preference with k neigh-
bors has complexity O(k ∗k). Notice that it only needs to be computed once
and nodes can store this information.

6 Antonio Maria Fiscarelli et al.

Algorithm 1: MemLPA

Input : Graph G(N, E)
Output: Communities C

1 AL← N //Initialize active list
2 for n ∈ N do
3 cn ← ln //Assign unique label to nodes
4 Ln ← ∅ //Initialize label lists

5 end
6 while AL 6= ∅ do
7 for n ∈ AL do
8 Cn ← CollectLabels(Neigh(n)) ;
9 Ln ← UpdateLabelList(Cn) ;

10 Ln ← {lmn ∈ Ln,m ∈ N | |mean(Ln)− sd(Ln)| ≤ lmn }
11 cn ← ApplyRule(Ln) ;

12 end
13 AL← UpdateActiveList(AL)

14 end

– Updating the label list with k new values has complexity O(k).
– Using the cutoff operator has complexity O(h).
– Choosing a new label has complexity O(h).

In Section 4 we show how the cutoff operator keeps the average list length
constant and significantly lower than the average degree. Iterating on all nodes,
the overall complexity is O(k2∗n) or O(k∗m), instead of O(m) of the classic LPA.
This means that the complexity of MemLPA is still near linear w.r.t. network
size.

4 Performance Study

We implemented MemLPA and assessed the use of memory and some of the vari-
ations proposed in the literature. We then compared it to other state-of-the-art
community detection algorithms to show how it outperforms most of them. We
also ran MemLPA to study some of its characteristics that are important for con-
vergence. For the analysis we ran all algorithms on the Lancichinetti-Fortunato-
Radicchi (LFR) benchmark [12], an established benchmark in the literature for
community detection that allows to generate networks with properties similar to
real-world networks. As performance metrics, we used the Normalized Mutual
Information (NMI) [7,29] and Adjusted Rand Index (ARI) [10]. We also applied
these algorithms on a set of real-world networks of different nature and used the
modularity measure to evaluate the quality of the solutions.

4.1 Artificial Networks

The first set of experiments was conducted on the Lancichinetti-Fortunato-
Radicchi (LFR) benchmark to investigate the advantages of the LPA variations

A Memory-Based Label Propagation Algorithm for Community Detection 7

● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00
Mixing parameter

N
M

I

Algorithm
● C_S

LPA
N_C
N_C_S

N_S
S

(a)

● ● ● ● ● ●
● ●

●

●

●

● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00
Mixing parameter

A
R

I

Algorithm
● C_S

LPA
N_C
N_C_S

N_S
S

(b)

Fig. 2: Experiments on the LFR benchmark. All variations, except the basic
LPA, implement memory. N: node preference, C: cutoff operator, S: synchronous
update. Experiments are run 20 times and results averaged.

chosen and the use of memory. A mixing parameter µ controls the portion of
intra-community and inter-community edges. Node degree and community size
are not fixed but drawn from a power-law distribution. Benchmark graphs were
generated with number of nodes N = 1000, minimum community size C.min =
10, maximum community size C.max = 50, average degree K.avg = 20, maximum
degree K.max = 50, degree exponent K.exp = 2 and community size exponent
C.exp = 1, while µ was dynamically changed. We compared the classic LPA
to different variations of MemLPA that use synchronous (S) and asynchronous
update rule, with and without node preference (N), with and without cutoff
operator (C). Figure 2 shows that using a synchronous or asynchronous update
does not make a significant change in performance (N C S vs N C). Using the
cutoff operator does not degrade performance either (C S vs S and N C S vs
N S). This shows that MemLPA can be kept decentralized and scalable without
compromising performance. For low values of µ all variations obtained optimal
results. The classic version of LPA, the only one not using memory, was the first
algorithm to drop in performance for µ ≥ 0.5 because, for these networks, a
single label overpropagated and created a single giant community. This confirms
that the use of memory improves performance and prevents a label from flooding
the network. For µ ∈ [0.5, 0.7] the variations that use node preference (N S, N C
and N C S) obtained the best results, but it is not the case for higher values.
In fact, the variations that did not use node preference (S and C S) obtained
higher constant values of NMI for µ ∈ [0.7, 1]. We must consider that the NMI is
dependent on network size and number of communities. Therefore we decided to
use the Adjusted Rand Index to have a more accurate comparison. As a result,
we can see that node preference was dominant for any µ ≥ 0.5.

8 Antonio Maria Fiscarelli et al.

● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

● ●
●

●
●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Mixing parameter

N
M

I

Algorithm
● Between

Greedy
Infomap
Louvain

LPA
MemLPA

Trap

(a)

● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Mixing parameter

A
R

I

Algorithm
● Between

Greedy
Infomap
Louvain

LPA
MemLPA

Trap

(b)

Fig. 3: Experiments on the LFR benchmark. Experiments are run 20 times and
results averaged.

The same experiment was performed to compare MemLPA to other state-of-
the-art community detection algorithms. We chose the algorithms described in
Section 2 and they are all available in the igraph package [6]. Notice that Eigen
was not used because it did not converge on some networks, while Spinglass
cannot work with unconnected graphs.

