
Practically-Self-Stabilizing Vector Clocks

in the Absence of Execution Fairness∗

(technical report)

Iosif Salem Elad M. Schiller

Abstract

Vector clock algorithms are basic wait-free building blocks that facili-
tate causal ordering of events. As wait-free algorithms, they are guaran-
teed to complete their operations within a finite number of steps. Stabiliz-
ing algorithms allow the system to recover after the occurrence of transient
faults, such as soft errors and arbitrary violations of the assumptions ac-
cording to which the system was designed to behave. We present the
first, to the best of our knowledge, stabilizing vector clock algorithm for
asynchronous crash-prone message-passing systems that can recover in a
wait-free manner after the occurrence of transient faults. In these set-
tings, it is challenging to demonstrate a finite and wait-free recovery from
(communication and crash failures as well as) transient faults, bound the
message and storage sizes, deal with the removal of all stale information
without blocking, and deal with counter overflow events (which occur at
different network nodes concurrently).

We present an algorithm that never violates safety in the absence of
transient faults and provides bounded time recovery during fair executions
that follow the last transient fault. The novelty is that in the absence of
execution fairness, the algorithm guarantees a bound on the number of
times in which the system might violate safety (while existing algorithms
might block forever due to the presence of both transient faults and crash
failures).

Since vector clocks facilitate a number of elementary synchroniza-
tion building blocks (without requiring remote replica synchronization) in
asynchronous systems, we believe that our analytical insights are useful
for the design of other systems that cannot guarantee execution fairness.

∗Department of Computer Science and Engineering, Chalmers University of Technology,
Göteborg, Sweden. {iosif,elad}@chalmers.se

1

ar
X

iv
:1

71
2.

08
20

5v
1

 [
cs

.D
C

]
 2

1
D

ec
 2

01
7

1 Introduction

Context and Motivation. Vector clocks allow reasoning about causality
among events in distributed systems, for example, when constructing distributed
snapshots [17]. Shapiro et al. [24] showed that vector clocks are building blocks
of several conflict-free replicated data types (CRDTs). CRDTs are distributed
data structures that can be shared among many replicas in asynchronous net-
works. All replica updates occur independently and achieve strong eventual
consistency without using mechanisms for synchronization [25] or roll-back.

The industrial use of CRDTs includes globally distributed databases, such as
the ones of Redis, Riak, Bet365, SoundCloud, TomTom, Phoenix, and Facebook.
Some of these databases have around ten million concurrent users, ten thousand
messages per second, store large volumes of data, and offer very low latency.
However, while both the literature and the users demonstrate that large-scale
decentralized systems can benefit from the use of CRDTs in general and vector
clocks in particular, the relationship between fault-tolerance and strong eventual
consistency has not received sufficient attention. Providing higher robustness
degrees to CRDTs is nevertheless imperative for ensuring the availability and
safety of these systems.

Providing robustness in the presence of unexpected failures, i.e., the ones
that are not included the fault model, is challenging, especially in the absence
of synchrony, mechanisms for synchronization, or roll-back. In such systems,
it is difficult to: (A) provide unbounded storage and message size, (B) model
all possible failures, and (C) guarantee periods in which all nodes are up and
connected.

The goal of this paper is the design of a highly fault-tolerant distributed
algorithm for vector clocks in large-scale asynchronous message passing systems.
In particular, we propose the first, to the best of our knowledge, practically-self-
stabilizing algorithm for vector clocks that: (I) uses strictly bounded storage and
message size, (II) deals with a relevant set of failures (i.e., a fault model) as well
as with unexpected failures (i.e., failures that are not considered by the fault
model), and (III) the algorithm does not require synchronization guarantees,
nor uses mechanisms for synchronization or roll-back even during the period of
recovery from unexpected failures.

Fault Model. We consider asynchronous message-passing systems that are
prone to the following failures [16]: (a) crash failures of nodes (no recovery
after crashing), (b) nodes that can crash and then perform an undetectable
restart, i.e., resume with the same state as before crashing (without knowing
explicitly that a crash has ever occurred), but possibly having lost incoming
messages in between, and (c) packet failures, such as omission, duplication, and
reordering. In addition to these benign failures, we consider transient faults,
i.e., any temporary violation of assumptions according to which the system
and network were designed to behave, e.g., the corruption of the system state
due to soft errors. We assume that these transient faults arbitrarily change the
system state in unpredictable manners (while keeping the program code intact).

1

Moreover, since these transient faults are rare, the system model assumes that
all transient faults occurred before the start of the system run.

Design criteria. Dijkstra [8] requires self-stabilizing systems, which may
start in an arbitrary state, to return to correct behavior within a bounded pe-
riod. Asynchronous systems (with bounded memory and channel capacity) can
indefinitely hide stale information that transient faults introduce unexpectedly.
At any time, this corrupted data can cause the system to violate safety. This is
true for any system, and in particular, for Dijkstra’s self-stabilizing systems [8],
which are required to remove, within a bounded time, all stale information when-
ever they appear. Here, the scheduler acts as an adversary that has a bounded
number of opportunities to disrupt the system. However, this adversary never
reveals when it will disrupt the system. Against such unfair adversaries, systems
cannot specify when they will be able to remove all stale information and thus
they cannot fulfill Dijkstra’s requirements.

Pseudo-self-stabilization [6] deals with the above inability by bounding the
number of times in which the system violates safety. We consider the newer
criteria of practically-self-stabilizing systems [2, 14, 4, 12] that can address addi-
tional challenges. For example, any transient fault can cause a bounded counter
to reach its maximum value and yet the system might need to increment the
counter for an unbounded number of times after that overflow event. This chal-
lenge is greater when there is no elegant way to maintain an order among the
different counter values, say, by wrapping around to zero upon counter over-
flow. Existing attempts to address this challenge use non-blocking resets in the
absence of faults, as described in [3]. In case faults occur, the system recovery
requires the use of a synchronization mechanism that, at best, blocks the sys-
tem until the scheduler becomes fair. We note that this assumption contradicts
our fault model as well as the key liveness requirement for recovery after the
occurrence of transient faults.

Without fair scheduling, a system that takes an extraordinary (or even an in-
finite) number of steps is bound to break any ordering constraint, because unfair
schedulers can arbitrarily suspend node operations and defer message arrivals
until such violations occur. Having practical systems in mind, we consider this
number of (sequential) steps to be no more than practically infinite [14, 12], say,
2b (where b = 64 or an even a larger integer, as long as a constant number of bits
can represent it). Practically-self-stabilizing systems [2, 4, 12] require a bounded
number of safety violations during any practically infinite period of the system
run. For such systems, we propose an algorithm for vector clocks that recovers
after the occurrence of transient faults (as well as all other failures considered by
our fault model) without assuming synchrony or using synchronization mech-
anisms. We refer to the latter as a wait-free recovery from transient faults.
We note that the concept of practically-self-stabilizing systems is named by the
concept of practically infinite executions [14].

To the end of providing safety (and independently of the practically-self-
stabilizing algorithm), the application can use a synchronization mechanism

2

(similar to [2, 4, 12, 19]). The advantage here is that the application can se-
lectively use synchronization only when needed (without requiring the entire
system to be synchronous or blocking after the occurrence of transient faults).

Vector clocks. Logical and vector clocks [20, 15, 22] capture chronological
relationships in decentralized systems without accessing synchronization mech-
anisms, such as synchronized clocks and phase-based commit protocols [25, 4].
A common (non-self-stabilizing and unbounded) way for implementing vector
clocks is to let the nodes maintain a local copy of the vector V [], such that each
of the N system nodes has a component, e.g., V [i] is the component of node pi.
Upon the occurrence of a local event, pi increments Vi[i], and sends an update
message m = 〈V []〉. Upon m’s arrival to node pj , the latter merges the events
counted in V [] and m.V [] by assigning V [j]← max(V [j],m.V [j]) for each com-
ponent V [j]. One can define the relation ≤C as a partial order, where V and W
areN -size integer vectors and (V ≤C W) ⇐⇒ (∀x ∈ {1, . . . , N}, V [x] ≤W [x]).
The relation ≤C is used to show causality between two events by checking if the
corresponding vector clocks are comparable in ≤C .

We note that there exist approaches for improving the scalability and ef-
ficiency of vector clocks that offer bounded size vectors (instead of linear) or
approximations [23, Section 7]. These approaches build on, implement, or pro-
vide similar semantics to the standard N -size vector definition of a vector clock.
Thus, in this paper we focus on the definition of a vector clock as an N -size
vector.

The studied question. How can non-failing nodes dependably reason about
event causality? We interpret the provable dependability requirement to imply
(1) bounded message size and node storage, (2) fault-tolerance independently
of synchrony assumptions or synchronization operations, and (3) the system to
be practically-self-stabilizing (without fair scheduling).

Related work. Bounded non-stabilizing solutions exist in the litera-
ture [1, 21]. Self-stabilizing resettable vector clocks [3] consider distributed
applications that are structured in phases and track causality merely within a
bounded number of successive phases. Whenever the system exceeds the num-
ber of clock values that can be used in one phase, resettable vector clocks use
reset operations that allow the system to move to the next phase and reuse clock
values. In the absence of faults as presented in [3], the system uses non-blocking
resets. Nevertheless, the presence of faults can bring the algorithm in [3] to use
a blocking global reset that requires fair scheduling (and no failing nodes). Our
solution does not use blocking operations even after an arbitrary corruption of
the system state.

The authors of [3] also discuss the possibility to use global snapshots for
the sake of providing better complexity measures. They rule out this approach
because it can change the communication patterns (in addition to the use of
blocking operations during the recovery period). Another concern is how to

3

identify a self-stabilizing snapshot algorithm that can deal with crash failures,
e.g., [7, Section 6] declared that this is an open problem.

There are practically-self-stabilizing algorithms for solving agreement [14, 4],
state-machine replication [4, 12], and shared memory emulation [5]. None of
them considers the studied problem. They all rely on synchronization mech-
anisms, e.g., quorum systems. Alon et al. [2] and Dolev et al. [12, Algo-
rithm 2] consider practically-self-stabilizing algorithms that handle counter over-
flow events using labeling schemes. Both algorithms use these labeling schemes
together with synchronization mechanisms for implementing shared counters.
We solve a different problem and propose a practically-self-stabilizing algorithm
for vector clocks that uses a labeling scheme but does not use any synchroniza-
tion mechanism.

Our Contributions. We present an important building block for dependable
large-scale decentralized systems that need to reason about event causality. In
particular, we provide a practically-self-stabilizing algorithm for vector clocks
that does not require synchrony assumptions or synchronization mechanisms.
Concretely, we present, to the best of our knowledge, the first solution that:

(i) Deals with a wide range of failures. The studied asynchronous
systems are prone to crash failures (with or without undetectable restarts) and
communication failures, such as packet omission, duplication, and reordering
failures.

(ii) Uses bounded storage and message size. Our solution considers
3N integers and two labels [12] per vector, where N is the number of nodes.
Each label has O(N3) bits. Since all counters share the same two labels, we
propose elegant techniques for dealing with the challenge of concurrent over-
flows (Section 5). We overcome the difficulties of making sure that no counter
increment is ever “lost” even though there is an unbounded period in which
these increments are associated with up to N different versions of the vector
clock.

(iii) Deals with transient faults and unfair scheduling. Theorem 7.1
proves recovery within O(N8C) safety violations in a practically-infinite execu-
tion in a wait-free manner after the occurrence of transient faults, which is
our complexity measure for practically-self-stabilizing systems, where N is the
number of nodes in the system and C is an upper bound on the channel capacity.

We believe that our approaches for providing items (i)–(iii) are useful for the
design of other practically-self-stabilizing systems.

Paper organization. In Section 2 we present the design criteria. In Sec-
tion 3 we give an overview of relevant labeling schemes and in Section 4 we
present an interface to a labeling scheme. Then, we present novel techniques

4

(Section 5), upon which we base our algorithm (Section 6) and proofs (Sec-
tion 7).

2 System Settings

The system includes a set of processors P = {p1, . . . , pN}, which are computing
and communicating entities that we model as finite state-machines. Processor
pi has an identifier, i, that is unique in P . Any pair of active processors can
communicate directly with each other via their bidirectional communication
channels (of bounded capacity per direction, C ∈ N, which, for example, allows
the storage of at most one message). That is, the network’s topology is a fully-
connected graph and each pi ∈ P has a buffer of finite capacity C that stores
incoming messages from pj , where pj ∈ P \ {pi}. Once a buffer is full, the
sending processor overwrites the buffer of the receiving processor. We assume
that any pi, pj ∈ P have access to channeli,j , which is a self-stabilizing end-
to-end message delivery protocol (that is reliable FIFO) that transfers packets
from pi to pj . Note that [11, 13] present a self-stabilizing reliable FIFO message
delivery protocol that tolerates packet omissions, reordering, and duplication
over non-FIFO channels.

The interleaving model. The processor’s program is a sequence of (atomic)
steps. Each step starts with an internal computation and finishes with a single
communication operation, i.e., packet send or receive. We assume the inter-
leaving model, where steps are executed atomically; one step at a time. Input
events refer to packet receptions or a periodic timer that can, for example, trig-
ger the processor to broadcast a message. Note that the system is asynchronous
and the algorithm that each processor is running is oblivious to the timer rate.
Even though the scheduler can be adversarial, we assume that each processor’s
local scheduler is fair, i.e., the processor alternates between completing send and
receive operations (unless the processor’s communication channels are empty).
Note that a message that a processor pi needs to send to its neighbors takes
N − 1 consecutive steps of pi (the execution might include steps of other pro-
cessors in between), since each step can include at most one send (or receive)
operation.

The state, si, of pi ∈ P includes all of pi’s variables as well as the set of
all messages in pi’s incoming communication channels. Note that pi’s step can
change si as well as remove a message from channelj,i (upon message arrival)
or queue a message in channeli,j (when a message is sent). We assume that
if pi sends a message infinitely often to pj , processor pj receives that message
infinitely often, i.e., the communication channels are fair. The term system
state refers to a tuple of the form c = (s1, s2, · · · , sN), where each si is pi’s
state (including messages in transit to pi). We define an execution (or run)
R = c0, a0, c1, a1, . . . as an alternating sequence of system states cx and steps
ax, such that each system state cx+1, except for the initial system state c0, is
obtained from the preceding system state cx by the execution of step ax.

