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Abstract. Social networks can be made of various kinds of ties, but
(often implicit) assumptions embodied in network-analytic tools do not
necessarily apply to all of them. Centrality indices, for instance, build
on the assumption that it is always beneficial to add more ties. While it
has been noted that networks of ties with a negative sentiment require
different concepts of centrality, we here highlight ties that are neither
positive nor negative to have, but an indication of commonality. This
is exemplified by the derivation of socio-economic status from networks
that indicate common class membership.
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1 Introduction

As Wasserman and Faust note, “[. . . ] the range and type of ties can
be quite extensive.” [39]. Indeed, an edge or tie in a network can have
a multitude of meanings, ranging from friendship relations to complex
protein–protein interactions in cells [2]. Additionally, any of these ties can
have a direction, carry a weight or even connect more than two nodes.
The overarching principle of ties in most empirical networks, however,
is that they have a positive connotation. That is, accumulating ties is
always beneficial and forming new connections is better than not to.
Many of the existing network analytic tools were developed under this
premise. As a prime example, consider the concept of centrality. Most
axiomatic approaches for centrality are designed by assuming that adding
an edge can never make a node less central [33]. More recently, it was
shown that the neighborhood-inclusion preorder underlies many index-
induced rankings [34]. Across the board, being connected to the same,
and potentially more, nodes than some other node, renders the former
node more central.
A conceptually different and less frequently studied class are signed net-
works, consisting of a mixture of positive and negative ties. The analyti-
cal focus in such networks is mostly distinct from studies with exclusively
positive ties. A reoccurring research question for such networks is related
to structural balance theory [21]. A signed network is defined to by struc-
turally balanced if every cycle has an even number of negative ties [3].
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In this work, we consider a third general type of a tie, which is neither
positive nor negative. We refer to these ties as leveling ties, reflecting the
fact that they indicate a form of equivalence, equality or, in a weaker
sense, similarity between nodes. We argue, that existing tools designed
for networks with positive or negative ties are not applicable to these
kind of networks and require conceptually different approaches to assess
typical network related questions such as centrality.
The main goal of this work is to introduce the concept of leveling ties
and outline first steps toward analyzing such networks. While we heavily
draw from existing methods in the literature, they have thus far not been
considered in conjunction and only in one dimensional settings.
We start by introducing leveling tie by means of some example networks
and idealized network structures in Section 2. In Sections 3 and 4, we
compile a first set of tools to analyze such networks, where the main focus
is set on obtaining node orderings. Section 5 is devoted to an applica-
tion in the context of social stratification, which constitutes the main
empirical contribution of this work. We conclude with a brief discussion
in Section 6.

2 Networks of leveling ties

In this section, we review existing networks from the literature with level-
ing ties and discuss idealized network structures. The idealized structures
later guide the choice and design of methods to analyze such networks
coherently.

2.1 Empirical networks

In the context of ecology, networks with leveling ties occur, for instance,
in so-called niche overlap graphs [5]. Given a food web, that is a network
which summarizes predator-prey relations of an ecosystem, two species
are connected in the niche overlap graph if and only if they have common
prey. The underlying assumption is that if two species have a common
prey, then their respective ecological niches overlap. That is, some of
the environmental factors that ensure the species survival coincide. An
example of such a graph is shown in Figure 1.
A second example of a network with leveling ties is shown in Figure 2.
The network represents co-mentioning of authors in any published liter-
ary review in the Swedish press during 1881-1893 [31]. Pairs of authors
that are linked in the network can be taken to occupy a common literary
niche, similar to the niche overlap in ecological context.
While the two examples are taken from very different domains, they do
share some commonalities. Nodes in the network are embedded in an n-
dimensional latent space, and each node is represented in each dimension
by a range of values. A species in an ecosystem, for instance, can be char-
acterized by the range of tolerable environmental factors that ensure its
survival (e.g. a limited range of temperatures, light and moisture). Thus,
each species is identified by a box, or niche, in the latent n-dimensional
space. The same holds for authors, who can be characterized in such
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food web niche overlap graph

1 Canopy 7 Middle-zone scansorial animals
2 Canopy animals 8 Middle-zone flying animals
3 Upper air animals 9 Ground
4 Insects 10 Small ground animals
5 Large ground animals 11 Fungi
6 Trunk, fruit, flowers

Fig. 1. Food web and niche overlap graph of the Malaysian Rain Forest, reprinted from
[30].

a space based on literary factors (e.g. aesthetics, religious, moral and
political aspects).

