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Clearing algorithms and network centrality
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Abstract

I show that the solution of a standard clearing model commonly used in contagion analyses for financial

systems can be expressed as a specific form of a generalized Katz centrality measure under conditions

that correspond to a system-wide shock. This result provides a formal explanation for earlier empirical

results which showed that Katz-type centrality measures are closely related to contagiousness. It also

allows assessing the assumptions that one is making when using such centrality measures as systemic

risk indicators. I conclude that these assumptions should be considered too strong and that, from a

theoretical perspective, clearing models should be given preference over centrality measures in systemic

risk analyses.
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1. Introduction

The importance of the network of interbank loans for the dynamics of financial crises and systemic risk

has been discovered long before the financial crisis of 2008. Early examples of models highlighting

this relationship go back to Rochet and Tirole (1996), Freixas et al. (2000), Allen and Gale (2000) and

Kiyotaki and Moore (2002). Eisenberg and Noe (2001) and - independently - Suzuki (2002) have devel-

oped a clearing model for obligation networks that has become widely applied for modeling contagion

due to default on bilateral loans. The model is agnostic to the nature of the firms that are exposed to each

other in principle, but the primary applications usually focus on interbank markets. For this reason I will

refer to the entities in the system as banks in this paper. Elsinger et al. (2006) provide one of the first of

such applications within an integrated stress testing system, Elsinger (2009), Rogers and Veraart (2013)

and Fischer (2014) have developed important extensions. Battiston et al. (2012) and Furfine (2003) have

introduced alternative models for computing contagion effects that do not rely on the fixed-point argu-

ment of the clearing model. Upper (2011) provides a good overview of different applications of such

models. Barucca et al. (2016) have sought to unify the literature by introducing a general framework
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that encompasses many of the aforementioned models as special cases and connecting it to the credit

valuation model of Merton (1974).

Following the theoretical works that showed the connection between financial networks and stability,

several authors began studying the statistical properties of empirical networks (Boss et al. (2004)) and

the relation of the network structure to contagion effects (Iori et al. (2006), Nier et al. (2007)). A more

recent strand of literature studies the empirical relation between network centrality measures contagious-

ness. Kuzubaş et al. (2014) study characteristics a financial institution that was key to the Turkish fi-

nancial crisis of 2000 and find increasing trends in several centrality measures prior to the outbreak of

the crisis. Puhr et al. (2014) and Alter et al. (2015) find that the Katz centrality and its close cousin (see

Newman (2010)), the Eigenvector centrality, have the best explanatory power for contagion losses from a

Eisenberg and Noe (2001)-type clearing model for the Austrian and the German banking system, respec-

tively. Kobayashi (2013) and Gauthier et al. (2013) obtain similar results in simulations. In this study I

demonstrate that these results were indeed to be expected, as the solution of the clearing model converges

to a generalized Katz centrality measure as a crisis tends to affect the entire financial system.

At first sight, this result may appear at odds with the reasoning of Acemoglu et al. (2015) or Tahbaz-Salehi

(2015), who argue that - notwithstanding their empirical performance - ”off-the-shelf ” centrality mea-

sures such as the Katz centrality are a poor proxy for the results of clearing models from a theoretical

perspective, as the latter exhibit non-linearities that typically cannot be captured by those indicators. In-

deed, my work highlights the very rigorous assumptions that have to be made in order to be able equate

the solution of a clearing model to a Katz centrality measure. This allows a critical appreciation of these

assumptions, which leads me to agree with the aforementioned authors as a conclusion.

2. Clearing model

The model framework builds on the seminal contribution of Eisenberg and Noe (2001). Consider a fi-

nancial system composed of a set N = {1, . . . ,N − 1} of interlinked banks. The linkages among these

banks are captured in the bilateral loan matrix L, where Li, j represents the liabilities of bank i towards j

j. L includes an additional row and column for a sink node which captures liabilities outside the system

(e.g. deposits by customers). This specification ensures that the total liabilities of bank i are given by the

i-th entry of the vector of column sums of the liability matrix. Banks are further endowed with external

assets a. Table 1 gives an overview of the variables used.

