
Optimal control rules for random Boolean networks∗

Matthew R. Karlsen and Sotiris K. Moschoyiannis

Department of Computer Science,
Faculty of Engineering and Physical Sciences,

University of Surrey, Guildford, Surrey, GU2 7XH, UK
{matthew.r.karlsen | s.moschoyiannis}@surrey.ac.uk

Abstract. A random Boolean network (RBN) may be controlled through the use
of a learning classifier system (LCS) – an eXtended Classifier System (XCS) can
evolve a rule set that directs an RBN from any state to a target state. However,
the rules evolved may not be optimal, in terms of minimising the total cost of the
paths used to direct the network from any state to a specified attractor. Here we
uncover the optimal set of control rules via an exhaustive algorithm. The perfor-
mance of an LCS (XCS) on the RBN control problem is assessed in light of the
newly uncovered optimal rule set.

1 Introduction

Controlling complex networks is key in areas as diverse as biological systems
and socio-technical systems such as transport networks. Perturbations may cause
the network to spontaneously go to a state that is less desirable than others, e.g.,
perturbations in metabolic networks may indirectly lead to non-viable strains [3].
Recent advances include work on network structure control nodes [15, 1, 16], its
reconfiguration [8, 17, 18], but also on the network dynamics [3, 9] with applica-
tion for example to transport [10]. ‘Controllability’, is here measured by the ex-
tent to which we have the ability to direct the network from any (possibly ‘bad’)
state to an attractor (possibly a ‘good’ state or states, where the system continues
to perform its functions). Herein the network is said to be ‘controlled’ when the
rule set takes the network from any state to the target attractor. We focus here
on developing sets of ‘control rules’ able to achieve control for a given target
attractor.
In previous work [9], we have applied rule-based machine learning in the form
of an “eXtended Classifier System” (XCS) [20, 21] to the problem of controlling
random Boolean networks (RBNs) [12, 11]. RBNs have been used to model bio-
logical networks such as gene regulatory networks, e.g., see [13], [7]. We showed
that XCS can evolve a rule set that takes an RBN from any state to an attractor.
However, no indication of the ‘ideal’ or ‘optimal’ set of rules was supplied.
In this paper, we provide an algorithm that derives an optimal set of control rules
for a given network and a given intervention cost, which is represented by a
weight greater than one for intervention links (contrasted to a weight of ‘1’ for

∗This research was partly funded by the Department for Transport, via Innovate UK and
the AIR round 4 programme, under the Onward Journey Planning Assistant (OJPA) project and
partly funded by EIT Digital under the Real–Time Flow project, activity 18387–SGA2018.



2 M.R. Karlsen, S. Moschoyiannis

a ‘natural step’). This enables a comparison between the XCS rules evolved to
control the network and the ‘ideal’ or ‘optimal’ set of rules that does the job. The
idea for taking a cost-based approach rather than restricting the operations avail-
able to XCS can be attributed to Fornasini and Valcher [5] (though they do not
work with XCS).
The remainder of this paper is structured as follows. Section 2 briefly describes
RBNs whilst Section 3 outlines key principles behind LCSs. In Section 4 we
describe the central algorithm of the paper, which computes the optimal set of
control rules for an RBN. Section 5 explains the experiments conducted to com-
pare this algorithm with an XCS-based approach. Results are presented in Section
6, and discussed in Section 7. Conclusions and future work follow in Section 8.