5

ExecutionArbitrary failures before
the system starts

Execution’s
starting state

Failure
model

Packet failures: omissions, duplications, reordering
(assuming communication fairness holds)

Processor crashes: either stop taking steps or perform
an undetectable restart

More failures
that we deal
with

Transient faults: any
combination of failures
(given that the code
stays intact); causes an
arbitrary starting state

Figure 1: Illustration of the failure model and of transient faults.

Active processors, processor crashes, and undetectable restarts. At
any point and without warning, pi is prone to a crash failure, which causes pi
to either forever stop taking steps (without the possibility of failure detection
by any other processor in the system) or to perform an undetectable restart in
a subsequent step [16]. In case processor pi performs an undetectable restart, it
continues to take steps by having the same state as immediately before crashing,
but possibly having lost the messages that other processors sent to pi between
crashing and restarting. Processors know the set P , but have no knowledge
about the number or the identities of the processors that never crash.

We assume that transient faults occur only before the starting system state
c0, and thus c0 is arbitrary. Since processors can crash after c0, the executions
that we consider are not fair [10]. We illustrate the failures that we consider in
this paper in Figure 1.

We say that a processor is active during a finite execution R′ if it takes at
least one step in R′. We say that a processor is active throughout an infinite
execution R, if it takes an infinite number of steps during R. Note that the fact
that a processor is active during an infinite execution does not give any guarantee
on when or how often it takes steps. Thus, there might be an arbitrarily long
(yet finite) subexecution R′ of R, such that a processor is active in R but not
in R′. Therefore, processors that crash and never restart during an infinite
execution R are not active throughout R.

6

Execution operators: concatenation ◦ and segment v. Suppose that
R′ is a prefix of an execution R, and R′′ is the remaining suffix of R. We use
the concatenation operator ◦ to write that R = R′ ◦R′′, such that R′ is a finite
execution that starts with the initial system state of R and ends with a step
that is immediately followed by the initial state of R′′. We denote by R′ v R
the fact that R′ is a subexecution (or segment) of R.

Execution length, practically infinite, and the � (significantly less)
relation. To the end of defining the stabilization criteria, we need to compare
the number of steps that violate safety in a finite execution R with the length
of R. In the following, we define how to compare finite executions and sets of
states according to their size.

We say that the length of a finite execution R = c0, a0, c1, a1, . . . , cx−1, ax−1
is equal to x, which we denote by |R| = x. Let MAXINT be an integer
that is considered as a practically infinite [14] quantity for a system S (e.g.,
the system’s lifetime). For example, MAXINT can refer to 2b (where b = 64
or larger) sequential system steps (e.g., single send or receive events). In this
paper, we use � as a formal way of referring to the comparison of, say, N c,
for a small integer c, and MAXINT , such that N c is an insignificant number
when compared to MAXINT . Since this comparison of quantities is system-
dependent, we give a modular definition of � below.

Let LS denote a system-dependent quantity that is practically-infinite for
a system S, such that for an integer z � MAXINT , we have that LS :=
z ·MAXINT . For a system S and x ∈ N, we denote by x� LS the fact that
x is significantly less than (or insignificant with respect to) LS . We say that an
execution R is of LS-scale, if there exists an integer y �MAXINT , such that
|R| = y ·MAXINT holds.

The design criteria of practically-self-stabilizing systems. We define
the system’s abstract task T by a set of variables (of the processor states) and
constraints, which we call the system requirements, in a way that defines a de-
sired system behavior, but does not consider necessarily all the implementation
details. We say that an execution R is a legal execution if the requirements of
task T hold for all the processors that take steps during R (which might be a
proper subset of P). We denote the set of legal executions with LE. We denote
with fR the number of deviations from the abstract task in an execution R, i.e.,
the number of states in R in which the task requirements do not hold (hence
R ∈ LE ⇐⇒ fR = 0). Note that the definition of LE allows executions of very
small length, but our focus will be on finding maximal subexecutions R∗ v R
for a given LS -scale execution R, such that R∗ ∈ LE. Definitions 2.1, 2.2 and 2.3
specify our stabilization criteria.

Definition 2.1 (Strong Self-stabilization). For every infinite execution R, there
exists a partition R = R′ ◦ R′′, such that |R′| = z(N) ∈ N and fR′′ = 0, where
z(N) is the complexity measure.

7

Definition 2.2 (Pseudo Self-stabilization). For every infinite execution R,
fR = f(R,N) ∈ N, where fR is the complexity measure.

Definition 2.3 (Practically-self-stabilizing System). For every infinite execu-
tion R, and for every LS-scale subexecution R′ of R, fR′ = f(R′, N) � |R′|,
where fR′ is the complexity measure.

Problem definition (task requirement). We present a requirement (Re-
quirement 1) which defines the abstract task of vector clocks. This requirement
trivially holds for a fault-free system that can store unbounded values (and thus
does not need to deal with integer overflow events). The presence of transient
faults can violate these assumptions and cause the system to deviate from the
abstract task, which LE specifies (through Requirement 1). In the following, we
present Requirement 1 and its relation to causal ordering (Property 1).

We assume that each processor pi is recording the occurrence of a new local
event by incrementing the i-th entry of its vector clock. During a legal execution,
we require that the processors count all the events occurring in the system,
despite the (possibly concurrent) wrap around events. Hence, we require that
the vector clock element of each (active) processor records all the increments
done by that processor (Requirement 1). As a basic functionality, we assume
that each processor can always query the value of its local vector clock. We say
that an execution R∗ is a legal execution, i.e., R∗ ∈ LE, if Requirement 1 holds
for the states of all processors that take steps during R∗.

Requirement 1 (Counting all events). Let R be an execution, pi be an active
processor, and V ki [i] be pi’s value in ck ∈ R. For every active processor pi ∈ P ,
the number of pi’s counter increments between the states ck and c` ∈ R is
V `i [i]− V ki [i], where ck precedes c` in R.

Causal precedence. We explain how faults and bounded counter values
affect Requirement 1 and causal ordering. Let V and V ′ be two vector clocks,
and causalPrecedence(V, V ′) be a query which is true, if and only if, V causally
precedes V ′, i.e., V ′ records all the events that appear in V [26]. Then, V and
V ′ are concurrent when ¬causalPrecedence(V, V ′) ∧ ¬causalPrecedence(V ′, V)
holds. We formulate the causal precedence property in Property 1. In a fault-
free system with unbounded values, Requirement 1 trivially holds, since no
wrap around events occur. That is, V causally precedes V ′, if V [i] ≤ V ′[i] for
every i ∈ {1, . . . , n} and ∃j∈{1,...,n}V [j] < V ′[j] hold [26]. However, this is not
the case in an asynchronous, crash-prone, and bounded-counter setting, where
counter overflow events can occur. We present cases where Requirement 1 and
Property 1 do not hold due to a counter overflow event in Example 2.4.

Property 1 (Causal precedence). For any two vector clocks Vi and Vj of two
processors pi, pj ∈ P , causalPrecedence(Vi, Vj) is true if and only if Vi causally
precedes Vj .

8

Example 2.4. Consider two bounded vector clocks Vi = 〈vi1 , . . . , viN 〉 and
Vj = 〈vj1 , . . . , vjN 〉 of pi, pj ∈ P , such that upon a new event pk ∈ P increments
Vk[k] by adding 1 (mod MAXINT). Assume that Vi = Vj and Vi[i] = Vj [i] =
MAXINT − 1 hold (e.g., as an effect of a transient fault). In the following
step pi increments Vi[i] by 1, thus Vi[i] wraps around to Vi[i] = 0, while Vj [i] =
MAXINT − 1 remains. Then, Vi[i] mistakenly indicates zero events for pi
(Vi[i] = 0) instead of MAXINT , i.e., Requirement 1 does not hold. Also,
using the definition of causal precedence in fault-free systems and unbounded
counters, Vi appears to causally precede Vj , which is wrong, since Vj causally
precedes Vi (pi had one more event than what pj records). That is, Vi[k] = Vj [k]
for k 6= i and Vi[i] = 0 < MAXINT − 1 = Vj [i], which mistakenly indicates
that pj records MAXINT − 1 more events than pi.

We remark that Requirement 1 is a necessary and sufficient condition for
Property 1 to hold. Suppose that Requirement 1 does not hold, which means
that it is not possible to count the events of a single processor between two
states (e.g., as we showed in the previous example). This implies that it is not
possible to compare two vector clocks, hence Property 1 cannot hold. Moreover,
if Requirement 1 holds, then it is possible to compare how many events occurred
in a single processor between two states, and by extension it is possible to
compare all vector clock entries for two vector clocks. The latter is a sufficient
condition for defining causal precedence (as in the fault-free unbounded-counter
setting [26]).

In Section 5 we present our solution for computing V `i [i] − V ki [i] for
Requirement 1 (c`, ck are states in an execution R and pi ∈ P) and
causalPrecedence(Vi, Vj) for Property 1 in a legal execution. In Section 6 we
present an algorithm for replicating vector clocks in the presence of faults and
bounded-counters, which we prove to be practically-self-stabilizing in Section 7.

3 Background: Practically-self-stabilizing La-
beling Schemes

In this section we give an overview of labeling schemes that can be used for
designing an algorithm that guarantees Requirement 1. It is evident from Ex-
ample 2.4 (Section 2) that a solution for comparing vector clock elements that
overflow can be based on associating each vector clock element with a times-
tamp (or label, or epoch). This way, even if a vector clock element overflows, it
is possible to maintain order by comparing the timestamps.

As a first approach for providing these timestamps, one might consider to
use an integer counter (or sequence number), cn. We explain why this approach
is not suitable in the context of self-stabilization. Any system has memory
limitations, thus a single transient fault can cause the counter to quickly reach
the memory limit, say MAXINT . The event of counter overflow occurs when a
processor increments the counter cn, causing cn to encode the maximum value
MAXINT . In this case, the solution often is that cn wraps around to zero.

9

Thus, this approach faces the same ordering challenges with the vector clock
elements.

Existing solutions associate counters with epochs `, which mark the period
between two overflow events. A non-stabilizing representation of epochs can
simply consider a, say, 64-bit integer. Upon the overflow of cn, the algorithm
increments ` by one and nullifies cn. The order among the counters is simply the
lexicographic order among the pairs 〈`, cn〉. With this approach, it is a challenge
to maintain an order within a set of integers during phases of concurrent wrap
around events at different processors. In the following we present more elegant
solutions for bounded labeling schemes, that tolerate concurrent overflow events,
transient faults, and the absence of execution fairness.

Bounded labeling schemes. Bounded labeling schemes (initiated in [18, 9],
cf. [17, Section 2]) provide labeling of data and denote temporal relations. Given
a bounded set of labels L, a bounded labeling scheme usually includes a partial
or total order ≺L over L and a function for constructing locally a new maximal
label from L with respect to ≺L, given a set of input labels. Labeling algorithms
handle these labels such that the processors eventually agree, for example, on a
maximal label. Since we consider processor crashes, a suitable labeling scheme
should include a garbage collection mechanism that cancels obsolete labels, by
possibly using label storage.

Practically-self-stabilizing bounded labeling schemes. Alon et al. [2]
and Dolev et al. [12] present practically-self-stabilizing bounded-size labels.
Whenever a counter cn reaches MAXINT , the algorithm by Alon et al. [2]
replaces its current label ` with `′, which at the moment of this replacement
is greater than any label that appears in the system state. This means that
immediately after the counter wraps around, the counter 〈`′, cn = 0〉 is greater
than all system counters. In the remainder of this section, we give an overview
of the labeling schemes of Alon et al. [2] (Section 3.1) and Dolev et al. [12]
(Section 3.2).

3.1 The case of no concurrent overflow events

Alon et al. [2] address the challenge of always being able to introduce a label
that is greater than any other previously used one. They present a two-player
guessing game, between a finder, representing the algorithm, and a hider, rep-
resenting an adversary controlling the asynchronous system that starts from an
arbitrary state. Let M be the maximum number of labels that can exist in the
communication channels, i.e., M = CN(N−1), where N(N−1)/2 is the number
of bidirectional communication channels in the system and C is the capacity in
number of messages per channel (and hence labels).

The hider has a bounded size label set, H, such that |H| ≤ M ∈ N. The
finder, who is oblivious to H’s content, aims at obtaining a label ` that is greater
than all of H’s labels. To that end, the finder generates ` in such a way that

10

whenever the hider exposes a label `′ ∈ H, such that ` is not greater than `′,
H has one less label that the finder is unaware of its existence. The hider may
choose to include ` in H as long as it makes sure that |H| ≤ M by omitting
another label from H (without notifying the finder).

Label construction. A label component ` = (sting,Antistings) is a pair,
where sting ∈ D, D = {1, . . . , k2 + 1}, Antistings ⊂ D, |Antistings| = k, and
k > 1 is an integer. The order among label components is defined by the relation
≺b, where `i ≺b `j ⇐⇒ (`i.sting ∈ `j .Antistings)∧(`j .sting 6∈ `i.Antistings).
The function Nextb(L) takes a set L = {`1, . . . , `κ} of (up to) k ∈ N label
components, and returns a newly created label component, `j = 〈s,A〉, such
that ∀`i ∈ L : `i ≺b `j , where s ∈ D \ ∪κi=1Ai and A = {s1, . . . , sκ}, possibly
augmented by arbitrary elements of D \A when |A| = κ < k.

Label cancelation. Alon et al. [2] use the order ≺b for which, during the
period of recovery from transient faults, it can happen that `1, `2, and `3 appear
in the system and `1 ≺b `2 ≺b `3 ≺b `1 holds. The finder breaks such cycles by
canceling these label components so that the system (eventually) avoids using
them. Alon et al. [2] implement labels (epochs) as pairs (ml, cl), where ml is
always a label component and cl is either ⊥ when (ml, cl) is legitimate (non-
canceled) or a label component for which cl 6≺b ml holds. Thus, the finder stores
cl as an evidence of ml’s cancelation.

Keeping the number of stored labels bounded. Alon et al. [2] present
a finder strategy that queues the most recent labels that the finder is aware of
in a FIFO manner. They show a 2M bound on the queue size by pointing out
that, if the finder queues (1) any label that it generates and (2) the ones that
the hider exposes, the hider can surprise the finder at most M times before the
queue includes all the labels in H.