Definitions

The balance sheet equation in this model can be written as:

Equity = Assets − Liabilities = a +Cp − l (1)

A bank is said to be insolvent or in default if its equity is negative. If a bank is insolvent even if
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Table 1: Variable Definitions

Definition [Computation] Description

N ∈ N N is the number of banks in the system consid-

ered plus one (for the sink node)

a ∈ RN
+ ai are the external assets of bank i

L ∈ RN×N
+ Li j total liabilities of bank i owed to bank j

l ∈ RN
+ li =

∑

j Li j li are the total nominal liabilities of bank i

p ∈ RN
+ f (p) = p p is the clearing payment vector of payments

that are actually made (as opposed to nominal

liabilities)

C ∈ [0, 1]N×N Ci j =















L ji

l j
if l j > 0

0 otherwise
If Ci j > 0, it represents the relative share that

bank i’s claim on bank j has among the total

liabilities of bank j. Note that if x is a vector

of payments made by each bank, Cx gives the

value of those payments for those creditors.

D ∈ {0, 1}N×N Di j(x) =



























1 if i = j ∧ ai + (Cx)i < li

1 if i = j = N

0 otherwise

D is a diagonal matrix of default indicators.

D(x)ii = 1 means that bank i is in default un-

der a given payment vector x. Note that Dy sets

all elements of vector y whose positions belong

to non-defaulted banks to zero. Note that the

sink node is set to be in default as a convention.

o ∈ RN
+ oi is the value of bank i’s asset before a shock

s ∈ RN si is a shock to bank i’s assets

r ∈ [0, 1] r is a recovery rate for assets (if they are worth

less than their nominal value)

m ∈ (0, 1) m is an interpolation coefficient
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all other banks fully repay their liabilities (i.e. ai + (Dl)i < li)) then it is said to be in fundamental

default. Note that the value of interbank claims, and thus the equity, depends on the value of interbank

payments. If all banks fully repay their liabilities, p = l and the equity can be written as a + Cl − l.

However, the underlying assumption of the clearing model as introduced by Eisenberg and Noe (2001) is

that assets have to be used to repay liabilities, hence insolvent banks cannot fully repay their liabilities.

The intuition of a clearing payment vector is that all banks repay the minimum of their total liabilities

and the total value of their external assets and the value of their claims on other banks under the clearing

payment vector. Furthermore, following the approach of Rogers and Veraart (2013), it is assumed that

when a bank enters into default, the recovery value after liquidating its assets can be less than the original

nominal value.

To formalize the intuition laid out above, consider the following map2:

f (p) = D(p) (rC (D (p) f (p) + (I − D (p)) l) + raa) + (I − D(p)) l (2)

This map returns for any payment vector a new payment vector, where each bank that is in default under

the given payment vector returns the remaining value of its assets. A clearing payment vector p is

now any fixed point of this map: f (p) = p. This corresponds to the extension of the original model by

Eisenberg and Noe (2001) introduced by Rogers and Veraart (2013).

Solution

In order to solve the model, first fix D(p) = D and solve for the fixed point:

f = rDCD f + rDCl − rDCDl + raDa + l − Dl

(I − rDCD)( f − l) = D(raa + rCl − l)

f = (I − rDCD)−1D(raa + rCl − l) + l (3)

The existence of a solution to equations essentially similar to 3 has been shown by various authors

in the literature (Eisenberg and Noe (2001); Rogers and Veraart (2013)), albeit for a slightly different

defitionion for D (without setting the sink node to defaulted). It follows as a corollary (1) of theorem

1 that this small change does not affect the existence of a solution. As Elsinger et al. (2012) show, this

computation has the advantage that the matrix inversion only has to be applied for the subset of rows and

columns which correspond to already defaulted nodes, which is an advantage in real-world applications

2Note that by setting DNN = 1 for the sink node, I am assuming that this node makes payments even though it has no

liabilities. This has no implication for the solutions for the other banks, as these payments do not arrive anywhere. Given

that the sink node does not need to make payments within the system (and can generally not be interpreted as an entity with a

balance sheet), its value for the clearing payment vector can safely be ignored. Other authors (see e.g. Glasserman and Young

(2016)) choose to exclude the sink node entirely, in this application, however, it is needed for calculation purposes, in the

manner introduced here, as we shall see later.
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where the number of banks can be high, but the number of defaults often is low. Eisenberg and Noe

(2001) show that the clearing payment vector is unique under mild conditions3 and can be obtained

from the following iteration called the fictious default sequence initiated with f0 = l Eisenberg and Noe

(2001):

fn+1 = (I − rD( fn)CD( fn))−1D( fn)(raa +Cl − l) + l (4)

Going further, I will set the recovery rate for external assets to ra = 1 without loss of generality.

3. Network centrality

In this section I will show how the solution of the clearing model can be expressed as a simple network

centrality measure under conditions that have a clear economic interpretation. Consider the realization

of an exogenous shock s which reduces the original value o of the external assets:

a = o + s (5)

In the following steps, I will write the conditions that hold for si∀i = 1 . . .N − 1. For the sink node, I will

assume a = o > 0.