2 Random Boolean Networks

Random Boolean Networks [12, 11] are networks with Boolean values and an up-
date function at each node, where the network structure and/or the update func-
tions are specified at random. Here we focus on the NK Boolean Network [12,
11] with N nodes and K inputs per node. In this model the origin node of each in-
put link is randomly drawn from the set of N nodes such that each of the N nodes
is affected by K nodes in the same set (a node may have an input from itself).
Each node holds a Boolean variable, initialised randomly with the value 0 or 1.
The update functions for each node are randomly determined Boolean functions
such that each unique combination of input values supplied by the input links
(0,0; 0,1; 1,0; or 1,1; when K=2) updates the node to a new value (either 0 or 1),
overwriting the previous value. An example RBN is shown in Fig. 1 (enclosed
within the box).
Random Boolean networks may be asynchronous or synchronous. In an asyn-
chronous network one node is randomly selected to update first, its inputs are
read, and a new value is calculated and set at that node. The new value then prop-
agates down any outward links attached to that node, updating further nodes, and
so on, until a stable state or state cycle is reached. In a synchronous RBN all
nodes are updated simultaneously. Given the current state of the network – the
Boolean value at each node – the new Boolean values are calculated without be-
ing set. Once all the calculations are complete, a new Boolean value is set at each
node. Herein we consider networks that update synchronously.
Random Boolean networks can be controlled via timed bit flips at available tar-
geted nodes (i.e. if the current Boolean value at the node is a 0 it can be flipped to
a 1 or vice versa). This can be represented as an integer (starting at 1) indicating
which node to bit flip. The state of the network can be shown as a bit string con-
sisting of the state of each node in the network in a fixed order, see Fig. 1. Thus if
you have, for instance, 5 nodes then the state may be 00101 and the action could
be 4 (shown as 00101 : 4). In this instance flipping the 4th bit from a 0 to a 1
would result in the state 00111.
Substantial previous work on the control of RBNs is covered in a review by For-
nasini and Valcher [6]. This work differs in relation to previous works via (1)
taking a programmatic approach rather than an algebraic approach and (2) pro-
viding the control instructions as a condensed set of ‘control rules’.



Optimal control rules for random Boolean networks 3

Fig. 1. An RBN with N=5,K=2 (enclosed in box). The resulting state space is also shown.

3 Learning Classifier Systems

A learning classifier system (LCS) [19] is a rule-based machine learning tech-
nique comprising a population of rules, a reinforcement (or supervised) learn-
ing mechanism and a genetic algorithm. Further additional components include a
number of filters, a ‘covering mechanism’ (to generate new rules when needed),
a prediction array (to assess the quality of propose actions) and an action selec-
tor (to choose which of the potential actions actually gets implemented in the
environment).
At the heart of an LCS is a number of IF <condition> THEN <action> rules
in a population. The rules in this instance are represented as follows: 10100 :
3 (a bit string condition followed by a colon separator, followed by an integer
representing an action). The condition consists of 0s, 1s and # symbols (where
the # wildcard indicates ‘don’t care’). The environment state (represented as a bit
string) matches a rule’s condition when at each index the symbol either matches
or the condition is #. For example, 11101 will match 111#1 : 5. ##### : 1 will
match any environment, taking action 1.



4 M.R. Karlsen, S. Moschoyiannis

The overall system for the XCS [20, 21] variant can be found in [9] (see Fig. 5 in
[9]). The implementation used is that described in the algorithmic specification
provided by Butz & Wilson [2], with a post-run rule set compression based on
[22].
The overall steps of the algorithm are as follows:

1. The RBN state is read in as a bit string (e.g. 10100)
2. The subset of rules that match the RBN state are selected from the rule pop-

ulation
3. The size of this ‘match set’ is considered. While match set too small:

(a) Generate a new rule
(b) Add the rule to the population
(c) Regenerate the match set

4. Create a prediction array (contains fitness-weighted payoffs for each match
set action)

5. Select an action (random with a certain % probability, or else best action
picked from action set)

6. Effect action in the environment (i.e. alter one state bit within the RBN)
7. Derive the action set from the match set (the subset that suggest the effected

action)
8. Apply the genetic algorithm to the action set, adding new rules to the popu-

lation
9. Repeat the above steps

4 Optimal Control Rules

An overview of the algorithm for producing optimal control rules is as follows:

Construct initial rules
1. Construct the original state space graph of the RBN (i.e., with no interven-

tions)
2. Assign each original link a weight of 1
3. For each state-space node, create one ‘intervention’ link to each nearest

neighbour with an intervention-level weight (2.0, 3.0, etc).
4. For each state-space node:

(a) run the Dijkstra shortest path algorithm to each attractor node in the
specified attractor