Figure 3 shows that, for low values of µ, most algorithms obtained opti-
mal results, while Greedy gradually decreased in performance. For µ ∈ [0.5, 0.7]
most of the algorithms started degrading in performance, especially LPA and Be-
tween. MemLPA, in this range, was only outperformed by Infomap and Trap. For
µ ≥ 0.7 MemLPA was the best algorithm after Between but, considering ARI,
MemLPA performed slightly better until all algorithms’ performance dropped
to zero.

We also conducted two experiments to analyze some of the characteristics of
MemLPA at runtime. We used µ = 0.1 to generate networks where communi-
ties are very well defined and µ = 0.6 for loose communities. As performance
measures we recorded NMI, modularity and the ratio between number of com-
munities found by MemLPA and real communities. The information that we
recorded is the percentage of runs that terminated, the number of active nodes
and the average ratio between label list length and node degree. Figure 4 shows
that, for µ = 0.1, MemLPA increased in performance quickly, being able to find
the correct number of communities. The percentage of active nodes dropped
significantly right after the best performance was reached, causing most of the
runs to terminate. The length of label lists, w.r.t. node degree, dropped signifi-
cantly during the first iterations and then stabilized. For µ = 0.6, as expected,
there was a similar behavior but the algorithm converged slower. Surprisingly,
the average list length is lower for µ = 0.6. A possible explanation is that nodes

A Memory-Based Label Propagation Algorithm for Community Detection 9

● ●

●

●

●
● ● ● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12
Iteration

Legend
● %active

Cf/Cr
list_length
NMI

Q
%term

(a)

● ● ●

●

●

●

●

●

●
●

● ●
● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12
Iteration

Legend
● %active

Cf/Cr
list_length
NMI

Q
%term

(b)

Fig. 4: Experiments on the LFR benchmark. µ = 0.1 and µ = 0.6 has been used
for the two experiments. Both experiments have been run 50 times and results
averaged.

in well defined communities hold very strong labels in their label lists, while for
loose communities labels are weaker and more likely to be removed by the cutoff
operator.

4.2 Real-world Networks

We conducted similar experiments on a set of real-world networks of different
nature. An overview of all the networks is available in Table 1.

Table 1: Real-world networks characteristics
#nodes #edges directed weighted

karate 34 78 no yes
UKfaculty 81 817 yes yes

mail 184 2116 yes no
dolphins 62 159 yes no

jazz 198 2742 yes no
USAirports 755 23473 yes yes

In the first experiment, like Section 4.1 for artificial networks, we investigated
the advantages of memory and the LPA variations chosen. Figure 5 shows that,
as previously seen on artificial networks, using a synchronous or asynchronous
update did not make a significant change (N C S vs N C) and the cutoff op-
erator did not degrade performance (C S vs S and N C S vs N S). This allows
MemLPA to be scalable, fast and performing. Node preference did not affect

10 Antonio Maria Fiscarelli et al.

performance on unweighted networks significantly, while performance mostly
degraded for the weighted ones (N S vs S and N C S vs C S). A possible expla-
nation is that weight is a more significant factor than neighborhood overlapping
when it comes to measuring the similarity or the level of nodes’ interaction.
Additionally, other types of heuristics might be more effective, such as node de-
gree. Implementing memory was beneficial on all networks when compared to
the memory-less LPA. In particular, it prevented labels from overpropagating
on the Mail network where the classic LPA finds a single huge community. In
the second experiment we compared MemLPA to state-of-the-art community de-
tection algorithms. MemLPA was among the most performing algorithms on all
networks. In particular, it obtained the best result for Karate and UKFaculty.

0.0

0.1

0.2

0.3

0.4

0.5

Dolp
hin

s

Ja
zz

Kar
at

e
M

ail

UKfac
ult

y

USAirp
or

ts

Networks

Q
m

ax

Algorithm
C_S
LPA
N_C
N_C_S
N_S
S

(a)

0.0

0.2

0.4

Dolp
hin

s

Ja
zz

Kar
at

e
M

ail

UKfac
ult

y

USAirp
or

ts

Networks

Q
m

ax
Algorithm

Between
Greedy
Infomap
Louvain
Lpa
MemLPA
Walktrap

(b)

Fig. 5: Experiments on real-world networks. Each barplot represents the results
obtained for all algorithms on a specific network. Experiments have been run
100 times.

4.3 Discussion

We conducted extensive experiments on the LFR benchmark, investigated the
advantages of MemLPA and found that memory improves performance and pre-
vents labels from overpropagating. We compared MemLPA to several state-of-
the-art community detection algorithms: it outperforms most of them for values
of the mixing parameter between 0.5 and 0.8, while still running in near lin-
ear time and using only local information. Then, we conducted two experiments
to analyze some of its characteristics at runtime, such as number of iterations
before termination, number of active nodes and label list length, using NMI,
modularity and number of communities found as performance metrics. We also
ran MemLPA on a set of real-world networks of different nature and compared

A Memory-Based Label Propagation Algorithm for Community Detection 11

the quality of the solutions found to the ones of all the algorithms considered.
With these findings, we can conclude that the use of memory is beneficial and
the algorithm is competitive.