A tie between nodes occurs if the ranges overlap in one or more dimen-
sion. These ties are conceptually different from the usual encountered ties
in network research. They do not posses any positive or negative features
since the notion of “sharing living space” or “literary commonalities” do
not necessarily imply a beneficial or antagonistic interaction. Hence, it is
neither desirable to accumulate many such ties nor avoid their creation
entirely.

2.2 Idealized networks

Leveling ties can occur in diverse settings, but follow similar formation
processes. Nodes are represented as a box in a latent space and networks
are constructed by identifying the overlaps of the respective boxes. If
boxes overlap, we assume that there exists a form of equivalence be-
tween the nodes involved. The underlying space, though, may be arbi-
trarily complex. In fact, any graph with n vertices can be viewed as an
intersection graph of boxes in an n-dimensional space [29]. The question
is, if all n dimensions are necessary to unambiguously characterize the
position of a node. The boxicity of a graph is the minimum number of
dimensions in which it can be represented as an intersection graph [29].
Ideally, the boxicity of a network with leveling ties is small and, in the
best case, only one dimension is required. Such graphs are known as
interval graphs, since nodes can be represented as intervals on a single
axis [9]. A simple example is shown in Figure 3.
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Fig. 2. Co-mentioning of authors in any published literary review in the Swedish press
during 1881-1893 [31]. Authors are connected if they were co-mentioned more than five
times and the proportion of co-mentions is more than three standard errors above the
expectation.
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Fig. 3. Illustration of an interval graph and its one dimensional embedding.

Note that while each set of intervals has a unique representation as inter-
val graph, the converse does not hold true [9]. Nevertheless, uncovering
an underlying interval representation is the main goal for our setting,
since it allows us to order nodes along a single dimension and compare
their relative positioning.
Surprisingly, many empirically observed niche overlap graphs in ecology
are interval graphs [5]. This finding greatly facilitates empirical research
on ecosystems since only a single dimension needs to be investigated.
Although this dimension is unspecified, it allows to order species along
it and compare their relative positions.
Generally, we expect networks with leveling ties to deviate from being
perfect interval graphs. Assessing the degree of this deviation is an im-
portant step prior to any analytic examination. The closer the network
is to being an interval graph, the more structural properties we expect
to coincide with those of an interval graph.

3 Measures of intervality

Interval graphs can be recognized in linear time [20]. In most use cases,
however, it does not suffice to know if a graph is interval or not. If a
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graph is not interval, it is desirable to have a method at hand which can
assess the intervality of the graph. That is, how close is a graph to be
interval? A potential measure can be derived via graph edit distances,
i.e. how many edges must be added/deleted in order to turn a graph into
an interval graph. The more edges need to be changed, the lower the in-
tervality of a network. There exist at least three feasible instantiation of
the interval edit problem: interval graph completion (only edge additions
allowed), interval graph deletion (only edge deletions allowed), and inter-
val sandwich (both edits allowed). All three are, however, NP-hard [15,
16, 18].
Apart from edit distances, there exist a variety of tractable heuristics
stemming from the research on food webs and niche overlap graphs [4,
7, 37]. The following definitions are needed to define any such approach.

Definition 1. A binary matrix A has the consecutive ones property
(C1P) if there exists a permutation matrix Π such that the ones form a
consecutive sequence in each column of ΠA.

Definition 2. The maximal clique-vertex incidence matrix M of an
undirected graph G = (V,E) is a k × n matrix, where k is the num-
ber of maximal cliques and n the number of vertices. An entry mij is
one if the clique i contains vertex j and zero otherwise.

The following theorem relates the C1P and the maximal clique-vertex
incidence matrix to the class of interval graphs.

Theorem 1 ([13]). A graph G is an interval graph if and only if its
maximal clique-vertex incidence matrix M has the C1P.

If there does not exist a permutation matrix Π such that a binary matrix
A has the C1P, then there exist columns where 0’s are surrounded by 1’s.
These gaps are referred to as Lazarus events. The Lazarus count `(A)
is defined as the minimal number of Lazarus events over the set of all
(row) permutations. More formal,

`(A) = min
Π∈Sn

`(ΠA) (1)

where

`(ΠA) = |
{

(π(i), j) : aπ(i)j = 0 ∧ ∃π(k) < π(i) < π(l) with aπ(k)j = aπ(l)j = 1
}
|

and Sn is the symmetric group. Note that the Lazarus count can equiva-
lently be defined for rows or simultaneous row and column permutations.
Additionally, the minimizing permutation is not unique. If a permuta-
tion π minimizes the Lazarus count `(A) of a matrix A, then so does the
reverse of π.
The Lazarus count of the maximal clique-vertex incidence matrix M of
a graph G can serve as a heuristic to assess the intervality of a network.
The higher its count, the lower the intervality. It remains, however, to de-
termine the permutation matrix Π which minimizes this count. The pre-
ferred approach for food webs is simulated annealing [7, 37]. The method
is, however, non-deterministic and results may vary between consecutive
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runs. Additionally, an enormous number of iterations is needed which
makes the method computationally expensive.