(b) store the shortest path for the origin node
(c) calculate total cost for the path (link weight sum) and store
(d) calculate number of interventions (count of link with weight > 1) and

store
(e) for each state node in the path:

i. create a new classifier with condition == current node and action
as required (to point to the next step on the shortest path; note that
the classifier contains no # symbols)

ii. if no classifier exists with the new classifier condition, add the new
classifier to population

5. calculate average statistics (average cost and average number of interven-
tions)



Optimal control rules for random Boolean networks 5

Compress rules (optional)
6. Run rule merger:

(a) Group classifiers by action
(b) For each action group:

i. For each classifier in action group, for every other classifier in ac-
tion group, check subsumption

ii. If classifier subsumes other classifier, delete classifier to be sub-
sumed and increment numerosity of subsumer

(c) For each action group; while all combinations not explored without a
merge:

i. iterate through all pair combinations of classifiers
ii. if ‘is adjacent or overlaps’ then merge the two rules

We shall now explain some steps in greater detail. Construction of the original
state space graph of the RBN is performed by initialising the network at each
state of the network and then evolving the network to an attractor. For each path
traced out in this way, the subset of the state space explored is recorded. When
complete, this process yields the full state space of the network. Each link in the
original state space network is given a weight of 1.
Once the original state space has been constructed all possible intervention links
are added to the graph. These ‘nearest neighbour’ links are created as follows.
For each state space node the neighbouring nodes are identified as those that
differ from the selected node by a single bit flip. Then, a directed weighted link is
created from the originally selected node to each neighbouring node. The precise
weight used depends upon the cost of an intervention.
Next, the Dijkstra shortest path algorithm is applied from every node to every
node in the target attractor, using the GraphStream library [4]. The algorithm
was selected because it is capable of considering weighted edges, unlike the A*
algorithm (also in GraphStream). Once the Dijkstra shortest path has been worked
out for each of the nodes in the network state space, for each node on each path
we create a new classifier with a condition equal to the current node (with no
wildcards) and the action required to alter the state of the network to the next state
on the shortest path. For instance, if the current state is 11011 and we required
a shift to 10011 and the only link connecting the two nodes was a link with
weight > 1 then we work out which bit must be flipped (bit 2 in this instance)
and then construct the rule 11011 : 2. In contrast, if the current state was 00110
and the next desired state was 00111 and there was an original (weight 1) link
connecting the two states then the rule 00110 : 0 would be created where 0 is the
‘no operation’ action, indicating that no action needs to be taken to alter the state.
Upon completion of the classifier, we add the new classifier to the population only
if no classifier already exists with the same condition.
Note that it is possible for the shortest path algorithm to find more than one short-
est path from a node to the attractor. For this reason, we only add a classifier if its
condition is not already present in the population.
The rule merger (used for rule set compression, as outlined in the itemised steps
above) first groups classifiers by action (this is a quick way of reducing combi-
nations later in the process). Once grouped by action, we check subsumption for
each possible pair combination of classifiers (see [9]). The main merging code is
then initialised, using a while loop that exits when no further modifications are
possible. This loop iteratively checks whether the classifier pairs have a matching



6 M.R. Karlsen, S. Moschoyiannis

action and matching condition components, less one, which is adjacent or over-
laps (i.e. one rule has 0 and the other 1; or one or both have # at the specified
location) – if this condition is met the rules are merged.
Post compression, further steps are performed to produce a state-space diagram,
displaying both the ‘natural’ links (in green) and the interventions (in red). Note
that the cost of interventions affects the resulting network.