5 Conclusions and Future Work

In this paper we proposed MemLPA, a variation of LPA where nodes are seen as
agents that interact with their neighbors, implement memory and use a decision
rule based on past states of the network. It runs in near linear time, only uses
local information of the network and is scalable. We gave an overview on com-
munity detection algorithms, LPA and the variations proposed in the literature.
We investigated the advantages of memory and we found that its usage prevents
labels from overpropagating and increases performance. We conducted exten-
sive experiments on the Lancichinetti-Fortunato-Radicchi benchmark and used
Normalized Mutual Information and Adjusted Rand Index as performance met-
rics. We compared MemLPA to state-of-the-art community detection algorithms
to show how it outperforms most of them, especially for values of the mixing
parameter between 0.5 and 0.8. We also conducted experiments on a set of real-
world networks of different nature and evaluated the quality of the solutions
found using the modularity measure. For future work, we plan on implementing
other LPA variations and compare them in order to improve MemLPA. We also
want to investigate the correlation between network structure and the use of
memory. Finally, as suggested in [17], we want to combine topological properties
with the clustering metrics already used for a better comparison of the different
variations and understanding of community structure.

acknowledgement This work is partially funded by the joint research pro-
gramme UL/SnT-ILNAS on Digital Trust for Smart-ICT.

References

1. Albert, R., Jeong, H., Barabási, A.L.: Internet: Diameter of the world-wide web.
nature 401(6749), 130–131 (1999)

2. Barber, M.J., Clark, J.W.: Detecting network communities by propagating labels
under constraints. Physical Review E 80(2) (2009)

3. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of statistical mechanics: theory and experiment
2008(10) (2008)

4. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wag-
ner, D.: On modularity clustering. IEEE transactions on knowledge and data
engineering 20(2), 172–188 (2008)

5. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large
networks. Physical review E 70(6) (2004)

6. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal Complex Systems (2006). URL http://igraph.org

12 Antonio Maria Fiscarelli et al.

7. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure
identification. Journal of Statistical Mechanics: Theory and Experiment 2005(09)
(2005)

8. Dongen, S.: A cluster algorithm for graphs (2000)
9. Girvan, M., Newman, M.E.: Community structure in social and biological networks.

Proceedings of the national academy of sciences 99(12), 7821–7826 (2002)
10. Hubert, L., Arabie, P.: Comparing partitions. Journal of classification 2(1), 193–

218 (1985)
11. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale

organization of metabolic networks. Nature 407(6804), 651–654 (2000)
12. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-

munity detection algorithms. Physical review E 78(4) (2008)
13. Leung, I.X., Hui, P., Lio, P., Crowcroft, J.: Towards real-time community detection

in large networks. Physical Review E 79 (2009)
14. Liu, X., Murata, T.: Advanced modularity-specialized label propagation algorithm

for detecting communities in networks. Physica A: Statistical Mechanics 389(7),
1493–1500 (2010)

15. Newman, M.E.: Finding community structure in networks using the eigenvectors
of matrices. Physical review E 74(3) (2006)

16. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Physical review E 69(2) (2004)

17. Orman, G.K., Labatut, V., Cherifi, H.: Comparative evaluation of community de-
tection algorithms: a topological approach. Journal of Statistical Mechanics: The-
ory and Experiment 2012(08) (2012)

18. Pons, P., Latapy, M.: Computing communities in large networks using random
walks. In: ISCIS, vol. 3733, pp. 284–293 (2005)

19. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Physical review E 76(3) (2007)

20. Reginaldo Filho, J., Brust, M.R., Ribeiro, C.H.: Consensus dynamics in a non-
deterministic naming game with shared memory. arXiv preprint arXiv:0912.4553
(2009)

21. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys-
ical Review E 74(1) (2006)

22. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences 105(4),
1118–1123 (2008)

23. Scott, J.: Social network analysis. Sage (2017)
24. Šubelj, L., Bajec, M.: Unfolding communities in large complex networks: Combin-

ing defensive and offensive label propagation for core extraction. Physical Review
E 83(3) (2011)

25. Uzun, T.G., Da Silva-Filho, R.J., Brust, M.R., Ribeiro, C.H.: Influence of shared
memory and network topology in the consensus dynamics of a naming game

26. Xie, J., Szymanski, B.K.: Labelrank: A stabilized label propagation algorithm for
community detection in networks. In: Network Science Workshop (NSW). IEEE

27. Xie, J., Szymanski, B.K.: Community detection using a neighborhood strength
driven label propagation algorithm. arXiv preprint arXiv:1105.3264 (2011)

28. Xie, J., Szymanski, B.K., Liu, X.: Slpa: Uncovering overlapping communities in
social networks via a speaker-listener interaction dynamic process. In: Data Mining
Workshops (ICDMW). IEEE (2011)

29. Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community
detection algorithms on artificial networks. Scientific reports 6 (2016)