A different approach is based on the Laplacian matrix of MMT [1]. It
was shown that if M has the C1P then the permutation induced by
ordering the Fiedler vector of MMT yields a permutation matrix Π(L)

such that `(Π(L)M) = 0. If M does not have the C1P, then Π(L) at least
gives a good approximation of the true minimal Lazarus count.

Graphs with boxicity greater than one are studied much less as asso-
ciated problems are intractable. Even testing for boxicity two is NP-
complete [22]. To the best of our knowledge, there exists only one rather
cumbersome method to identify graphs with boxicity two [28].

4 Centrality indices

Most existing centrality indices evaluate trajectories such as paths or
walks within a network [10, 33]. For leveling ties, it is not clear how to
interpret paths and walks: are two non-adjacent neighbors of a node to
be considered equivalent by transitivity or non-equivalent by the absence
of a tie? Additionally, it is questionable if the intuition “adding ties can
not reduce a nodes centrality”, formalized in axiomatic approaches, holds
in this context [33, 34].

Instead of evaluating structural importance in the traditional interpre-
tation of centrality, we are rather interested in obtaining an ordering of
nodes along a small set of key dimensions, preferably one if the network
structure permits it. This ordering should, as for interval graphs, re-
flect an embedding of actors into an underlying latent space, where the
dimensions represent factors that need to be interpreted by a domain
expert.

The Fiedler vector approach is one possibility to obtain such an ordering,
as illustrated in the previous section. Note that larger values do not
necessarily mean that a node is more central, since the reverse ordering
is equally valid. The importance of the ordering is not the specific rank,
but rather the relative positions along a spectrum.

The Fiedler vector alone, however, is insufficient if the network has a
low intervality score and thus a higher dimensionality. In such cases, we
can use the next larger eigenvectors of the Laplacian matrix to obtain
orderings for the higher dimensions. The network shown in Figure 2,
for instance, has boxicity two [12]. We can therefore include the sec-
ond smallest non-zero eigenvector of the Laplacian matrix to obtain an
ordering for the second dimension. The result is shown in Figure 4.

Including the second smallest eigenvector evidently allows to differenti-
ate authors that are very close in the first dimension. While the exact
meaning of both dimensions remains unclear, the result shows that the
Fiedler vector alone can not adequately capture the underlying relative
positions of nodes in this case. Hence, the second smallest eigenvector is
needed to reveal additional information, which is sufficient if the network
has boxicity two.
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Fig. 4. Fiedler vector and second smallest non-zero Laplacian eigenvector of the
Swedish literary network. Grey rectangles highlight the two-dimensional aspect of the
ordering.

5 Application

In this section, we apply the previously introduced methods to the prob-
lem of social stratification. Our data basis constitutes occupational in-
formation of married or co-habitating couples derived from US census
data.3 We note that the potential of using network analytic tools to
study social stratification was already recognized in [19]. However, the
authors mainly employ it as an exploratory and complementary tool to
existing methods.

5.1 Cambridge social interaction and stratification scale

A plethora of different measures exist to rank or classify occupations
based on different socio-economic indicators. Prominent approaches in-
clude categorical measures which put occupations into a set of classes [8,
17], prestige rankings based on surveys [38] and socio-economic status
scores [14]. More details can be found in reviews [6, 23].
A prominent measure which does not fit the previous categories is the
Cambridge social interaction and stratification scale (CAMSIS), a rep-
resentative for social distance approaches. It is based on the assumption
that the presence of social classes can be inferred from how people group
in everyday life [24, 25]. Relationships of individuals are embedded in so-
cially moderated networks, wherein individuals interact in various ways.

3 data obtained from https://usa.ipums.org/usa/ [32]
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Relations outside of these networks are assumed to be substantively dif-
ferent. Friends and marriage partners, for instance, tend to be chosen
more frequently from an individual’s own social network [26]. CAM-
SIS scores were initially based on friendship ties as the central social
interaction [35, 36]. More contemporary instantiations are derived from
frequency tables of occupational combinations of married (or cohabitat-
ing) couples [27]. The underlying assumption is that frequently occurring
combination of occupations should be located within close proximity in
the social space. This frequency table is then projected into a two dimen-
sional space using correspondence analysis.4 Empirical findings suggest
that the first dimension can be interpreted as an indicator of inequality
or stratification among occupations. The higher the value for an occu-
pation, the higher it is ranked in the stratification hierarchy.