5 Experiments

Here we use the aforementioned optimal rule discovery algorithm to create the
optimal rule sets for 10 different networks. We then run XCS on each of these
networks 25 times and produce aggregate performance results (necessary due to
XCSI’s stochastic components). These results are then critically compared to the
solutions produced via the optimal rule discovery algorithm. We evaluate 3 levels
of intervention cost: 2.0, 2.5 and 3.0.
There are some changes to the way XCS is used in [9]. Rather than enforcing a
mandatory ‘natural step’ after each intervention we introduce the weighting of
links such that intervention links are more ‘expensive’ than ‘natural step’ links.
This necessitates changes to the reward function of the XCS implementation.
Reward is given as 0 for an action that does not reach an attractor and 1000 as the
reward for an action that reaches the attractor (even if said action is a ‘no-op’).
Two interventions are therefore permitted in succession. However, because both
incur the increased cost this is deemed acceptable. The XCS parameters used are
shown in Table 1 (the brief descriptions are based on those in the original table
in [9]). Due to the simplification of the more complex reward structure used in
the previous paper, we find that the ‘default’ XCS parameters (as described by
Butz and Wilson [2]) function suitably. We use these parameters for these initial
results, with the advantage that the parameter combination used is not randomly
generated by a parameter explorer and thus is more human-comprehensible.
A condensation technique [14] is used towards the end of the XCS run to reduce
the number of rules present in the population. This is applied before the optional
compression step as described in [9]. After 10,000 steps the XCS algorithm eval-
uates the solution and proceeds to the condensation phase. If a solution is not
present, it continues to run and re-evaluates every 1000 steps. In the condensa-
tion phase θmna is set to 1, and the GA mutation and cross-over are disabled. The
XCS algorithm then runs for 20,000 additional steps and evaluates the solution.
If the solution is viable the program writes the output and halts. If the solution is
not viable the condensation algorithm runs for a further 10,000 steps. It is techni-
cally possible that the algorithm will never halt and will require a restart. This is
comparatively rare: on the 3004 runs conducted this occurred only 4 times.

6 Results

Table 2 presents a highly condensed summary of the results. Each unique com-
bination of N, K and IC (intervention cost) represents 10 distinct networks of 25
runs using XCS and a single computation of optimal results using the algorithm
described earlier in the paper for each distinct network. Each network has an op-
timal control cost associated with it. The ‘Opt. Min’ here shows the minimum



Optimal control rules for random Boolean networks 7

Table 1. Parameter settings and brief descriptions

Parameter Value Brief Description

R 1400 Rule population size
γ 0.71 Discount rate

θmna N+1 Min. number of actions in match set
P# 0.33 Probability of hash
pI 0.0 Initial payoff
εI 0.0 Initial error
FI 0.0 Initial fitness
ε0 10 Error threshold
θga 5.0 Genetic algorithm frequency
θdel 20.0 Deletion threshold
β 0.2 Affects update of p,ε , and action set size for classifiers
α 0.1 Affects fitness updates
ν 5.0 Affects fitness updates
χ 0.8 Likelihood of GA crossover operation
µ 0.05 Likelihood of GA mutation operation
δ 0.1 Mods. effect of fitness on the ‘deletion vote’ of a classifier

θsub 30.0 Subsumption threshold
pexplr 0.5 Likelihood of exploring

doAsSubsumpt. true Perform subsumption in the action set?
doGaSubsumpt. true Perform subsumption in the GA?

optimal control costs from the 10 different control costs for the networks. The
‘Opt. Avg.’ shows the average of these 10 control costs. Finally, the ‘Opt. Max’
shows the maximum optimal control cost from the 10 different control costs for
the networks. The XCS columns are equivalent to the optimal columns except
that they apply to the 25 XCS runs per network rather than the application of the
optimal rule algorithm (above).
Tables 3, 4 and 5 present the detailed results for the 10 N=5,K=2 networks (with
intervention costs 2.0 and 3.0 respectively). The ‘Opt Cost’ is the average cost
of navigating from any state to one of the target attractor states. To produce this
measure the cost of navigation from every node in the network is summed (at
a cost of 1.0 per ‘natural’ link and the specified cost per ‘intervention’ link) and
then divided by the total number of states. ‘OC Rule Count’ is the number of rules
required to achieve the Optimal Cost outcome. ‘XCS Avg. Cost’ is the average
value of all the average costs for each of the 25 runs on the network in question.
The ‘XCS Rule Count’ is the average rule count required to achieve the XCS
average cost. The ‘XCS time’ is the average time (in seconds) required for the 25
runs on a given network.
For each of the networks shown in Tables 3, 4 and 5, there is an associated optimal
set of control rules and 25 distinct sets of control rules evolved by XCS. Whilst
displaying them all is not feasible due to space constraints, an example set of
optimal rules is shown in Table 6, along with two example sets of XCS-evolved
rules. The square brackets next to each rule display the final predicted payoff and
fitness of each rule, separated by a ‘/’. Note that the predicted payoff and fitness