In detail, the algorithm gossips repeatedly its (currently believed) greatest
label and stores the received ones in a queue of at most 2M labels, where
M = CN(N − 1) is the maximum number of labels that the system can “hide”,
i.e., one (currently believed) greatest label that each of the N processors has
and C (capacity) in each communication link. Upon arrival of label `i to `j such
that `i 6≺b `j , processor pj queues the arriving label `i, uses Nextb() to create a
new (currently believed) greatest legitimate label `′j and queue it as well. Alon
et al. [2] show that, when only pj may create new labels, the system stabilizes
to a state in which pj believes in a legitimate label that is indeed the greatest
in the system. Note that the stabilization period includes at most M arrivals
to pj of labels `i that “surprise” pj , i.e., `i 6≺b `j .

3.2 The case of concurrent overflow events

Alon et al. [2]’s labels allow, once a single label (epoch) ` is established, to
order the system events using the counter (`, cn). Dolev et al. [12] extend

11

Alon et al. [2] to support concurrent cn overflow events, by including the label
creator identity. This information facilitates symmetry breaking, and decisions
about which label is the most recent one, even when more than one creator
concurrently constructs a new label. Dolev et al. [12] make sure that active
processors pi remove eventually obsolete labels ` that name pi as their creator
(due to the fact that pi indeed created `, or ` was present in the system’s
arbitrary starting state). Note that the system’s arbitrary starting state may
include cycles of legitimate (not canceled) labels `1 ≺b `2 ≺b `3 ≺b `1 that
share the same creator, e.g., pk. The algorithm by Dolev et al. guarantees cycle
breaking by logging all labels that it observes and canceling any label that is
not greater than its currently known maximal one.

Label construction. Dolev et al. [12] extend Alon et al.’s label component
to (creator, sting, Antistings), where creator is the identity of the label creat-
ing processor, and sting as well as Antistings are as in [2] (Section 3.1). They
use =lb to denote that two labels, `i and `j , are identical and define the relation
`i ≺lb `j ⇐⇒ (`i.creator < `j .creator)∨ (`i.creator = `j .creator∧ ((`i.sting ∈
`j .Antistings) ∧ (`j .sting 6∈ `i.Antistings))). The labels `i and `j are incom-
parable when `i ⊀lb `j ∧ `j ⊀lb `i (and comparable otherwise).

Label cancelation. Dolev et al. consider label ` to be obsolete when there
exists another label `′ 6≺lb ` of the same creator. In detail, `i cancels `j , if and
only if, `i and `j are incomparable, or if `i.creator = `j .creator ∧ `i.sting ∈
`j .Antistings ∧ `j .sting /∈ `i.Antistings, i.e., `i and `j have the same creator
but `j is greater than `i according to the ≺b order.

The abstract task of Dolev et al.’s labeling scheme. Each processor
presents to the system a label that represents the locally perceived maximal label.
During a legal execution, as long as there is no explicit request for a new label,
all processors refer to the same locally perceived maximal label, which we refer
to as the globally perceived maximal label. Moreover, it cannot be the case that
processor pi has a locally perceived maximal label `i and another processor
pj ∈ P (possibility i = j) stores a label `j that is incomparable to `i, greater
than `i, or that cancels `i (where `j is not necessarily pj ’s locally perceived
maximal label).

We note that when the system starts in an arbitrary state, the (active) pro-
cessors might refer to a globally perceived maximal label that is not the maximal
label in the system. This is due to the fact that in practically-self-stabilizing
systems there could be a non zero number of deviations from the abstract task
during any practically infinite execution (Definition 2.3). In detail, Dolev et
al. [12, Algorithm 2] store the locally perceived maximal label of processors pi
at maxi[i] and demonstrate the satisfaction of the above abstract task in [12,
Theorem 4.2].

12

Keeping the number of stored labels bounded. Whenever pk is active,
it will eventually queue all of the labels that it has created, cancel them, and
generate a label that is greater than them all. However, in case that pk is
inactive, the algorithm uses the active processors to prevent the asynchronous
system from endlessly using labels that belong to cycles. Dolev et al. [12] show
that pk’s cycle may include at most M + N labels, where M is the number of
labels that can appear in the communication channels and N is the number
of processors. Therefore, pi ∈ P needs to queue M + N labels for any other
pk, so that pi could remove the label cycles once their creator pk becomes
inactive. Moreover, pi needs a queue of 2(MN + 2N2 − 2N) + 1 labels ` (for
which `.creator = i) until it can be sure to have the maximal label. These
bounds give the maximum number of labels that pi can either adopt (use as its
maximal label) or create when it does not store a maximal label, throughout
any execution. Next, we provide the algorithm details and use these details
when justifying our bounds (Section 4).

Variables. Each processor pi maintains an N -size vector of labels maxi,
where maxi[i] is pi’s local maximal ≺lb-label and maxi[j] is the latest legitimate,
i.e., not canceled, label that pi received most recently from pj . Also, pi maintains
anN -size vector storedLabelsi of queues that logs the labels that pi has observed
so far, which pi sorts by their label creator. That is, storedLabelsi[j] queues
label `, such that (i) pi has received ` from an arbitrary processor, (ii) `’s creator
is pj ∈ P , i.e., `.creator = j, (iii) there are no duplicates of ` in storedLabelsi[j],
and (iv) ` is either canceled or every other label in storedLabelsi[j] is canceled.

The algorithm. Processor pi gossips repeatedly its ≺lb-greatest label,
maxi[i], and stores the arriving labels in storedLabelsi[j], where j = `.creator.
The algorithm ensures that storedLabelsi[j] stores at most one legitimate label
by canceling any label `′ using label ` when (1) they are incomparable or (2)
they share the same creator and `′ ≺lb `. Moreover, pi makes sure that, for any
j ∈ [1, N], the ≺lb-greater label maxi[j] is indeed greater than any other label
in storedLabelsj [i]. In case it does not, pi selects the ≺lb-greatest legitimate
label in storedLabelsi, and if there is no such legitimate label, pi creates a new
label via nextLabel(), which is an extension of Nextb() that also includes the
label creator, pi. Dolev et al. [12] bound the size of storedLabelsi[j], for j 6= i
by N +M and the size of storedLabelsi[i] by 2(MN + 2N2 − 2N) + 1.

4 Composing practically-self-stabilizing label-
ing algorithms and the interface to Dolev et
al. [12] labeling scheme

In this section we present a framework for composing any practically-self-
stabilizing labeling algorithm (server) with any other practically-self-stabilizing
algorithm (client). By this composition we obtain a compound algorithm

13

with combined properties. Then, we discuss the challenges in composing
practically-self-stabilizing algorithms, with respect to the composition of strong
self-stabilizing algorithms. Moreover, we present an interface to a labeling algo-
rithm that facilitates our composition approach. The interface is also used by
the client algorithm to query the state of the labeling algorithm, send messages,
or to request the labeling algorithm to cancel a label. We show how this inter-
face is implemented by the practically-self-stabilizing labeling scheme of Dolev
et al. [12, Algorithm 2], which we use in our solutions (Section 5) and algorithm
(Section 6). We end the section by discussing the stabilization guarantees of
the compound algorithm.

Composition with a practically-self-stabilizing labeling algorithm.
We follow an approach for algorithm composition in message passing systems
that resembles the one in [10, Section 2.7], which considers a composition of
two self-stabilizing algorithms. Let us name these two algorithms as the server
and client algorithms. The server algorithm provides services and guaranteed
properties that the client algorithm uses. In the composition presented in [10,
Section 2.7], once the server algorithm stabilizes, the client algorithm can start
to also stabilize. This way, the compound algorithm obtains more complex
guarantees than the individual algorithms.

We detail our composition approach which we illustrate in Figure 2. In the
following, we refer to the computations of a step excluding the send or receive
operation, as the step’s invariant check, which possibly includes updates of local
variables. Our approach for composing practically-self-stabilizing algorithms
assumes that the messages of the client algorithm are piggybacked by the ones of
the server, and that the server algorithm can send any message independently.
Also, we assume that the communication among processors relies on a self-
stabilizing end-to-end protocol, such as the ones in [11, 13].

A step that includes a send operation. We first explain the compu-
tations of the compound algorithm during a step that ends with a send opera-
tion. This step starts with the server algorithm’s invariant check and updates,
which is followed by the client algorithm’s invariant check and updates (parts
1 and 2 of Figure 2, respectively). We assume that the client algorithm can
request a change in the labeling (server) algorithm’s state, e.g., a label cance-
lation, but this change is performed by the labeling algorithm (cf. label can-
celation in Figure 2). In case the client algorithm indeed requires a label to
be canceled, the labeling algorithm cancels that label, and then the server and
client invariant check and updates repeat (cf. Figure 2). Otherwise, the server
encapsulates the client’s message, mclient, and transmits the server message
mserver = 〈serverPart,mclient〉, which encodes the server and client parts of
the message.

A step that includes a receive operation. Upon the arrival of a mes-
sage m by the labeling (server) algorithm (part 4 in Figure 2), the server al-

14

client invariant check and updates

label

(2)

server

invariant check

and updates

(1)

cancelation

send server

message which

encapsulates the

(3)

client message

client

server

labelinvariant check and updates

message reception

for server part of the message

(5)
cancelation

client

server

yes

no

(4)

yes

invariant check and updates for client part of the message

client receives the

(7)

(6)

client part of the message

an atomic step that includes a receive operation

an atomic step that includes a send operation

a self-stabilizing end-to-end protocol

cancelation

condition

cancelation

condition

client
received message

yes

no

client part

Figure 2: Composition of the server and the client algorithms. The normal lines
denote the composition parts that are common in both strong and practically-
self-stabilizing algorithms. The dotted blue lines show the computations in the
composition of practically-self-stabilizing algorithms, that are additional to the
normal lines. We refer to the computations done in a step excluding the send
or receive operation as the (server or client) invariant check and updates.

15

gorithm performs the server invariant check and updates on the server part of
the message (part 5 in Figure 2). Then, the server algorithm raises a message
reception event for the client algorithm (part 6 in Figure 2), which delivers the
part of the arriving message that is relevant to the client algorithm, i.e., mclient.
In the following, the client algorithm performs the client invariant check and up-
dates (part 7 in Figure 2), which might include a request to change the state of
the server algorithm, e.g., by canceling a label. If that is the case, the labeling
algorithm cancels that label, and then parts 5 and 7 of Figure 2 repeat.

Challenges in composition of practically-self-stabilizing algorithms.
Composing practically-self-stabilizing algorithms is not always identical to com-
posing strong self-stabilizing algorithms (cf. [10, Section 2.7]). An infinite exe-
cution is fair [10] if all processors take steps infinitely often (hence no processor
crashes). In this paper we allow processor crashes, i.e., the executions are not
fair, in contrast to strong self-stabilization. Moreover, when composing two self-
stabilizing algorithms, we assume that the client algorithm does not change the
state of the server algorithm. However, labels can become obsolete (canceled),
e.g., due to an overflow event of a counter in the client algorithm. Thus, a step
of the client algorithm might include requesting the labeling (server) algorithm
to change its state by canceling a label (cf. Figure 2).

An interface to a labeling algorithm and its implementation by the
labeling algorithm of Dolev et al. [12, Algorithm 2]. We detail an
interface to a labeling (server) algorithm in order to facilitate composition with
a client algorithm. The functions of the interface allow the labeling algorithm
to do its invariant check and updates. They also allow the client algorithm to
query the state of the labeling algorithm without changing the labeling algo-
rithm’s state, except for the function cancel(). The function cancel() changes
the labeling algorithm’s state by canceling a label. Moreover, we explain how
the Dolev et al. labeling algorithm [12, Algorithm 2] (cf. Section 3.2) imple-
ments the functions of this interface. These functions are also used by the shared
counter algorithm in [12, Algorithm 3]. We note that [12, Algorithm 3] relies
on synchronization mechanisms, but the labeling algorithm [12, Algorithm 2]
does not rely on synchronization mechanisms, and hence it is suitable for our
solution.

• labelBookkeeping(): server invariant check and updates. This func-
tion allows the labeling algorithm to perform its invariant check and updates,
i.e., the step’s computations excluding the send or receive operation (part 1 or
parts 4 and 5 in Figure 2). It is intended to be called in every step of the client
algorithm, and thus facilitates the composition of the two algorithms.

In [12, Algorithm 2], when calling labelBookkeeping() without arguments,
[12, Algorithm 2, lines 21 to 28] perform the server invariant check and updates
(part 1 of Figure 2). When calling labelBookkeeping(m, j), [12, Algorithm 2,
lines 19 to 28] process a message m that arrived from a processor pj ∈ P (parts

16

4 and 5 of Figure 2). The (mutable) function labelBookkeeping() is an alias to
process() [12, Algorithm 3, line 2].

• isStored() and isCanceled(): querying whether a label is stored
or canceled. Given a label `, the (immutable, i.e., its value cannot change)
predicate isStored(`) checks whether ` appears in the label storage of the la-
beling algorithm. The (immutable) predicate isCanceled(`) checks whether ` is
canceled.

In [12, Algorithm 2], isStored(`) returns true, if and only if ` ∈
storedLabels[j], such that pj ∈ P is `’s creator. Also, isCanceled() is an exact
alias to legit() in [12, Algorithm 2, line 6].

• getLabel(): retrieving the largest label. The (immutable) function
getLabel() returns the largest locally stored label.

In [12, Algorithm 2], getLabel() returns the largest locally stored label with
respect to the partial order of labels ≺lb (cf. Section 3.2). In detail, that label
is stored in maxi[i] (cf. lines 27 and 28 of [12, Algorithm 2]).

• legitMsg() and encapsulate(): Token circulation and message en-
capsulation. The legitMsg() function enables a token circulation mechanism
for the labeling algorithm, which is part of the self-stabilizing end-to-end pro-
tocol (cf. Figure 2). The token circulation mechanism guarantees that for two
processors pi, pj ∈ P , pi processes an incoming message from pj only if pj has
received pi’s local maximal label. To that end, pj piggybacks the last received
maximal label of pi, sentMax, to every message mserver that it sends to pi.
Moreover, the function encapsulate() facilitates piggybacking of a message of
the labeling algorithm with the one of the composed (client) algorithm (facilitat-
ing part 3 of Figure 2). That is, the (immutable) function encapsulate(mclient)
returns a message mserver, such that the labeling (server) algorithm’s message
encapsulates the message mclient.

Let serverPart = 〈sentMax, •〉 and mclient be the server, and respectively,
the client part of an outgoing message of the compound algorithm. In [12,
Algorithm 2], the server message is mserver = 〈〈sentMax, •〉,mclient〉 [12, Al-
gorithm 2] and encapsulate(mclient) returns the value mserver. Moreover, the
(immutable) function legitMsg(mserver, `) tests the consistency of an arriving
label ` with serverPart of the server message mserver. That is, the predicate
legitMsg(mserver, `) returns the value of ` = sentMax.