Assume that ∀i < N : (Cl)i < li and choose si from the interval si ∈ (−oi,−oi + li − (Cl)i). This implies

that ai ∈ (0, li − (Cl)i), hence all banks still have positive external assets, but ai + (Cl)i < li, hence they

are in fundamental default. 4. s can thus be interpreted as a shock that renders all banks insolvent, while

still keeping the value of their external assets positive (thus not violating the conditions of uniqueness

for the clearing payment vector Eisenberg and Noe (2001)). Let m ∈ (0, 1) and consider e.g. a linear

interpolation:

si = m(li − (Cl)i − oi) − (1 − m)oi = mli − m(Cl)i − oi (6)

Note that since ai + (Cl)i < li for all banks except the sink node, D(l) = I (using the fact that the

sink node is in default by convention). Hence the shock effectively pushes all banks beyond the default

threshold where the non-linearity in the Eisenberg and Noe (2001)-model occurs. Under these conditions

3The conditions define that certain subsets of the financial system need to have a positive value of external assets. I will

use ai > 0∀i as a sufficient condition.
4Note that the inclusion of a sink node is crucial here, as Eisenberg and Noe (2001) show that for ai > 0∀i not all nodes

can be in fundamental default. In this setup, it is the sink node that has positive equity value, but is still considered to be in

default under any D(x) by construction.
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the fictious default sequence converges after the first iteration and f (l) = p is a clearing payment vector

and the solution of the clearing model becomes:

p = (I − rC)−1(a + rCl − l) + l = (I − rC)−1((r − m)Cl − (1 − m)l) + l (7)

Theorem 1.

(a) I − rC is invertible for r ∈ [0, 1) if the system does not contain a sink node

(b) I − rC is invertible for r ∈ [0, 1] if the system contains a sink node

Proof.

Note that when λ and v are eigenvalues and -vectors of C, we have:

(λI − C)v = 0⇔ (I −
1

λ
C)v = 0⇔ det(λI −C) = 0 (8)

So (I − rC) is invertible for r , 1
λ
. Since r ∈ [0, 1] by definition, we need to investigate whether there

are eigenvalues λ ≥ 1 ⇒ 1
λ
≤ 1. The maximum eigenvalue for a non-negative matrix can be obtained

through the Collatz-Wielandt formula:

ρ(C) = max
x:xi≥0∧∃xi>0

g(x,C) (9)

g(x,C) = min
i:xi,0

(xC)i

xi

(10)

Without a sink node, if all institution have at least some claims, C would be column-stochastic, hence

g(x)i = 1∀i = ρ(C). This proves part (a) for the case where all institutions have some claims. In the case

this condition does not hold, one or more columns of C consist of only zeros, which is equivalent to the

case with a sink node discussed below.

Given that the sink node adds a column of all zeros to C, the maximum eigenvalue is attained for g(x :

xN = 0). Since the remainder of the columns still sum to 1, we obtain 0 < ρ(C) < 1, hence 1
λ
> 1 for all

positive eigenvalues. �

Corollary 1. Note that for 0 < D < I, 0 < ρ(DCD) ≤ ρ(C), which shows the existence of a solution to

equation 3.

A typical form of a systemic risk measure based on a clearing model is to consider the difference between

total liabilities and the clearing payment vector (Glasserman and Young (2016)) σ = l − p. A systemic

risk measure based on equation 7 can thus be written as a centrality measure:

6



σ = (I − rC)−1β (11)

With βi = (1 − m)li − (r − m)(Cl)i∀r,m ∈ (0, 1), i < N (the framework would also allow for setting bank-

specific recovery and interpolation values by taking r and m as diagonal matrices). The functional form

of σ is equivalent to that of a Katz centrality measure (Newman (2010); Katz (1953)). In the standard

definition, C is an adjacency matrix and β = ~1, so in the general case σ could be seen as a generalization.

In order for C to be an adjacency matrix, we would have to assume that each bank has at most one

creditor, s.t. Ci j ∈ {0, 1}∀i, j. If we further set r = m, β simplifies to βi = (1 − r)li∀r ∈ (0, 1), i < N

and we could obtain β = ~1 through normalization if every bank has at least some liabilities. Under these

conditions the solution of the clearing model is a specific form of a Katz centrality measure.