8 M.R. Karlsen, S. Moschoyiannis

Table 2. Control costs – Optimal vs XCS

Opt. Opt. Opt. XCS XCS XCS
N K IC Min. Avg. Max. Min. Avg. Max.

5 2 2.0 1.72 2.61 3.59 3.69 5.11 6.42
5 2 2.5 1.63 2.59 3.59 3.73 5.88 7.35
5 2 3.0 1.94 3.13 4.56 4.53 6.43 8.91
5 3 2.0 1.75 2.68 3.34 4.63 6.27 7.69
5 3 2.5 1.78 2.63 3.34 5.10 7.08 9.35
5 3 3.0 2.38 3.45 4.47 6.15 7.55 9.45
7 2 2.0 2.46 3.30 4.44 5.21 6.48 9.24
7 2 2.5 2.41 3.21 4.44 5.72 7.25 10.06
7 2 3.0 2.88 3.99 5.94 6.30 7.93 10.50
7 3 2.0 2.61 3.19 3.71 4.94 7.24 13.41
7 3 2.5 2.55 3.08 3.52 6.03 7.98 13.75
7 3 3.0 3.12 3.87 4.77 6.05 8.87 14.45

Table 3. Results for IC = 2.0 (N=5,K=2)

OC XCS XCS XCS
Nw Opt. Rule Avg Rule XCS

Num Cost Count Cost Count Time

1 3.41 15 5.99 37.52 73.16
2 1.72 13 4.18 22.6 55.68
3 2.00 13 3.69 19.04 47.28
4 3.25 13 5.92 28.24 70
5 1.91 19 5.67 16.48 88.12
6 2.25 13 5.49 30.72 77.36
7 2.16 7 3.86 14.52 49.32
8 2.69 14 4.65 31.16 63.2
9 3.59 13 6.42 35.64 90.04
10 3.13 13 5.29 41.04 118.72

Table 4. Results for IC=2.5 (N=5,K=2)

OC XCS XCS
Nw Opt. Rule Avg Rule XCS

Num Cost Count Cost Count Time

1 3.41 18 7.35 43.32 72.6
2 1.63 12 4.35 21.8 53.44
3 2.00 5 3.73 17.36 47.16
4 3.25 11 6.82 22.04 70
5 1.91 19 6.20 15.88 85.72
6 2.19 12 6.43 27.72 97.04
7 2.16 7 4.72 18.64 48.64
8 2.69 13 5.52 32.32 63.48
9 3.59 9 7.30 40.32 87.96

10 3.13 10 6.40 35.56 112.6

Table 5. Results for IC=3.0 (N=5,K=2)

OC XCS XCS
Nw Opt. Rule Avg Rule XCS

Num Cost Count Cost Count Time

1 4.56 19 8.09 40.08 71.84
2 1.94 9 4.94 21.28 54.72
3 2.03 5 4.53 19.88 46.92
4 3.81 11 7.67 31.2 69.28
5 2.53 19 6.09 20.4 83.08
6 2.75 14 7.12 30.16 77.92
7 2.66 7 4.78 21.52 50.36
8 2.84 11 5.79 36.36 63.56
9 4.47 13 8.91 35.92 87.08

10 3.75 12 6.36 43.16 115.36

are related specifically to XCS and thus are not shown for the rules produced
using the non-XCS algorithm.