• cancel(): canceling a label. This is a function that the client algorithm
uses to request the labeling algorithm to cancel a label, e.g., upon an overflow
event. In contrast to the functions presented above, cancel() is the only function
that the client algorithm can use to change the state of the labeling (server)
algorithm (cf. Figure 2). Let ` and `′ be two labels, such that `′ cancels `
according to the scheme’s label order. Then, when the client algorithm calls the

17

(mutable) function `.cancel(`′), the labeling algorithm marks ` as canceled (by
`′).

In [12, Algorithm 2], in case `′ 6≺lb ` holds, pi marks ` as canceled by `′ by
calling `.cancel(`′) (cf. label cancelation definition in Section 3.2). In detail,
the function cancel() is an alias to cancelExhausted() [12, Algorithm 3, line
10].

Preserving the stabilization guarantees of the labeling algorithm.
We note that during a subexecution in which the client algorithm does not call
the function cancel(), the approach for algorithm composition of this section is
along the lines of the one in [10, Section 2.7] (cf. Figure 2). However, the func-
tion cancel() changes the state of the labeling algorithm. Thus, it is necessary
for the stabilization proof of the compound algorithm, i.e., the composition of
the labeling and client algorithms, to show that the stabilization guarantees of
the labeling algorithm are preserved. The (client) algorithm that we propose
in Section 6 (Algorithm 1) for the vector clock problem is composed with the
labeling algorithm of Dolev et al. [12, Algorithm 2] through the interface that we
presented in this section. In Section 7 we show that the algorithm that we pro-
pose for the vector clock problem preserves the labeling algorithm’s stabilization
guarantees.

5 Vector Clock Pairs: operations, invariants,
and event counting

In this section we define a vector clock pair, which is a construction for emulat-
ing a vector clock that can tolerate counter overflows. We define the invariants
and conditions that should hold for the vector clock pairs with respect to Re-
quirement 1. We show how to merge two (vector clock) pairs (Section 5.1), and
use this construction for counting the events of a single processor and computing
the query causalPrecedence(), which we defined in Section 2 (Section 5.2). In
Section 6 we use the vector clock pairs for designing a practically-self-stabilizing
algorithm with respect to the abstract task that Requirement 1 defines (cf. Sec-
tion 2).

The (vector clock) pair. We say that I = 〈`,m, o〉 is a (vector clock) item,
where ` is a label of the Dolev et al. [12] labeling scheme (Section 3.2), m (main)
is an N -size vector of integers that holds the processor increments, and o (offset)
is an N -size vector of integers that the algorithm uses as a reference to m’s value
upon `’s creation. We use (I.m−I.o)(mod MAXINT) for retrieving I’s vector
clock value. We define a (vector clock) pair as the tuple Z = 〈curr, prev〉, where
both curr and prev are vector clock items, such that Z.curr.o = Z.prev.m,
i.e., two variable names that refer to the same storage (memory cell). We use
V C(Z) := (Z.curr.m − Z.curr.o)(mod MAXINT) for retrieving Z’s vector
clock. We assume that each processor pi stores a vector clock pair locali and

18

we explain below how pi uses locali for counting local events as well as events
that it receives from other processors, even when (concurrent) counter overflows
occur.

Starting a vector clock pair. The first value of a pair Z is
〈〈`, zrs, zrs〉, 〈`, zrs, zrs〉〉, where ` := getLabel() is the local maximal label
and zrs := (0, . . . , 0) is the zero vector. That is, the vector clock value of Z is
an N -sized vector of zeros, i.e., V C(Z) = zrs, that we associate with the local
maximal label.

Exhaustion of vector clock pairs. We say that a pair Z is exhausted
when Condition 1 holds. Condition 1 defines exhaustion when the sum of the
elements of the vector clock’s value V C(Z) is at least MAXINT −1. Note that
defining exhaustion according to the sum of the vector clock’s values reduces
the exhaustion events, in comparison to defining exhaustion for every vector
clock element overflow, i.e., for every curr.m[i], pi ∈ P . The latter also justifies
the use of one label for a vector clock item I, instead of N labels, i.e., one per
each element of I.m. Since the size of a label I.` in the Dolev et al. labeling
scheme [12] is in O(N3), this linear improvement is significant.

exhausted(Z) ⇐⇒ ΣNk=1(Z.curr.m[k]− Z.curr.o[k]) ≥MAXINT − 1 (1)

Reviving a (vector clock) pair. When the (vector clock) pair
Z is exhausted (Condition 1), pi revives Z by (i) canceling the la-
bels of Z, i.e., Z.curr.` and Z.prev.`, and (ii) replacing Z with Z ′ =
〈〈getLabel(), Z.curr.m,Z.curr.m〉, Z.curr〉. Hence, the value of the new vector
clock, Z ′, is an N -sized vector of zeros, i.e., V C(Z ′) = Z.curr.m− Z.curr.m =
(0, . . . , 0) and Z ′ has the current offset field, Z ′.curr.o, that refers to the same
main values as the ones recorded by Z.curr.m (and Z ′.curr.o alias value, which
is Z ′.prev.m). As we show in this section, the fact that Z ′.prev stores the value
of Z.curr upon exhaustion enables counting local events, as well as, merging
(vector clock) pairs even upon concurrent exhaustions in different processors.

Incrementing vector clock values. Processor pi ∈ P increments its
(vector clock) pair, Z, by incrementing the ith entry of Z’s current item,
i.e., it increments Z.curr.m[i] by one. The new value of the vector clock is
V C(Z) = (Z.curr.m + idV (i) − Z.curr.o) (mod MAXINT), where idV (i) is
an N -size vector with zero elements everywhere, except for the ith entry which
is one, and Z.curr.m is the value before the increment. In case that increment
leads to exhaustion (Condition 1), pi has to revive the pair Z. We assume that a
processor can call increment() only before it starts the computations of a step
that ends with a send operation, to ensure that increments are immediately
propagated to all other processors.

19

5.1 Merging two vector clock pairs

We present a set of invariants for a single (vector clock) pair as well as for two
pairs. We explain when it is possible to merge two pairs and present the merging
procedure. Our approach is based in finding a common label and offset in the
items of the two pairs, which works as a common reference.

Pair label orderings. Given a pair Z = 〈curr, prev〉, we say that its
elements are ordered when Condition 2 holds. That is, either the current label
of a pair Z, Z.curr.`, is larger than the previous label, Z.prev.`, and Z.prev.`
is canceled, or the labels are equal and not canceled (Condition 2).

labelsOrdered(Z) ⇐⇒ ((Z.prev.` ≺lb Z.curr.` ∧ isCanceled(Z.prev.`))∨
(Z.prev.` = Z.curr.` ∧ ¬isCanceled(Z.curr.`))

(2)

The =`,o and <`,o relations. We define the relations =`,o and <`,o
to be able to compare and order vector clock items (and hence pairs). Let
`1 = 〈ml1, cl1〉 and `2 = 〈ml2, cl2〉 be two labels of the Dolev et al. labeling
scheme [12]. Recall that for ` = 〈ml, cl〉, cl indicates if ` is canceled; if cl = ⊥
then ` is not canceled and if cl 6= ⊥, cl is the label that canceled ml, i.e., ` is
canceled. We say that `1 =m `2, if and only if ml1 = ml2. In the sequel we will
use =m and = interchangeably when comparing labels, as the cl part is only
used for notifying whether a label is canceled or not.

Let 〈`1,m1, o1〉 =`,o 〈`2,m2, o2〉 ⇐⇒ `1 = `2 ∧ o1 = o2. We say that
two (vector clock) items z and z′ match (in label and offset), if and only if,
z =`,o z

′. We use the order 〈`1,m1, o1〉 <`,o 〈`2,m2, o2〉 ⇐⇒ `1 <lb `2 ∨
(`1 = `2 ∧ o1 <lex o2) for comparing between vector clock items, where <lex is
the lexicographic order in N. We define max`,o X to be the <`,o-maximum item
in a set of items X in which all labels are comparable with respect to ≺lb and
there exists a maximum label among them.

Pivot existence. Condition 3 tests the pair merging feasibility (Figure 3).
It considers two pairs Z and Z ′ and returns true when one of the following
holds:

(a) Z and Z ′ match (in label and offset) in their curr and prev, i.e., Z.itm =`,o

Z ′.itm, for itm ∈ {curr, prev} (Figure 3a), i.e., there was no vector clock
exhaustion, or

(b) Z and Z ′ match in their prev, i.e., Z.prev =`,o Z
′.prev (figure 3b), i.e.,

both vector clocks where exhausted (assuming that case (a) was true before
exhaustion), or

(c) the label and offset in the prev of one equals the label and offset in the curr
of the other one, i.e., Z.curr =`,o Z

′.prev∨Z.prev =`,o Z
′.curr (Figure 3c),

20

(a) Condition 3 holds
because the two pairs
differ only by their
curr.main fields (no
wrap-around).

(b) Condition 3 holds
because the two pairs
match in their prev item
(the pairs had wrapped
around concurrently).

(c) Condition 3 holds
because Z.prev and
Z′.curr differ only by
their main filed (Z has
wrapped around).

Figure 3: Conditions for merging two given (vector clock) pairs; Z (on the left)
and Z ′ (on the right).

i.e., one vector clock was exhausted (assuming that case (a) was true before
exhaustion).

We refer to the common item between Z and Z ′ as the pivot item.

existsPivot(Z,Z ′) ⇐⇒ Z.prev =`,o Z
′.prev ∨ Z.curr =`,o Z

′.prev
∨Z.prev =`,o Z

′.curr
(3)

Merging two (vector clock) pairs. Two vector clocks Z and Z ′ can be
merged when there exists a pivot item, i.e., existsPivot(Z,Z ′) holds (Figure 3).
The <`,o-maximum pivot item, pvt, in Z and Z ′, provides a reference point
when merging Z and Z ′, because it refers to a point in time from which both
Z and Z ′ had started counting their events. We merge Z and Z ′ to the pair
output in two steps; one for initialization and another for aggregation.

We initialize output to the <`,o-maximum pair between Z and Z ′ (Fig-
ure 3), and choose Z (the first input argument) when symmetry exists (fig-
ures 3a and 3b). In order to distinguish when we treat numbers and operations
in N or in ZMAXINT , we denote by x +N y the result of adding two numbers
x, y ∈ ZMAXINT in N (x+N y can be possibly larger than MAXINT) and x|N
denotes that x ∈ ZMAXINT is treated as a number in N.

For every i ∈ {1, . . . , N}, let newEvents(X, pivot)[i] be the number of new
events that the pair X ∈ {Z,Z ′} counts since the reference item, pivot. In
Equation 4 we compute newEvents(X, pivot)[i] depending on whether pivot

21

matches X.curr or X.prev. In the former case, we count the number of events
in X.curr.m[i] since the offset X.curr.o[i]. In the latter case, we also add the
number of events in X.prev.m[i] since the offset X.prev.o[i], because X.prev.o
is the common offset of Z and Z ′. The aggregation step sets output[i] =
max{newEvents(X, pivot)[i] |X ∈ {Z,Z ′}}+pivot[i](mod MAXINT), for ev-
ery i ∈ {1, . . . , N}.

newEvents(X, pivot)[i] =

(X.curr.m[i]−X.curr.o[i](mod MAXINT))|N,
if pivot =`,o X.curr,

(X.curr.m[i]−X.curr.o[i](mod MAXINT))|N +N
(X.prev.m[i]−X.prev.o[i](mod MAXINT))|N,

if pivot =`,o X.prev
(4)

5.2 Event counting and causal precedence

In this section we present our implementation of the queries about counting the
events of a single active processor (Requirement 1) and about causal precedence
(Section 2), which is based on the vector clock pair construction. We explain the
conditions under which we compute the query of how many events occurred in
a processor pi between the states cx and cy (Requirement 1) using locali’s value
in these two states, and present the query’s computation. Then, we describe
how we compute the query causalPrecedence(locali, localj), for two vector clocks
locali and localj of active processors pi and pj , in possibly different states (cf.
Section 2).

Let V ki [i] be the ith entry of pi’s vector clock Vi in state ck, k ∈ {x, y}.
Requirement 1 implies that in a legal execution, the query V yi [i]−V xi [i] returns
the number of events that occurred in pi between the states cx and cy, where
cx precedes cy. Let localki be the value of locali in state ck. The result of
this query depends on the number of calls to revivei() between cx and cy.
That is, in case there were two or more calls to revivei() between cx and cy,
then it is not possible to infer the correct response to the query V yi [i] − V xi [i]
from localxi and localyi , since these two pairs have no common pivot item (cf.
Section 5.1). Otherwise, in case there was no wrap around (cf. Figure 3a) or
one wrap around (cf. Figure 3c) between cx and cy, we can use locali.curr, or
respectively, locali.prev as pivot items to count the correct number of events in
pi. Thus, we compute the response to the query V yi [i]− V xi [i] as follows:

22

V y
i [i]−V x

i [i] =

V C(localyi)[i]− V C(localxi)[i], if localxi and localyi differ only on
the field curr.m (cf. Figure 3a)

newEvents(localyi , local
y
i .prev)[i], if localxi .curr =`,o local

y
i .prev

(cf. Figure 3c)

⊥, otherwise
(5)

In Section 6 we propose Algorithm 1 and in Section 7 we show that it is
practically-self-stabilizing with respect to Requirement 1 (cf. Section 2). Thus,
during a legal execution the return value of V yi [i]−V xi [i] in Equation 5 is never
⊥.

In order to compute the query causalPrecedence(Z,Z ′), which is true if and
only if Z causally precedes Z ′ (Section 2), we follow a similar approach to
merging pairs (Section 5.1). As in the computation of the query V yi [i]− V xi [i],
we require that there exists a pivot item, pivot, between two pairs Z and Z ′

in order to be able to compare them, and we use the newEvents(X, pivot)
function to compare these pairs, X ∈ {Z,Z ′}. We detail the computation of
causalPrecedence(Z,Z ′) in Equation 6.

causalPrecedence(Z,Z′)⇔ existsPivot(Z,Z′)∧
(∀i∈{1,...,N}newEvents(Z, pivot)[i] ≤ newEvents(Z′, pivot)[i]∧
∃j∈{1,...,N}newEvents(Z, pivot)[j] < newEvents(Z′, pivot)[j])

(6)
Our approach of including the prev item in a vector clock pair allows to count
events from a common reference, even when wrap around events occur. Hence,
in a legal execution of Algorithm 1 (Section 6), causalPrecedence(Z,Z ′) as we
compute it in Equation 6 is true if and only if Z causally precedes Z ′.