A large systemic shock that immediately renders all banks in the system insolvent is admittedly a strong

assumption. We can relax this assumption by choosing si ∈ (−oi,−oi + li − (Cp)i)
5, which implies a

less severe minimum shock since Cp ≤ Cl. Under this condition, ai + (Cp)i < li∀i < N and hence

limn→N D( fn) → I. I.e. all banks are pushed into default after the algorithm converges (which happens

after at most N steps as shown by Eisenberg and Noe (2001)). By choosing an analogous interpolation

and inserting into f (p), we again obtain a centrality measure (assuming that I − (r − m)C is invertible):

si = m(li − (Cp)i − oi) − (1 − m)oi = mli − m(Cp)i − oi (12)

p = (I − rC)−1(a + rCl − l) + l = (I − rC)−1(m(l −Cp + rCl) − l) + l

p = (I − (r − m)C)−1m(l + rCl) (13)

Which for r = m simplifies to p = rl + r2Cl.

4. Conclusion

It is often discussed and/or assumed that standard network centrality measures can give insights about

the systemic risk contribution of individual banks (Puhr et al. (2014)). At the same time, sophisticated

systemic stress testing tools have been designed using contagion models based on a model of interbank

clearing (see e.g. Elsinger et al. (2006)). In this paper, I have showed that one common methodology

used in this context, the clearing model developed by Eisenberg and Noe (2001) (and in particular, the

extension by Rogers and Veraart (2013)), converges to a special form of a Katz centrality measure as a

5In order to find suitable values for s, the model has to be solved first. Given that the aim is to have a small shock size, a

reasonable approach would be to start by setting si = (−oi + li − (Cl)i))−
k

MaxS teps
(li − (Cl)i) for a suitable MaxS teps = 1000,

e.g., and iterating over k = 1, 2, . . . until D(p) = I.
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crisis becomes so severe that all banks in the system are pushed into default (the existence of a world

outside the system to which there exist financial liabilities is necessary - this is a mild assumption for a

banking system, where deposit-taking is a central part of the business model).

Given this result, I advocate using contagion models instead of centrality measures when analyzing sys-

temic risk (in the case where the required data is available - Anand et al. (2015) provide a good overview

of methods that can be used in the absence of granular network data). As Puhr et al. (2014) and oth-

ers show, different versions of the Katz centrality measure and its cousins have the highest explanatory

power for the output of a contagion model. I have shown that this result is due to a mathematical re-

lation between those measures. A key difference is, however, that clearing models allow to interpret

the assumptions made and the results obtained from an economic perspective. Such an analysis shows

that the assumptions that one is making when using even a highly specific, specially derived form of a

Katz centrality are strong and unrealistic for typical applications (most notably that the entire banking

system is in fundamental default)6 So even if one is looking at the best possible centrality measure - as

demonstrated both empirically by Puhr et al. (2014) and formally in this study - one is making strong,

potentially unfounded assumptions that could be avoided by using a clearing model instead.

Avenues for further research include performing a similar analysis for other types of clearing/contagion

models, such as Furfine (2003); Battiston et al. (2012) and/or establishing a consensus model as has been

proposed by Barucca et al. (2016).
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Kuzubaş, T. U., Ömercikoğlu, I., and Saltoğlu, B. (2014). Network centrality measures and systemic risk:

An application to the Turkish financial crisis. Physica A: Statistical Mechanics and its Applications,

405:203–215.

Merton, R. (1974). On the pricing of corporate debt: The risk structure of interest rates*. The Journal of

Finance.

9



Newman, M. E. J. (2010). Networks : an introduction. Oxford University Press.

Nier, E., Yang, J., Yorulmazer, T., and Alentorn, A. (2007). Network models and financial stability.

Journal of Economic Dynamics and Control, 31(6):2033–2060.

Puhr, C., Seliger, R., and Sigmund, M. (2014). Contagiousness and Vulnerability in the Austrian Inter-

bank Market. SSRN Working Paper.

Rochet, J. and Tirole, J. (1996). Interbank lending and systemic risk. Journal of Money, Credit and

Banking, 28(4):733–762.

Rogers, L. and Veraart, L. A. M. (2013). Faliure and rescue in an interbank network. Management

Science, 59(4):882–898.

Suzuki, T. (2002). Valuing corporate debt: the effect of cross-holdings of stock and debt. Journal of the

Operations Research Society of Japan, 45(2):123–144.

Tahbaz-Salehi, A. (2015). Discussion of ”Centrality-Based Capital Allocations”. International Journal

of Central Banking, 11(3):379–385.

Upper, C. (2011). Simulation methods to assess the danger of contagion in interbank markets. Journal

of Financial Stability, 7(3):111–125.

10


	1 Introduction
	2 Clearing model
	3 Network centrality
	4 Conclusion