7 Discussion

As can be seen from Table 2 the average cost for the optimal set of rules ranges
from 2.61 for an N=5,K=2 network with an intervention cost of 2 to 3.99 for
an N=7,K=2 network with an intervention cost of 3. In contrast, the XCS av-
erage cost is 5.11 for an N=5,K=2,IC=2.0 network, with a cost of 8.87 for an
N=7,K=3,IC=3.0 network. The min. optimums can be substantially below the av-
erage optimums (i.e. one or more particular network structure of the 10 randomly
generated ones are much easier to control than average).



Optimal control rules for random Boolean networks 9

Table 6. Optimal versus two example rule sets for an N=5,K=2 network (IC =2.0)

Optimal Rule Set XCS Example Rule Set 1 XCS Example Rule Set 2

01000 : 2 #0### : 0 [826.14/0.9978] 0#### : 0 [610.71/1]
00100 : 3 01000 : 2 [1330.26/1] 01000 : 2 [1277.48/1]
01010 : 4 ##1#0 : 3 [1090.68/1] 00### : 2 [792.98/0.7836]
11101 : 5 0#000 : 1 [779.48/1] 0#010 : 4 [963.7/1]
11010 : 3 #0### : 2 [792.56/0.7614] 0#00# : 1 [645.64/0.9968]
00#11 : 0 0#000 : 4 [785.99/1] ###11 : 5 [669.3/1]
#1111 : 0 0#0#0 : 5 [677.82/1] 1#10# : 0 [1241.56/1]
100#1 : 0 01100 : 1 [1043.01/1] 0#000 : 4 [652.45/1]
#11#0 : 0 0#000 : 3 [735.1/1] 0#001 : 5 [933.07/1]
101## : 0 10000 : 1 [1111.64/1] 0##00 : 5 [621.72/1]
100#0 : 1 ##010 : 3 [688.34/1] 0#01# : 3 [542.8/1]
#1011 : 2 1#000 : 3 [999.7/1] 0#000 : 3 [664.91/1]
1100# : 3 ##100 : 4 [757.19/1] 1#000 : 3 [865.67/1]
00#10 : 4 0#010 : 4 [1329.22/0.6272] 10##0 : 1 [1096.53/0.9996]
0##01 : 5 #1#10 : 2 [811.6/1] 11##0 : 1 [732.65/0.9979]

0#101 : 5 [747.06/1] ##1#0 : 3 [802.9/0.315]
011#0 : 0 [751.29/1] ##010 : 5 [499.36/0.9975]
11100 : 0 [1386.61/1] ###01 : 3 [577.9/1]
##110 : 4 [788.72/1] ####1 : 1 [612.58/0.9038]
010#0 : 0 [792.48/1] 1#0## : 0 [648.04/1]
1#0## : 4 [551.88/0.8454] ####1 : 4 [538.15/0.4199]
####1 : 3 [537.19/1] 1#110 : 0 [948.36/1]
####1 : 1 [535.8/0.8495] 0#1## : 4 [545.14/0.9135]
1##10 : 1 [758.33/1] 00010 : 1 [690.26/1]
01##1 : 0 [534.25/1] 0#110 : 3 [724.95/0.9887]
0##1# : 1 [552.97/0.7678] ###10 : 2 [685.01/0.978]
0#100 : 5 [570.96/1] 0101# : 1 [547.31/0.9862]
0#001 : 5 [996.12/0.1555] 1#000 : 2 [639.82/1]
##11# : 5 [673.12/0.9958] 1#01# : 3 [656.55/1]
0#011 : 5 [740.69/1] 01100 : 3 [987.87/0.9938]
11#0# : 2 [722.05/0.8468] 0#101 : 5 [658.58/1]
1#100 : 5 [618.54/1] 11111 : 0 [694.67/1]
0#100 : 2 [753.52/0.9925] 1##10 : 4 [676.44/1]
01010 : 4 [1032.16/0.9781] ####1 : 2 [567.87/0.743]
1#100 : 1 [751.96/0.9846] ##1## : 2 [605.81/0.4683]
#1#01 : 4 [510.13/0.8903] 1##01 : 5 [677.38/1]
0#011 : 4 [746.69/0.9999] 0#110 : 5 [515.22/1]
0010# : 1 [705.39/0.9299] 0#100 : 1 [787.68/1]
110## : 0 [598.88/1] ##111 : 3 [536.47/1]
01001 : 5 [984.98/0.9288] 1#00# : 4 [539.28/0.5748]
1#1#1 : 5 [774.49/0.3823] 1#10# : 4 [646.66/0.8809]
1#001 : 5 [719.66/1] ##110 : 1 [656.67/0.9729]
##1#1 : 4 [561.8/0.8403] 10111 : 0 [942.59/1]
111#1 : 0 [736.48/1]