6 Practically-self-stabilizing Vector Clock Algo-
rithm

We propose Algorithm 1 as a practically-self-stabilizing vector clock algorithm
that fulfills Requirement 1 (Section 2). Algorithm 1 builds on the vector clock
pair construction (Section 5), which uses a practically-self-stabilizing labeling
scheme (cf. Section 3). Thus, Algorithm 1 is composed with a labeling algorithm
using our composition approach and the interface in Section 4. In a nutshell,
Algorithm 1 includes the procedures for (i) vector clock increments, (ii) checking
the invariants of the local (vector clock) pair, e.g., vector clock exhaustion, and
sending the local pair of a processor (local) to its neighbors (do-forever loop
procedure), and (iii) merging an incoming vector clock pair with the local one.
To that end, Algorithm 1 relies on the functions that we defined in Section 5.

23

Algorithm 1: Practically-self-stabilizing vector-clock replication, code for pi

1 Constants: zrs := (0, . . . , 0): the N -size vector of zeros, idV (i): N -size vector, where
idV (i)[i] = 1 and idV (i)[j] = 0, for j 6= i;

2 Variables: pairs[]: an N -size vector of pairs, where pairs[i] is the local vector clock
pair, i.e., local is an alias to pairs[i]. Also, pairs[j] is the latest value of pj ’s local
that pi received.

3 Interface: isStored(), getLabel(), legitMsg(), encapsulate(), cancel(),
labelBookkeeping() (Section 4), newEvents() (Section 5).

4 Macros: we use as macros conditions 1 to 3, Equation 4 (Section 5), and the
following:

5 mirroredLocalLabels() := isStored(local.prev.`) ∧ local.curr.` = getLabel();
6 pairInvar(X) := ¬exhausted(X) ∧ (X.prev.` �lb X.curr.`);
7 comparableLabels(X) := ∀`, `′ ∈ {X.curr.`,X.prev.` |X ∈ X}, ` �lb `′ ∨ `′ �lb `;
8 legitPairs(X,Y) := comparableLabels({X,Y }) ∧ existsPivot(X,Y) (Condition 3,

Section 5);
9 restartLocal() := {local← 〈y, y〉}, where y = 〈getLabel(), zrs, zrs〉;

10 equalStatic(X,Y) := X.curr.` = Y.curr.` ∧X.curr.o = Y.curr.o ∧X.prev = Y.prev;
11 procedure cancelPairLabels(Z) begin
12 foreach ` ∈ {Z.curr.`, Z.prev.`} do `.cancel(`); labelBookkeeping();

13 function revive(Z) begin
14 cancelPairLabels(Z); return 〈〈getLabel(), Z.curr.m,Z.curr.m〉, Z.curr〉;
15 procedure increment() begin
16 let local=〈〈local.curr.`, (local.curr.m+

idV (i))(mod MAXINT), local.curr.o〉, local.prev〉;
17 if exhausted(local) then local← revive(local);

18 function merge(loc, arr) begin
19 if ∃x∈{curr, prev}loc.curr =`,o arr.x then let pivot:= loc.curr.o else let

pivot:= loc.prev.o;
20 let initToLoc := arr.curr <`,o loc.curr ∨ (arr.curr =`,o loc.curr ∧ arr.prev ≤`,o

loc.prev);
21 if initToLoc then let output := loc else let output := arr;
22 foreach k ∈ {1, . . . , N} do
23 let maxNewEvents = max{newEvents(Z, pivot)[k] |Z ∈ {loc, arr}};
24 output.curr.m[k]← (pivot[k] +maxNewEvents)(mod MAXINT);

25 return output;

26 do forever begin
27 labelBookkeeping();
28 if ¬(mirroredLocalLabels() ∧ labelsOrdered(local)) then restartLocal();
29 if exhausted(local) then local← revive(local);
30 foreach pk ∈ P \ {pi} do send encapsulate(〈local, pairs[j]〉) to pk;

31 upon message m = 〈•, 〈arriving, rcvdLocal〉〉 arrival from pj begin
32 labelBookkeeping(m, j);
33 pairs[j]← arriving;
34 if equalStatic(local, rcvdLocal) ∧ legitMsg(m,arriving.curr.`) ∧

pairInvar(arriving) then
35 if ¬legitPairs(local, arriving) then restartLocal();
36 else
37 local← merge(local, arriving);
38 if exhausted(local) then local← revive(local);

24

Local variables (line 2). Processor pi ∈ P maintains a local (vector clock)
pair, locali, such that for any state, pi’s vector clock value is V C(locali) (cf.
Section 5).

Restarting local via restartLocal() (line 9). The macro restartLocal()
lets locali have its starting value 〈y, y〉, where y = 〈getLabel(), zrs, zrs〉 and
zrs is the N -size vector of zeros. Processor pi can use restartLocal() for setting
locali to its initial value, whenever the invariants for locali do not hold in the
do-forever loop and in the message arrival procedures of Algorithm 1.

Token passing mechanism for sending and receiving local. Algo-
rithm 1 uses a token circulation mechanism for sending and receiving local,
which is independent of the algorithm’s computations on local. This mecha-
nism is necessary for ensuring that (after a constant number of steps) for every
two processors pi, pj ∈ P , pj processes a message from pi only if pi has received
the latest value of localj .

We remark that without this mechanism, it is possible that pi does not
receive (and process) pj ’s latest value of localj for an unbounded number of
steps, and yet pi keeps sending locali to pj for an unbounded number of steps.
The latter case can cause an unbounded number of steps that include a call to
restartLocal() at pj , if the pair that pj received from pi cannot be merged with
localj (cf. Section 5.1 and message arrival procedure in this section). In Sec-
tion 7, we show that a call to restartLocal() in a step of the algorithm (possibly)
implies that Requirement 1 does not hold for the state that immediately follows
this step. Hence, an unbounded number of calls to restartLocal(), imply an
unbounded number of states in which Requirement 1 does not hold. The token
circulation mechanism helps the proposed algorithm to avoid this problem.

To implement the token circulation mechanism, each processor pi maintains
an N -size vector of pairs, pairsi[], where pairsi[j], for j 6= i, is the last value
of localj that pi received (from pj), and pairsi[i] stores pi’s pair, i.e., locali
is an alias for pairsi[i]. We implement the token passing mechanism by aug-
menting the messages that a processor sends (via encapsulate()) in Algorithm 1
as follows. A processor pi sends 〈locali, pairsi[j]〉 to a processor pj by calling
encapsulate(〈locali, pairsi[j]〉) in line 30. Hence, a message sent by pj and re-
ceived by pi has the form mj = 〈•, 〈arrivingj , rcvdLocalj〉〉 (line 31). Processor
pi stores arrivingj in pairsi[j] (line 33), in order to ensure that pi has received
the latest value of localj . Thus, processor pi processes the message mj if the
pairs locali and rcvdLocalj are equal or differ only on their curr.m, since the
merging conditions (cf. Section 5.1) don’t depend on curr.m. We detail the
exact procedures of sending and receiving messages in Algorithm 1 in the last
part of this section. In Section 7 we show that the token passing mechanism is
self-stabilizing (in at most CN2 steps).

The function revive() (lines 13–14). When the pair Z is exhausted (Con-
dition 1), a call to revive(Z) lets Z to wrap around and return its new version

25

(Section 5). That is, pi cancels Z’s labels, Z.curr.` and Z.prev.`, by calling
the labeling algorithm (function cancelPairLabels, lines 11–12), and then sets
Z.curr to be the output pair’s prev and 〈getLabel(), Z.curr.m,Z.curr.m〉 as the
output’s curr.

The vector clock increment function, increment() (lines 15–17).
When pi calls increment(), it increments the ith entry of pi’s vector clock.
That is, pi increments locali.curr.m[i] by 1 by adding idV (i) to locali.curr.m,
where idV (i) is an N -size vector with zero elements everywhere, except for the
ith entry which is 1 (line 16). In case that increment leads to a vector clock
exhaustion, it calls the function revive() (line 17). We assume that a proces-
sor can only call increment() in the beginning of a step that ends with a send
operation (see paragraph on Algorithm 1’s do-forever loop below), and this call
is part of the step. This restriction ensures that vector clock increments are
immediately sent to all other processors.

Aggregation of vector clock pairs with the merge() function (lines 18–
25). The function merge(Z,Z ′) (lines 18–25) aggregates two pairs, Z and
Z ′, such as the local one and another one arriving via the network. It outputs a
pair output with the <`,o-maximum items that includes the aggregated number
of events of Z and Z ′ (Section 5).

The function uses the <`,o-maximum pivot item x in Z and Z ′, from
which it counts the new events in Z and Z ′ (line 19). It initializes the out-
put pair, output, with the input pair that is <`,o-maximum both in curr and
prev (lines 20–21). The algorithm then updates output.curr.m with the max-
imum number of new events between Z.curr.m and Z ′.curr.m since the pivot
item (lines 22–24), and returns output (line 25). That is, output.curr.m[i] =
max{newEvents(X, pivot)[i] |X ∈ {Z,Z ′}}+pivot[i](mod MAXINT), for ev-
ery i ∈ {1, . . . , N}.

The procedures of the do-forever loop and the message arrival event.
We explain Algorithm 1’s do-forever loop (lines 26–30) and message arrival

procedure (lines 31–38), which follow the algorithm composition of Figure 2
(Section 4).

The do-forever loop procedure (lines 26–30). The do-forever loop
starts by letting the labeling algorithm take a step in line 27 (part 1 of Figure 2).
Line 28 refers to the invariants of local. Algorithm 1 calls restartLocal() in
line 28, in case one of the following does not hold: (i) local.curr.` is not the
local maximal label or local.prev.` is not stored in the labeling algorithm’s
storage, i.e., if mirroredLocalLabels() is false (line 5), or (ii) Condition 2 is false,
i.e., labelsOrdered(local) is false. In line 29, the algorithm checks if local is
exhausted and in the positive case, local wraps around to the return value of
revive(local) (cf. line 9). Lines 28–29 refer to part 2 of Figure 2.

26

In line 30 the processor sends local to every other processor in the system.
The processor sends the message mclient = 〈local, pairs[j]〉 to every pj ∈ P \
{pi}, by calling encapsulate(mclient). The pair pairs[j] is appended due to the
token circulation mechanism. Line 30 refers to part 3 of Figure 2.

The message arrival procedure (lines 31–38). Upon arrival of a mes-
sage m = 〈•, 〈arriving, rcvdLocal〉〉 from processor pj (part 4 of Figure 2) the
labeling algorithm processes its own part of m (part 5 of Figure 2) by the call to
labelBookkeeping(m, j) in line 32. In lines 33–38 of the message arrival proce-
dure, Algorithm 1 processes 〈arriving, rcvdLocal〉 (parts 6 and 7 of Figure 2).
In line 33 the algorithm stores arriving to pairs[j], i.e., the latest pair that pi
received from pj , to facilitate the token passing mechanism.

Algorithm 1 proceeds in processing arriving only if
equalStatic(local, rcvdLocal) ∧ legitMsg(m, arriving.curr.`) ∧
pairInvar(arriving) holds (line 34). Let rcvdLocal be the pair that pj
had received from pi immediately before the step in which it sent the message
m to pi. The predicate equalStatic(local, rcvdLocal) (line 10) is true, if
rcvdLocal either equals local or differs from local only in curr.m (in case until
the reception of m, pi incremented its vector clock pair, without exhausting it).

Recall that the part of m that refers to the labeling algorithm in-
cludes pj ’s local maximal label, which should be equal to arriving.curr.`
(cf. mirroredLocalLabels() predicate in line 28). The predicate
legitMsg(m, arriving.curr.`) (cf. Section 4) is true if arriving.curr.` is equal to
pj ’s local maximal label as it appears in the part of m that refers to the labeling
algorithm. The predicate pairInvar(arriving) (line 6) is true if arriving is not
exhausted (Condition 1) and arriving.prev.` �lb arriving.curr.` holds. Hence,
if legitMsg(m, arriving.curr.`) ∧ pairInvar(arriving) is false, m contains stale
information and existed in the system in the starting system state.

In case the condition of line 34 holds, the algorithm attempts to merge the ar-
riving pair with the local one. Merging is feasible if legitPairs(local, arriving)
holds. The predicate legitPairs(X,Y) (line 8) is true if and only if
comparableLabels({X,Y }) ∧ existsPivot(X,Y) holds. That is, all the labels of
the pairs X and Y must be comparable with respect to the order of the la-
beling scheme and there exist a pivot item between X and Y (Condition 3,
Section 5). In case legitPairs(local, arriving) is false, the algorithm calls
restartLocal(local) (line 35), since merging must be possible in a legal execu-
tion. Otherwise, merging local and arriving is feasible, and thus the algorithm
lets local to have the return value of merge(local, arriving) (line 37). In case
the new pair value of local is exhausted, local wraps around to the return value
of revive(local) in line 38 (cf. line 9).

Remarks on algorithm composition. Note that in case of pair exhaus-
tion Algorithm 1 forces the repetition of parts 1 and 2 of Figure 2 corresponding
to the do-forever loop procedure, as well as, parts 5 and 7 of Figure 2 corre-
sponding to the message arrival procedure. That is, the algorithm requests the

27

cancelation of local’s labels by the labeling algorithm, the labeling algorithm
cancels these labels, and the call to labelBookkeeping() provides a new local
maximal label (cf. lines 11–14). Then, Algorithm 1 stores the return value of
revive(local) in local (line 29 or 38). Thus, if local is not exhausted during a step
(line 29 or 38), the composition of the labeling and the vector clock algorithm is
along the lines of [10, Section 2.7]. The latter holds, since Algorithm 1 changes
the state of the labeling algorithm only when it calls cancel() and this occurs
only upon a call to revive() (due to pair exhaustion). Also, this repetition of
step parts occurs at most once per step, since the output pair of revive(local)
is by definition not exhausted (cf. line 14 and Section 5). Moreover, in case
the invariants for local do not hold in line 28 or 35, the call to restartLocal()
in these lines does not change the state of the labeling algorithm, since it only
retrieves the local maximal label through getLabel() (cf. Section 4).