5.2 Leveling ties between occupations

Incumbents of occupations are characterized by a range of socio-economic
variables, such as level of education or income. Similar to species in ecol-
ogy, occupations can thus be described as a box (or a “social niche”)
within a space of socio-economic factors. These social niches naturally
overlap and thus offer opportunities for incumbents to interact socially,
forming cordial and potentially also romantic relationship. We thus ex-
pect more marriage ties among people when their respective social niches
overlap, much like it is highlighted by the social distance approach.
To determine leveling ties among occupations, we employ the following
procedure. Two occupations are connected if the combination occurs
at least in 1 out of 10,000 marriages and more than twice as likely as
expected by chance given the size of the occupational groups. Figure 5
shows the resulting network derived from the US census data of 2000,5

together with the CAMSIS scores of occupations.6

The Fiedler vector method yields an upper bound of 95 for the Lazarus
count, indicating that the network is not representable in one dimen-
sion. To assess the significance of the observed count, we generated 5000
networks with the same degree sequence and computed the respective
Lazarus counts. The Shapiro-Wilk test suggests that we can not re-
ject the null-hypothesis of the Lazarus count to be normally distributed
(p > 0.5). Additionally, the probability of observing a network with a
smaller Lazarus count as the observed network is negligible (p < 0.001).
We can thus conclude that the intervality of the observed network is sig-
nificantly higher than expected. Using the method proposed in [28], we
find that the network actually has boxicity two such that occupations
can be ordered along two dimensions. Figure 6 shows the ordering based
on the Fiedler vector and the next larger Laplacian eigenvector. The fig-
ure illustrates, that the Fiedler vector is able to discriminate between
occupations with high and low CAMSIS scores. The second dimension
allows for distinguishing occupations within these two groups.

4 more advanced versions also employ Goodman’s Class of RC-II Association Models
5 occupational codes retrieved from https://usa.ipums.org/usa/volii/occ2000.shtml
6 retrieved from http://www.camsis.stir.ac.uk/Data/USA.html
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Fig. 5. Network of occupations derived from US census data of 2000. Node color indi-
cates the CAMSIS scores of occupations. The darker the node, the higher the score. The
table shows the three occupations with the highest (left) and lowest (right) CAMSIS
scores.

6 Discussion

Networks of leveling ties are surprisingly prevalent in the literature, yet
have never explicitly been defined as such. These networks possess an
intriguing connection to interval graphs which are among the best studied
discrete structures in combinatorics. Freeman already pointed out in the
1980’s that interval graphs have great potential in networks analysis,
for instance when analyzing co-citation networks [11]. Indeed, carefully
constructed co-citation networks can be seen as networks of leveling ties.
Studying its dimensionality may reveal the complexity of a specific field
and allow to differentiate among sub-domains by ordering authors along
a small set of key dimensions. We actually expect the interpretation of
leveling ties to apply to many networks that arise from a projection of
a two-mode network. Affiliation networks are an obvious example, but
more theoretical and empirical work needs to be done.
Assessing the dimensionality, or intervality, of a network before any at-
tempt is made to order the nodes is an important preprocessing step.
The higher the intervality, the more confidence can be placed in the or-
dering obtained by the Fiedler vector. If the intervality is sufficiently
small, further eigenvectors of the Laplacian matrix can be used to derive
a multidimensional ordering of nodes.
We used the described methods in a socio-economic context, deriving
leveling ties of occupations from US census data. The network has a
surprisingly high intervality and occupations can be embedded in two
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Fig. 6. (Top) Fiedler vector and second smallest non-zero Laplacian eigenvector of
the US census network shown in Figure 5. (Bottom) Both vectors separately plotted
against the CAMSIS scores.

dimensions. The ordering in at least one dimension roughly coincides
with the more established CAMSIS scores. A more thorough empirical
examination, however, is required to interpret both dimensions coher-
ently.
So far, we have heavily drawn from existing tools in the literature to
analyse leveling ties. Future work should thus focus on the development
of a set of new tools, tailored to these networks. To do so, we need to un-
derstand the conceptual peculiarities of leveling ties and their prevalence
in the literature which ultimately guide the development of appropriate
analytic tools.
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