10 M.R. Karlsen, S. Moschoyiannis

The above observation can be substantiated with Tables 3, 4, and 5 – substantial
diversity of results can be seen across these tables. One of the major ways in
which the complexity of the control problem varies is in the number of attractors.
The networks with a higher number of attractors tend to have a higher control
cost.
Table 6 shows us the optimal rule set and two of the rule sets that were actually
evolved for the network. We can see that the entire XCS procedure has produced
rule sets that are about 2.5 times the size of the optimal rule set. We can also see
that the XCS rule sets do not contain the optimal rule set as a subset of their rules.
In terms of exact matches, the rule 01000 : 2 is found in all three sets whilst
01010 : 4 is found in one of the XCS rule sets. That said, whilst the number
of exact matches is few, we can see a number of rules in the two XCS rule set
examples are close to the rules in the optimal rule set (for instance there may be
one too many # symbols – the classifiers may be too general).
Overall comparative results are presented in Figures 2a and 2b. The x-axis dis-
plays the average cost of the XCS intervention strategies for each network as a
percentage of the optimal cost, whilst the y-axis shows the average rule set size
for the XCS intervention strategies as a percentage of the number of rules required
to achieve the optimal strategy.

(a) with intervention cost 2.0 (b) with intervention cost 3.0

Fig. 2. XCS relative performance

In Figure 2a we can see that for the intervention cost of 2.0 the XCS solutions
range between approximately 150% and 300% of optimal cost (excluding 3 out-
liers) whilst rule set size is between approximately 120% and 510% (excluding
one outlier).
With cost 3.0 performance is more varied across the various network configura-
tions, as shown in Figure 2b. The cost of the XCS rule sets falls between approx-
imately 150% and 300% of optimal (excluding two outliers) whilst the rule set
size falls between 100% and 600% of optimal (excluding two outliers).
Finally, it should be noted that the different costs may bring about substantially
different control graphs – when intervention cost is 3.0 the number of intervention
links is notably lower than when intervention cost is 2.0. Due to space restrictions
we do not include the control graphs here as in [9].



Optimal control rules for random Boolean networks 11

8 Conclusions and Future Work

We presented an algorithm for uncovering the optimal set of control rules for
random Boolean networks. We compared the performance of this optimal rule
calculator algorithm and the XCS variant of learning classifier systems when ap-
plied to these networks. We find that, whilst XCS presents a viable means of
evolving control rules for Boolean networks, the currently produced rules are not
optimal in terms of cost or rule set size. Conversely, the optimal rule calcula-
tor algorithm produces very strong performance in controlling relatively small
Boolean networks. Further work is required to narrow the gap between the XCS
solution and the optimal solution.
There a number of directions for future investigation.
Firstly, the technique is currently only applicable to small networks. However, the
‘compressed’ nature of the final rule set suggests that we may be able to develop
a more general technique applicable to larger networks.
Secondly, XCS could be modified to increase performance, via parameter adjust-
ments or structural modification of XCS itself (incrementally or via replacement
of XCS with another classifier system variant).
Thirdly, improvement of the condensation or compression algorithm could also
be possible – variants exist (see [14]).
Finally, the different network structures could be investigated further. This could
be in the form of larger NK Boolean networks or networks with higher values
of K, or network structures produced with different generators entirely, such as
Erdős–Rényi model-based graphs or the Barabási–Albert model.