7 Correctness Proof

7.1 The proof in a nutshell

We show that Algorithm 1 is practically-self-stabilizing (Definition 2.3). Recall
from Section 2 that the number of system states in which active processors in
an execution R deviate from the abstract task is denoted by fR. For the vector
clock abstract task, fR denotes the number of system states in R, in which
Requirement 1 does not hold, with respect to the active processors in R. Thus,
in Theorem 7.1 we show that for any LS -scale execution R, fR � |R| holds (cf.
Section 2).

Theorem 7.1 (Algorithm 1 is practically-self-stabilizing). For every infinite
execution R of Algorithm 1, and for every LS -scale subexecution R′ v R, fR′ =
f(R′, N)� |R′| holds.

To the end of proving Theorem 7.1, we first present a set of invariants both
for the state of a single active processor and also when considering the states
of all active processors in an execution (Section 7.3). Given these invariants
we present the conditions for an execution to be legal (Section 7.3). More
specifically, we show that an execution is legal if, (i) there are no steps that
include a call to restartLocal(), and (ii) for each processor, there is at most
one step in which that processor calls the function revive(). In Section 7.4 we
study the functions that cause a call to restartLocal() or revive(). That is, we
define a notion of function causality, which bases on the interleaving model (cf.
Section 2). Then, in Section 7.5, we prove that for every LS -scale execution
R′, the number of steps that include a call to either restartLocal() or revive()
is significantly less than |R′|, and combine the above to prove Theorem 7.1
(Corollary 7.24).

Our proof also requires to show that the labeling algorithm by Dolev et
al. [12] remains practically-self-stabilizing (Section 7.2), even if we use a larger,
but yet bounded number of labels, by extending the size of the label storage,
i.e., storedLabelsi, for each pi ∈ P (cf. Section 3.2).

28

7.1.1 Notation

We refer to the values of variable X at processor pi as Xi. Similarly, fi() refers
to the returned value of function f() that processor pi executes. Throughout
the proof, any execution is an execution of Algorithm 1. Let M = CN(N − 1)
be the maximum number of messages, and hence pairs, that can exist in the
communication channels in any system state, i.e., N(N −1)/2 links, where each
link is a bidirectional communication channel of capacity C in each direction.
Moreover, recall that P (R) ⊆ P is the set of processors that take steps during
an execution R. When referring to a value Zx that a variable takes, e.g., locali,
we treat Zx as an (immutable) literal, i.e., a value that does not change.

7.2 Convergence of the labeling algorithm in the absence
of wrap around events

We generalize the lemmas of Dolev et al. [12] (Section 3.2) that bound the num-
ber of label creations and adoptions of their labeling algorithm (cf. Section 3.2)
to accommodate for the extra number of labels of Algorithm 1, and show that
the labeling algorithm converges when twice as many labels are processed, due
to the fact that each pair includes two labels. Recall from Section 6 that if
there are no calls to revive() (lines 17, 29, and 38) during an execution, then
Algorithm 1 does not change the state of the labeling algorithm (cf. function
definition in lines 13–14). However, in the starting system state of an execution
of Algorithm 1 there exist twice as many labels as in the starting system state
of an execution of the labeling algorithm, due to the two labels that each pair
consists of.

We extend [12, Lemma 4.3], which bounds the number of labels that were
created by pj and adopted by pi, after pj stopped adding labels to the system
(Corollary 7.1). In Corollary 7.2, we extend [12, Lemma 4.4], which bounds the
number of labels that pi creates (Corollary 7.2). We then present Corollary 7.3
that is an implication of corollaries 7.1 and 7.2 and states that the labeling
algorithm of Dolev et al. [12] remains practically-self-stabilizing given the gen-
eralized bounds presented in those corollaries. Corollary 7.3 is an extension
of [12, Theorem 4.2], which shows that the labeling algorithm [12, Algorithm
2] is practically-self-stabilizing. Hence, we will use Corollary 7.3 for proving
that Algorithm 1 is also practically-self-stabilizing. In Section 7.5, we will ex-
tend these bounds to accommodate for the extra labels created by Algorithm 1,
when a processor calls the function revive().

Corollary 7.1 (extension of [12, Lemma 4.3]). Let pi, pj ∈ P be two processors.
Suppose that pj has stopped adding labels to the system state, and sending these
labels during an execution R. Moreover, suppose that at the system state that
immediately follows the last step in which pj stopped adding labels to the system,
the number of labels that have pj as their creator and that were adopted by any
of the N processors in the system is at most 2N , and the maximum number of
labels in transit that were created by pj is at most 2M . Processor pi adopts at
most 2N + 2M labels `, such that `.creator = j and ` /∈ storedLabelsi[j].

29

The bound in [12, Lemma 4.3] is N + M , but in the setting of Algo-
rithm 1 each pair includes two labels, hence the factor of 2. Thus, setting
|storedLabelsi[j]| = 2N + 2M , i 6= j allows the labeling algorithm to converge.
In the following corollary, we denote with maxi[i] the local maximal label of
processor pi, as in the labeling algorithm of Dolev et al. [12] (cf. Section 3.2).

Corollary 7.2 (extension of [12, Lemma 4.4]). Let pi ∈ P be a processor and
Li = `i0 , `i1 , . . . be the sequence of legitimate (not canceled) labels that pi stores
in maxi[i] over an execution R, such that no counter exhaustions occur during
R and `ik .creator = i, k ∈ N. It holds that |Li| ≤ 4N2 + 4NM −4N −2M [12].

The bound in Corollary 7.2 follows by the proof of [12, Lemma 4.4], which
bounds the number of labels existing either in other processors’ states or in
transit, for which pi is the label creator. These labels are at most 2(M +
Σj 6=i|storedLabelsi[j]|) = 2M+2 (N − 1)(2N + 2M)) = 4N2+4NM−4N−2M
(the second equality holds by Corollary 7.1).

Corollary 7.3 is a straightforward extension of [12, Theorem 4.2] that also
holds for the updated bounds of corollaries 7.1 and 7.2, since the proof is based
on the bounds’ existence, rather than the actual bounds.

Corollary 7.3 (extension of [12, Theorem 4.2]). Let R be an LS-scale execution
of the labeling algorithm [12, Algorithm 2], in which no wrap around events oc-
cur. The labeling algorithm is practically-self-stabilizing in R, given the number
of label creations and adoptions in corollaries 7.1 and 7.2 as well as the updated
queue lengths in storedLabelsi, where pi ∈ P .

We remark that in Section 7.5 we extend the queue lengths to accommodate
for the extra labels that are created due to Algorithm 1, i.e., when wrap-around
events occur and a processor calls revive().

7.3 Local and global invariants and their relation to Re-
quirement 1

In this section we study the local and global invariants that determine if an exe-
cution is legal. We define the predicate localInvariants(i) (Definition 7.4), which
gives the local invariants for locali of a processor pi. That is, if localInvariants(i)
is false in line 28, then processor pi calls restartLocali(). We show that for all
functions of Algorithm 1 that include locali of a processor pi in their input,
localInvariants(i) holds (lemmas 7.5–7.8).

We also give the conditions for an execution to be legal. To that end,
we show that Requirement 1 is possibly violated in a step where a processor
calls restartLocal() (Remark 7.9) and definitely violated when a processor calls
revive() in two or more steps in an execution (Remark 7.10). Also, we define
the predicate globalInvariants(R, c) for an execution R and a state c ∈ R, which
gives the invariants that should hold for every active processor in R, so that
no step includes a call to restartLocal() in line 35. Finally, in Lemma 7.12, we
prove that given the bounds Brestart(R) and Brevive(R) on the number of steps

30

that include a call to restartLocal() or revive() in an LS -scale execution R,
there exists at least one legal subexecution R∗ of R, such that |R∗| 6� |R| holds
under the condition that Brestart(R) � |R| ∧ Brevive(R) � |R| holds. In sec-
tions 7.4 and 7.5, we prove that the bounds Brestart(R) and Brevive(R) indeed
exist for every LS -scale execution R (and show that Algorithm 1 is practically-
self-stabilizing).

Definition 7.4 (The localInvariants() predicate). Let R be an execu-
tion of Algorithm 1, c ∈ R be a system state, and pi ∈ P . We say that
the local invariants hold for pi in c ∈ R, if and only if, localInvariants(i) :=
mirroredLocalLabelsi() ∧ labelsOrderedi(locali) (line 28) holds.

Lemma 7.5. Let ax be a step in R in which processor pi calls revivei(locali)
when executing line 17, 29, or 38 and suppose that localInvariants(i) holds before
pi executes revivei(locali). Then, localInvariants(i) also holds in the state that
immediately follows ax.

Proof. Recall that the function revivei(locali) cancels locali’s labels and returns
〈getLabeli(), locali.curr.m, locali.curr.m〉, locali.curr〉 (line 14). Let locali =
〈〈`old, mold, oold〉, prev〉 be the value of locali before pi calls revivei() and
locali = 〈〈`new,mold,mold〉, 〈`old,mold, oold〉〉, be the value of locali after pi calls
revivei().

Since localInvariants(i) = mirroredLocalLabelsi() ∧ labelsOrderedi(locali)
holds for locali = 〈〈`old, mold, oold〉, prev〉 (Condition 2 and line 5), the fol-
lowing hold for locali = 〈〈`new,mold,mold〉, 〈`old,mold, oold〉〉 (i.e., after pi calls
revivei()):

(i) isStoredi(locali.prev.`) = isStoredi(`old) holds, since
(mirroredLocalLabelsi() holds for locali before calling revivei(),

(ii) locali.curr.` = `new = getLabeli() holds, by revivei()’s definition (lines 13–
14), and

(iii) (locali.prev.` ≺lb locali.curr.` ∧ isCanceledi(locali.prev.`) = `old ≺lb `new
∧ isCanceledi(`old) holds, again by revivei()’s definition.

Lemma 7.6. Let mj = 〈•, 〈arrivingj, rcvdLocalj〉〉 be a message that
pi received from pj in step ai ∈ R, and c, c′ are system states in
R, such that (c, ai, c′, •) v R. Suppose that mirroredLocalLabelsi()
∧ labelsOrderedi(locali) ∧ equalStatici(locali, rcvdLocalj) ∧ legitMsgi(mj,
arrivingj .curr.`) ∧ pairInvari(arrivingj) ∧ legitPairsi(locali, arrivingj) hold
in c. Then, localInvariants(i) holds in c′, i.e., after the execution of line 37
which calls mergei(locali, arrivingj) and updates locali.

Proof. Let mj = 〈•, 〈arrivingj , rcvdLocalj〉〉 be a message that pi receives from
pj in step ai and assume that mirroredLocalLabelsi() ∧ labelsOrderedi(locali) ∧
equalStatici(locali, rcvdLocalj) ∧ legitMsgi(mj , arrivingj .curr.`) ∧

31

pairInvari(arrivingj) ∧legitPairsi(locali, arrivingj) hold in c with respect
to locali and mj . For brevity, we denote ξi := isStoredi(locali.prev.`) ∧
locali.curr.` = getLabeli() ∧ labelsOrderedi(locali). Observe that
mergei(locali, arrivingj), initializes outputi either to locali or to arrivingj
(lines 19–21). Then, outputi.curr.m[k] is updated with newEvents, for each
k ∈ {1, . . . , N}, and the result is returned and saved to locali, hence lines 22
to 24 do not change the value of ξi. Therefore, we show that for each of the
three different cases in which a pivot exists (Figure 3), ξi holds after locali is
updated with mergei(locali, arrivingj).

Case of Figure 3a. In this case locali.itm and arrivingj .itm match in
label and offset for each itm ∈ {curr, prev}, and outputi is initialized to
locali, for which ξi holds. Also, no new label is processed by the label-
ing scheme (labelBookkeepingi(mj , j) in line 32), hence the return value of
getLabeli() remains the same (in c and c′) after the execution of line 32 in
step ai. Therefore, isStoredi(outputi.prev.`) ∧ outputi.curr.` = getLabeli() ∧
labelsOrderedi(outputi) holds, since in c and before pi calls mergei() in step
ai, locali.itm =`,o outputi.itm holds for each itm ∈ {curr, prev}, and ξi =
isStoredi(locali.prev.`)∧ locali.curr.` = getLabeli()∧ labelsOrderedi(locali) also
holds.

Case of Figure 3b. Let `loc := locali.curr.`, `arr := arrivingj .curr.`,
`prv := locali.prev.` = arrivingj .prev.`, and `max := max≺lb

{`loc, `arr}
in state c. Note that `max exists, since in c (and thus in ai),
legitPairsi(locali, arrivingj) holds, which implies that comparableLabelsi(X)
holds, where X includes the labels in locali and arrivingj . Observe that in
ai, mergei(locali, arrivingj) initializes outputi to the <`,o-maximum pair in
both curr and prev between locali and arrivingj (lines 19–21), i.e., the pair
that stores `max in its curr.`. Thus, isStoredi(outputi.prev.`) holds in c′, since
isStoredi(`prv) and outputi.prev.` = `prv hold in c. Due to line 32, `arr is
stored in the variables of the labeling algorithm in c, hence `max is also stored
in the variables of the labeling algorithm. Therefore, by `max’s definition,
getLabeli() returns `max in step ai and after the execution of line 32, i.e.,
outputi.curr.` = `max = getLabeli(). Moreover, mirroredLocalLabelsi() holds
for locali, after locali is updated with merge(locali, arrivingj) in line 37 during
step ai (and hence holds in c′).

By the definition of the case of Figure 3b, locali.curr.o 6= arrivingj .curr.o
holds in ai. If `arr ≺lb `loc, then labelsOrderedi(locali) holds in c′, since
outputi.curr.` = `loc, outputi.prev.` = `prv, and labelsOrderedi(locali) holds
in c. Otherwise, if `max = `arr, then outputi.prev.` = `prv ≺lb `max =
outputi.curr.` holds in c′. Also isCanceledi(`prv) holds in c′, since either
isCanceledi(`prv) holds in c or `prv is canceled in step ai by the maximal la-
bel `arr. Therefore, labelsOrderedi(locali) holds in c′

32

Case of Figure 3c. In this case we also use the definitions of `loc,
`arr, and `max from the previous case (but here `prv is not common for
locali and arrivingj). If locali.curr.` = `max in c, then outputi is initial-
ized to locali. Thus, isStoredi(outputi.prev.`) ∧ outputi.curr.` = getLabeli() ∧
labelsOrderedi(output) holds in the end of step ai, since (i) locali.itm =`,o

outputi.itm, for each itm ∈ {curr, prev}, (ii) isStoredi(locali.prev.`) ∧
locali.curr.` = getLabeli() ∧ labelsOrderedi(locali) holds before mergei() is
called, and (iii) line 32 does not change the return value of getLabeli(). Note
that this is the only case where arrivingj .prev.` is not processed by the labeling
algorithm, since it is a canceled label by pj that either (a) exists already in the
variables of the labeling algorithm (hence, getLabeli returns a larger label than
arrivingj .prev.` in pi), or (b) it can be reused in case all processors that store
it as canceled crash before it is introduced in the system by another processor.
Hence, mirroredLocalLabelsi() holds in c′.

Otherwise, outputi is initialized to arrivingj , since arrivingj .curr.` =
`max. In this case, isStoredi(outputi.prev.`) ∧ outputi.curr.` = getLabeli()
holds, since (i) outputi.prev.` = `loc and isStoredi(`loc) holds, and (ii)
outputi.curr.` = `arr = `max ∧ `loc ≺lb `arr, hence getLabeli() re-
turns `arr after the execution of line 32. Also, pairInvari(arrivingj)
holds, which implies that `loc = arrivingj .prev.` �lb arrivingj .curr.` =
`arr = `max. Thus, it either holds that arrivingj .prev.` = arrivingj .curr.`
= `arr and ¬isCanceledi(`arr) (since getLabeli() = `arr), or that
arrivingj .prev.` = arrivingj .curr.`∧ isCanceledi(arrivingj .prev.`). Therefore,
labelsOrderedi(arrivingj) holds, hence labelsOrderedi(outputi) holds in the end
of step ai, thus labelsOrderedi(locali) holds in c′.

Note that during incrementi(), pi changes only in locali.curr.m[i] (line 16)
and the other fields of locali stay intact. In case locali is exhausted after
that increment, pi calls revivei() (line 17), hence by Lemma 7.5 the value of
localInvariants(i) does not change whenever pi calls incrementi(). By lem-
mas 7.5 and 7.6 we have the following.

Corollary 7.7. Let R be an execution, pi, pj ∈ P , and ck ∈ R be a sys-
tem state, which is followed by a step in which pi calls revivei(locali), or
increment(), or mergei(locali, arrivingj). If localInvariants(i) holds in ck, then
localInvariants(i) holds also in ck+1.

Lemma 7.8 considers the case in which a processor calls restartLocali()
(line 28 or 35).

Lemma 7.8. Let locali = 〈y, y〉, where y = 〈getLabel(), zrz, zrz〉, be the value
of locali after a call to restartLocali() in line 28 or 35, in a step ak ∈ R. Then,
localInvariants(i) holds for locali in the state ck+1 that immediately follows ak.

Proof. Since labelBookkeepingi() is called (lines 27 and 32) before each call
of restartLocali() (lines 28 and 35) and no other function in the lines be-
tween the call to labelBookkeepingi() and restartLocali() changes the variables
of the labeling algorithm (lines 33–34), getLabeli() returns the maximal label

33

`max stored by the labeling algorithm and locali.curr.` = locali.prev.` = `max.
Hence, isStoredi(locali.prev.`) ∧ locali.curr.` = getLabeli() hold, and therefore
mirroredLocalLabelsi() holds (cf. condition 2). Also, labelsOrderedi(locali) holds
(condition 2), since (locali.prev.` = locali.curr.` ∧ ¬isCanceledi(locali.curr.`)
holds.

Conditions for an execution to be legal So far in this section, we have
shown that localInvariants(i) holds for the output of every function of Algo-
rithm 1 that a processor pi applies on locali. However, in order to compute
queries about the number of events on a single processor between two states
(Requirement 1) or to the query causalPrecedence(locali, localj), we need to
compare two vector clock pairs, i.e., pairs that appear in different processors
or different system states. To that end, we present the conditions under which
Requirement 1 breaks (remarks 7.9 and 7.10). Then, in Lemma 7.12 we present
the conditions under which an execution is legal (Requirement 1 holds), i.e., we
show the conditions under which different vector clock pairs can be compared
for computing correctly queries about counting events (and by Property 1 causal
precedence).

Remark 7.9 (restartLocal() breaks Requirement 1). We remark that it is
possible that Requirement 1 does not hold immediately after the execution
of restartLocal() (lines 28 and 35). Since after executing restartLocal() all
values in the main and offset of locali.curr and locali.prev are set to zero,
it is possible to miscounting events when comparing two pairs in the states
of active processors. That is, pi can miscount its own events when its entry
locali.curr.m[i] is set to zero after a call to restartLocali(), except for the case
when locali remains the same before and after the call to restartLocali().

Consider a message mj,i = 〈•, 〈arrivingj , rcvdLocalj〉〉 that a processor pi
receives from a processor pj , such that χi,j := equalStatici(locali, rcvdLocalj)∧
legitMsgi(mj , arrivingj .curr.`)∧pairInvari(arrivingj) does not hold (line 34).
Since such messages are not processed by Algorithm 1, there is no call to
restartLocali() or revivei() in the step that pi receives mj,i, hence no imme-
diate violation of Requirement 1. However, the fields of mj,i that refer to the
labeling algorithm’s part of the message are processed by the labeling algorithm
in pi in line 32. Hence, it is possible that the maximal label of pi has changed
in the step where pi receives mj,i, and that pi calls restartLocali() in its next
step. In Section 7.5 (Lemma 7.17) we show that for every LS -scale execution R,
there exist bounds in the number of steps that include a call to restartLocal()
or to revive() that are significantly less than |R|.

Remark 7.10 (Two calls to revive() by the same processor break Require-
ment 1). Let pi be a processor, and cx, cy be two states, such that there exist
at least two steps between cx and cy in which pi called revivei. We remark
that we cannot compute correctly the events that occurred between cx and cy
by comparing localxi and localyi , where localki is the value of locali in state ck.
We explain why this holds in the following.

34

R:

r r rvi vj vk vi

R
∗
2 LE

Figure 4: Illustration of a legal execution (cf. Lemma 7.12). The horizontal
line denotes an execution R and the vertical lines highlight specific steps of R.
The vertical lines that are marked with r, denote a step in which a processor
called restartLocal(). The vertical lines that are marked with vx denote a step
in which a processor px called revivex(). In this example for the segment of R,
marked as R∗, the following hold: (i) no processor called restartLocal(), and
(ii) pi (and every other active processor) called revive() at most once. Thus,
by Lemma 7.12, R∗ is a legal execution, i.e., R∗ ∈ LE.

Let cu be the first state after (the step in which) pi calls revivei() for the
first time after cx, and cv be the first state after pi calls revivei() for the
first time after cu. By the vector clock pair construction and the definition
of the function revive() (Section 5), localui .prev is the value of locali.curr im-
mediately before the first call to revivei() (after cx). Hence, the pivot item
between localxi and localui is localui .prev, i.e., (localxi .curr.`, local

x
i .curr.o) =

(localui .prev.`, local
u
i .prev.o). Similarly, localvi .prev is the value of locali.curr

immediately before the first call to revivei() after cu. Hence, the pivot item
between localui and localvi is localvi .prev, i.e., (localui .curr.`, local

u
i .curr.o) =

(localvi .prev.`, local
v
i .prev.o). Thus, the vector clock items localxi .prev and

localxi .curr, and specifically the events that localxi .curr.m recorded in state
cx do not appear in state cv. Therefore, irrespective of the number of calls to
revivei() between cv and cy, it is not possible to count the events in pi (i.e., the
calls to incrementi()) between the states cx and cy by comparing localxi and
localyi .

In Definition 7.11 we describe the conditions under which restartLocal()
is never called in an execution. Then, in Lemma 7.12 we give the conditions
for an execution to be legal. We also prove that for every LS -scale execution
R, there exists a legal subexecution R∗ of R, such that |R∗| 6� |R|, under the
conditions that there exist bounds Brestart(R) and Brevive(R) on the number
of steps that include a call to restartLocal(), and respectively, revive() in R,
and Brestart(R) � |R| ∧ Brevive(R) � |R| holds. We illustrate Lemma 7.12 in
Figure 4.

Definition 7.11 (The globalInvariants() predicate). Let R be an exe-
cution of Algorithm 1, c ∈ R a system state, ϕi ≡ mirroredLocalLabels() ∧
labelsOrdered(locali) (line 28), and ψi,j ≡ legitPairs(locali, arrivingj)
(line 35), where pi, pj ∈ P and mj = 〈•, 〈arrivingj , rcvdLocalj〉〉 is a message
in the communication channel from pj to pi. We define globalInvariants(R, c) :=

35

∀pi∈P (R),pj∈P ϕi ∧ (¬χi,j ∨ ψi,j). We say that the global invariants hold during
R, if globalInvariants(R, c) holds for every c ∈ R.

Lemma 7.12. Let R be an LS-scale execution. (I) For every subexecution R∗

of R, such that

(i) there is no step in R∗ in which a processor calls restartLocal(), and

(ii) for every processor pi there exists at most one step ax ∈ R∗ in which pi
calls revive() in ax,

R∗ ∈ LE holds, i.e., R∗ is a legal execution.
(II) Moreover, let Brestart(R) and Brevive(R) be bounds on the number of steps
in R that include a call to restartLocal() and revive(), respectively, such that
Brestart(R) � |R| ∧ Brevive(R) � |R| holds. Then, there exists at least one
subexecution R∗ of R such that R∗ ∈ LE ∧ |R∗| 6� |R| holds.

Proof. We prove Part I of the lemma using remarks 7.9 and 7.10. For Part II
we use the definitions of LS -scale executions and the � relation (Section 2), as
well as, the pigeonhole principle.

Proof of Part I. Let R∗ be a subexecution of R, such that conditions (i)
and (ii) of the lemma hold. We show that Requirement 1 holds throughout R∗.
Since no processor calls restartLocal() in R∗ (condition (i)) no event is ever lost
in R∗. That is, there is no step in which for a processor pi, locali.curr.m 6= zrs
holds and pi sets locali.curr.m to zrs by calling restartLocali(), where zrs is
the zero vector (Remark 7.9). Also, since no processor calls restartLocal() in
R∗, globalInvariants(R∗, c) holds for every c ∈ R∗. The latter implies that every
message that an active processor receives in R∗ is either discarded or contains
a pair that is merged with the local one.

Recall that by condition (ii) of the lemma, every processor calls revive() in
R∗ at most once. Thus, it is always possible to compute the number of events
that occurred in each processor between two states in R∗. That is, the query
V yi [i]−V xi [i] (number of events in pi from state cx to state cy), for every pi that
is active in R∗, is computed by the first two cases of Equation 5 (Section 5), since
there is always a pivot item between localxi and localyi in R∗ (i.e., the return
value is never ⊥). Moreover, by the fact that globalInvariants(R∗, c) holds for
every c ∈ R∗, we have that it is possible to merge every two pairs in R∗. Hence,
Property 1 holds (i.e., we can compute correctly the query causalPrecedence()),
since existsPivot() is true in the computation of the query in Section 5.

Proof of Part II. Since R is of LS -scale, and Brestart(R) � |R| ∧
Brevive(R) � |R| holds, (by the pigeonhole principle) there exists at least one
segment R∗ of R in which conditions (i) and (ii) of the lemma hold, such that
|R∗| 6� |R|. Thus, by Part I of the lemma, R∗ ∈ LE. In fact, the maximal such
R∗ is of size at least |R|/(Brestart(R) + Brevive(R)), hence |R∗| 6� LS indeed
holds (cf. Section 2).

36

By Lemma 7.12, we need to show that for every LS -scale execution R the
bounds Brestart(R) and Brevive(R) of the lemma statement indeed exist and also
that Brestart(R) � |R| ∧ Brevive(R) � |R| holds. We do that in Sections 7.4
and 7.5. In the end of Section 7.5 we complete the proof by showing that
Algorithm 1 is practically-self-stabilizing.

7.4 Pair evolution graph and function causality

In this section we establish that a call to restartLocal() in a step ax of an
execution R is caused only due to either (i) stale information that resided in the
system in the starting configuration, or (ii) a call to restartLocal() in a step
that precedes ax, or (iii) a call to revive() in a step that precedes ax. To that
end, we define a notion of function causality between functions that processors
call in R, which bases on a graph that relates pairs when they are either in the
input or output set of a function that is called during a step of R. We refer to
that graph as the pair evolution graph and note that it is an illustration of the
interleaving model (Section 2).

Our aim is to highlight all the changes that occur to any pair during an
execution due to functions that processors apply on these pairs in the steps
they take, as well as the relations between these functions. The illustration that
we bring resembles Lamport’s happened before relation [20]. In our work, we
study the events that can cause a call to the function restartLocal(), rather
than just the order in which the events occur. In the following paragraphs, we
gradually define the pair evolution graph by identifying the functions that can
be applied on a pair, the transition from the input to the output pair when
applying a function, and the pairs that appear in the system throughout an
execution. We then define function causality (Definition 7.15), basing on the
pair evolution graph.

Functions called during a step. We start by listing the functions that a
processor may call during a step. Let R be an arbitrary execution of Algorithm 1
and (cx, ax, cx+1) v R be a subexecution of R, such that processor pi ∈ P takes
step ax. During the step ax and by the definition of the interleaving model
(Section 2), pi can either

(1) run lines 26–29 and send one message (out of N − 1) to another processor
due to line 30, or

(2) send one message (out of at most N − 2 remaining messages) to another
processor due to line 30, or

(3) run the message arrival procedure in lines 31–38.

After giving some insights on the send operation and labelBookkeeping(), we
detail the functions that pi can call during ax.

According to the interleaving model (Section 2), each step includes a single
send or receive operation. Hence, a complete iteration of Algorithm 1’s do-
forever loop (lines 26–30) requires N − 1 steps (not necessarily consecutive),

37

due to the N − 1 messages to be send to the processor’s neighbors. In detail,
we assume that when a processor pi ∈ P , runs line 30, it calls the function
clonei(locali), which creates a separate copy of locali that is then used in every
of the N − 1 calls of encapsulatei(locali) and remains intact during those calls,
regardless of the changes that occur to locali after the first (out of N − 1) send
operation. We assume pi automatically discards the output pair of clonei(locali)
in the last of the N − 1 steps of that send operation. These N − 1 steps can
be interleaved with steps of other processors or with steps in which pi runs the
message arrival procedure (lines 32–38) and possibly changes locali, but not the
copy of locali that is used to complete the send operation.