References

1. Bianconi, G., Pin, P., Marsili, M.: Assessing the relevance of node features
for network structure. Proceedings of the National Academy of Sciences
106(28), 11,433–11,438 (2009). DOI 10.1073/pnas.0811511106. URL http:
//www.pnas.org/content/106/28/11433

2. Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. In: Inter-
national Workshop on Learning Classifier Systems, pp. 253–272. Springer
(2000)

3. Cornelius, S.P., Kath, W.L., Motter, A.E.: Realistic control of network dy-
namics. Nature Communications 4, 1942 (2013)

4. Dutot, A., Guinand, F., Olivier, D., Pigné, Y.: Graphstream: A tool for bridg-
ing the gap between complex systems and dynamic graphs. In: Emergent
Properties in Natural and Artificial Complex Systems. 4th European Confer-
ence on Complex Systems (ECCS’2007) (2007)

5. Fornasini, E., Valcher, M.E.: Optimal control of boolean control networks.
IEEE Transactions on Automatic Control 59(5), 1258–1270 (2014)

6. Fornasini, E., Valcher, M.E.: Recent developments in boolean networks con-
trol. Journal of Control and Decision 3(1), 1–18 (2016)

7. Gates, A.J., Rocha, L.M.: Control of complex networks requires both struc-
ture and dynamics. Scientific Reports 6, 24,456 (2016)

8. Haghighi, R., Namazi, H.: Algorithm for identifying minimum driver nodes
based on structural controllability. Mathematical Problems in Engineering
2015 (2015)



12 M.R. Karlsen, S. Moschoyiannis

9. Karlsen, M.R., Moschoyiannis, S.: Evolution of control with learning clas-
sifier systems. Applied Network Science 3(1), 30 (2018). DOI 10.1007/
s41109-018-0088-x. URL https://doi.org/10.1007/s41109-018-0088-x

10. Karlsen, M.R., Moschoyiannis, S.: Learning condition–action rules for per-
sonalised journey recommendations. In: RuleML + RR, no. 11092 in LNCS,
pp. 293–301 (2018)

11. Kauffman, S.: The Origins of Order. Oxford University Press, New York,
NY (1993)

12. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed
genetic nets. Journal of Theoretical Biology 22(3), 437–467 (1969)

13. Kim, J., Park, S.M., Cho, K.H.: Discovery of a kernel for controlling
biomolecular regulatory networks. Scientific Reports 3, 2223 (2013). DOI
10.1038/srep02223. URL https://www.nature.com/articles/srep02223

14. Kovacs, T.: XCS classifier system reliably evolves accurate, complete, and
minimal representations for boolean functions. In: Soft computing in engi-
neering design and manufacturing, pp. 59–68. Springer (1998)

15. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks.
Nature 473(7346), 167 (2011)

16. Moschoyiannis, S., Elia, N., Penn, A., Lloyd, D.J.B., Knight, C.: A web-
based tool for identifying strategic intervention points in complex systems.
In: Proc. Games for the Synthesis of Complex Systems (CASSTING’16 @
ETAPS 2016), EPTCS, vol. 220, pp. 39–52 (2016)

17. Savvopoulos, S., Moschoyiannis, S.: Impact of removing nodes on the con-
trollability of complex networks. In: 6th Conf. on Complex Networks and
Applications, pp. 361–363 (2017)

18. Savvopoulos, S., Penn, A., Moschoyiannis, S.: On the interplay between
topology and controllability of complex networks. In: Conf. on Complex
Systems (CCS’17) (2017)

19. Urbanowicz, R.J., Moore, J.H.: Learning classifier systems: a complete in-
troduction, review, and roadmap. Journal of Artificial Evolution and Appli-
cations 2009(1), 1–25 (2009)

20. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computa-
tion 3(2), 149–175 (1995)

21. Wilson, S.W.: Generalization in the XCS classifier system. In: J. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. Fogel, M. Garzon,
D. Goldberg, H. Iba, R. Riolo (eds.) Genetic Programming 1998: Proceed-
ings of the Third Annual Conference. Morgan Kaufmann, San Francisco, CA
(1998)

22. Wilson, S.W.: Compact rulesets from XCSI. In: International Workshop on
Learning Classifier Systems, pp. 197–208. Springer (2001)