Thus, during a step a processor can call functions from F1 := {increment(),
revive(), labelBookkeeping(), restartLocal(), clone(), encapsulate()} in case
(1), F2 := {encapsulate()} in case (2), and F3 := {labelBookkeeping(),
merge(), revive(), restartLocal()} in case (3). We define F = F1 ∪ F2 ∪ F3 to
be the set of functions that a processor can call during a step.

Transitions. We define the notion of transitions to denote the application
of a single function on a pair during an execution. We say that (Z, f, Z ′) is
a transition in R, if there exists a step ai ∈ R of a processor pi ∈ P and a
function f ∈ F , such that pi calls f(Z, •) in step ai with output Z ′. In this
paragraph, we list all possible transitions for every function f ∈ F . In the
following paragraphs, we define the pair evolution graph of an execution, basing
on the set of all transitions that occurred during that execution.

Transitions of pairs that stay intact between consecutive steps.
We define the transition (Z, λ, Z), which denotes that the pair Z (either in a
communication channel or in localj of a processor pj ∈ P) remained intact
between a step ax and the beginning of consecutive step, ax+1.

Transitions due to a call to labelBookkeeping(). We define the tran-
sition (Z, labelBookkeeping(), Z ′) to denote a call to labelBookkeepingi()
that does not change the state of the labeling algorithm, and distinguish
the following cases. When pi calls labelBookkeepingi() in the do-forever
loop (line 27), we consider the transition (locali, labelBookkeeping(), locali),
since locali stays intact after the call to labelBookkeepingi() ends. More-
over, when pi calls labelBookkeepingi() in the message arrival procedure
for a message m = 〈•, arrivingj〉 (line 32), we consider the transition
(arrivingj , labelBookkeeping(), locali), since information from m is incorpo-
rated to the local label storage.

We consider the cases in which pi possibly changes the state of the labeling
algorithm during a call to labelBookeepingi() by either

(i) canceling a label and creating or recycling another label during a call to
revivei() (in fact revive() calls cancelPairLabels() in line 14, which includes
a call to labelBookkeepingi() in line 12), or

38

(ii) discovering stale information in the label storage in line 27, or

(iii) receiving a new label during the message arrival procedure in line 32.

We denote any of the changes in the state of the labeling algorithm that are
stated above with the (abstract) function newLabel() and remark that whenever
a processor calls newLabel(), the labeling algorithm deviates from its abstract
task (cf. Section 3.2).

We define transitions for cases (i)–(iii) as follows: (i) (locali,
labelBookkeeping() ◦ newLabeli(), locali) refers to the case where pi calls
labelBookkeepingi() during a call to revivei() (lines 13–14)), which includes
a call to newLabeli(), (ii) (locali, labelBookkeeping() ◦ newLabel(), locali)
refers to the case where pi calls labelBookkeepingi() in line 14, which includes
a call to newLabeli(), and (iii) (arrivingj , labelBookkeeping() ◦ newLabel(),
locali) refers to the case where pi calls labelBookkeepingi() in line 32
due to an arriving message m = 〈•, arrivingj〉, which includes a call to
newLabeli(). Moreover, a call to revive() on locali is illustrated by the tran-
sition (locali, labelBookkeeping() ◦ newLabel(), locali), denoting the call to
cancelPairLabelsi(), followed by the transition (locali, revive(), revivei(locali)),
to denote the creation of revivei()’s output pair.

Transitions due to a call to increment() or revive(). We illustrate a
call to the incrementi() function by pi through a number of transitions, depend-
ing on the value of exhaustedi(locali) in line 17. In case exhaustedi(locali) is
false, then incrementi() is only changing locali to a new value in line 16, say
local′i. In this case, the transition (locali, increment(), local

′
i), captures all the

changes that occurred to locali during the call to incrementi(). Otherwise, if
exhaustedi(locali) is true, then a call to revivei() (line 17), follows the update
from locali to local′i. In this case, we illustrate the call to incrementi() with
the three following transitions. The first is the transition (locali, increment(),
local′i), which indicates the change that occurs to locali in line 16. The two
following transitions are (local′i, labelBookkeeping() ◦ newLabel(), local′i) and
(local′i, revive(), revivei(local

′
i)), to denote the call to revivei() in line 17.

All possible transitions. We define the set of all transitions that are
possible in a step ai ∈ R to be the set Ti := ∪f∈F{(Z, f , f(Z, •)} ∪ {(Z,
λ, Z), (Z, labelBookkeepingi() ◦ newLabeli(), Z ′}, where f(Z, •) denotes the
output pair of f when Z is part of its input. Moreover, we define the set of all
transitions that occur during a step to be the set Ei(R) ⊂ Ti. Given a transition
e = (Z, f, Z ′), we refer to f as the tag of e, and the function TR : E(R) → F
returns the tag f of e, i.e., TR(e) = f .

All pair values during an execution. Our definitions consider all the pair
values that appear in the system during R. These values can appear in the data
field of a message that resides in the communication channel, or in the state of
a processor. Additionally, we consider values of pairs that appear temporarily

39

(a0)

Z0

(a1)

Z0 Z0

(a4)

Z0

(a3) : : :

Zx2

labelBookkeeping() ◦ newLabel()

Zx2

revive()

Zx3

clone()

Zx3

encapsulate()

Zx3

...

...

Zy0

Zx3

Zx3

Zx3

Zx1

increment()

(a2)

Z0

Zx3

labelBookkeeping()

labelBookkeeping() ◦ newLabel()

Zy0

restartLocal()

Zy1

Zs

Zx3

encapsulate()

Zx3
Zx3

Zu

labelBookkeeping() ◦ newLabel()

merge()
merge()

Zw

Zx3
Zx3

Zw

Zs Zs Zs Zs

Figure 5: An example of the pair evolution graph G(R) of an arbitrary execution R.
For simplicity, we illustrate any edge (Z, λ, Z′) ∈ E(R) without its tag λ. In step a0,
processor pi calls increment on Zx1 = locali, which corresponds to the following three
transitions: (Zx1 , increment(), Zx2) refers to line 16 and (Zx2 , labelBookkeeping() ◦
newLabel(), Zx2) together with (Zx2 , revive(), Zx3) refer to the call to revive() in
line 17. Then, pi does an iteration of its do-forever loop (lines 26–30), which ends with
one send operation, say to processor pj . The latter corresponds to the transitions (Zx3 ,
labelBookkeeping(), Zx3), (Zx3 , clone(), Zx3), and (Zx3 , encapsulate(), Zx3). In step
a1, pj receives pi’s message (lines 31–38), which cannot be merged with Zy0 = localj
due to label incomparability, and hence pj calls restartLocalj() (line 35). This step
corresponds to the transitions (Zx3 , labelBookkeeping() ◦newLabel(), Zy0) and (Zy0 ,
restartLocal(), Zy1). In step a2, pi does one more send operation (line 30), say to
processor pk, which corresponds to the transition (Zx3 , encapsulate(), Zx3). Then, in
step a3, pk receives pi’s message and merges Zx3 to Zu = localk (lines 31–38). This
step corresponds to the transitions (Zx3 , labelBookkeeping()◦newLabel()(), Zu), (Zu,
merge(), Zw), and (Zx3 , merge(), Zw).

during a step, because we are interested in the exact values that the algorithm
functions compute, and thus we unseal the encapsulation of the step atomicity
(Section 2). Thus, for a step ai ∈ R that follows the state ci, we define Vi(R)

40

to be the collection (with duplicates) of pairs that includes: (i) all pairs that
appear in the state of every processor in ci, and (ii) all the pairs that are outputs
of functions that are called during the step ai.

Consider two pairs that are identical but appear either (a) in different states
or (b) in the same state but one appears in the communication channel, and
the other one appears either in a different message or in the processor’s local
pair. Then these two pairs appear as different elements in Vi(R). Moreover,
since the output of clone(), encapsulate(), and labelBookkeeping() equals the
input these pairs appear twice in Vi(R). At any time, the size of Vi(R) is
bounded by N +M plus the number of pairs that are outputs of the functions
that a processor calls during step ai. This bound holds due to the fact that
we have N processors and M = CN(N − 1) is the maximum capacity of pairs
in the communication channels. Note that this definition of Vi(R) makes the
definition of pair evolution graphs more intuitive.

Pair evolution graph. We define a graph that illustrates the evolution of all
the pair values that appear in the system during R, according to the interleaving
model. In this graph, the vertices are all the pair values that appear in the
data field of every message and the states of every processor (including the
intermediate stages that steps use for their computation) of an execution R.
The graph’s edges are all the transitions between couples of pairs that occur
during R.

We define the pair evolution graph of an execution R to be the directed
and layered graph with tagged edges G(R) = (V (R), E(R)), where V (R) =
∪ai∈RVi(R), E(R) = ∪ai∈REi(R), and an edge (Z, f, Z ′) ∈ E(R) is a directed
graph’s edge (Z,Z ′) tagged with f (and hence denoted with a triple). We say
that Vi(R) ⊆ V (R) is a layer of G(R), for every step ai of R. We illustrate an
example of a pair evolution graph (and hence the transitions) in Figure 5, and
give some insights below.

We do some observations for pair evolution graphs. Let =V (R) be the relation
that denotes the fact that two pairs are the same node in G(R). For example, it
might be the case that Z1 = Z2 but Z1 6=V (R) Z2, due to the multiple copies of
a single pair that are created in a send operation. By the definition of G(R), all
edges that are tagged with λ, connect only pairs of consecutive layers, i.e., for
every e = (Z, λ, Z ′) ∈ Ei(R), Z ′ ∈ Vi+1(R) ∧ Z = Z ′ ∧ Z 6=V (R) Z

′ holds and
also Z is not further processed in step ai. Also, all edges that are not tagged
with λ, include pairs from the same layer, i.e., ∀e = (Z, t, Z ′) ∈ E(R) such that
t 6= λ, there exists a step ai ∈ R, such that Z ∈ Vi(R) ∧ Z ′ ∈ Vi(R) holds.
Moreover, there is no edge in G(R), that includes pairs from non-consecutive
layers, i.e., ∀e = (Z, t, Z ′) ∈ Ei(R), Z ′ ∈ Vi(R) ∪ Vi+1(R) holds. We note that
given a subexecution R′ v R, the pair evolution graph of R′ is the subgraph of
G(R) that includes the layers corresponding to the steps of R′, i.e., G(R′).

Function causality for restartLocal(). As we showed in Section 7.3,
restartLocal() and revive() are the only two functions of Algorithm 1 that

41

can possibly violate the conditions for an execution to be legal. In this para-
graph, we define a notion of function causality with respect to restartLocal(),
and note that we deal with the case of revive() in the following paragraph. Our
definition determines when a call to a function f ∈ F in a step of an execution
R causes a function call to restartLocali() in a subsequent step.

We focus in a subset of F , Ffocused := {restartLocal(), revive()}, since as
we will show in Section 7.5, the number of calls to functions in Ffocused has an
effect on the number of subsequent calls to restartLocal(). In order to define
function causality, we first define when two functions are adjacent or connected
(i.e., there is a path that connects them in G(R)) in Definition 7.13.

Definition 7.13 (Adjacent and connected functions). For two functions f, g ∈
F , we say that f is adjacent to g in R, if and only if, ∃i ∈ N, e1 = (Z1,
f , Z ′1) ∈ E(R), e2 = (Z2, g, Z ′2) ∈ E(R) : TR(e1) = f ∧ TR(e2) = g ∧
Z ′1 =V (R) Z2 holds, i.e., (e1, e2) is a path in G(R). For f, g ∈ Ffocused, we say
that f is connected to g in R, if and only if, there exist e1, e2, . . . , ex ∈ E(R),
such that TR(e1) = f ∧ TR(ex) = g ∧ (∧i=1,...,x−1(ei is adjacent to ei+1)).

Recall that we refer to all the variables of Z except for Z.curr.m as the static
part of Z, since increments to Z affect only Z.curr.m. We say that a function
f leaves the static part of a pair Z intact, if the static part of f(Z, •) equals
the static part of Z. Lemma 7.14 shows which functions leave the static part of
their input pairs intact and which don’t.

Lemma 7.14. The functions in F \Ffocused leave the static part of at least one
of their input pairs intact. For each function in Ffocused, the input and output
pairs may differ in their static parts.

Proof. The lemma statement holds for all functions in F \ (Ffocused ∪
{merge(), increment()}) = {clone(), encapsulate(), labelBookkeeping()}, since
these functions leave their input intact (recall that labelBookkeeping() does not
operate on a pair). Since the output of merge() equals, in its static part, to one
of the two input pairs, the claim holds also for merge() (cf. Section 5). Note
that a call to increment() can include a call to revive() (we study the case of
revive() below), however line 16 does not change the static part of the input
pair.

The functions in Ffocused = {revive(), restartLocal()}, by their definitions,
can possibly output pairs that have different static part from their input (cf.
lines 9 and 13–14). For the case of revive(), let pi be a processor, Z1 = locali,
and Z2 = revivei(Z1). Since pi cancels the labels of Z1 and uses the new
maximal label that the labeling algorithm returns as the label in Z2.curr.`
(lines 13–14), the static parts of Z1 and Z2 are different.

We now study the case of restartLocal(). Recall from the defini-
tion of restartLocal() (line 9) that immediately after a processor pi calls
restartLocali(), locali has the form 〈y, y〉, where y = 〈getLabeli(), zrs, zrs〉
and zrs is the N -size zero vector. Thus, the only case where restartLocali()
leaves the static part of locali intact, is when locali = 〈〈`x, •, zrs〉, 〈`x, zrs, zrs〉〉

42

holds immediately before pi calls restartLocali(), where `x is pi’s local maxi-
mal label. The latter holds because locali equals 〈〈`x, zrs, zrs〉, 〈`x, zrs, zrs〉〉
after pi calls restartLocali(). This is the case when pi receives a pair arrivingj
from a processor pj , such that existsPivoti(locali, arrivingj) does not hold and
locali.curr.` remains pi’s maximal label even after pi processes the labels in
arrivingj .

For any other case except for the one described above one of the following
is true for locali immediately before pi calls restartLocali(): locali.curr.` 6=
locali.prev.` or s 6= zrs, for at least one vector s in {locali.curr.m, locali.prev.m,
locali.prev.o}. For any of these cases and by the definition of restartLocal(),
immediately after pi calls restartLocali(), locali has a different static part than
immediately before pi called restartLocali().

In Definition 7.15 we define function causality between a call to a func-
tion in {revive(), restartLocal()} and a subsequent call to restartLocal(). Let
prestartLocal(i, k) := ¬(mirroredLocalLabels() ∧ labelsOrdered(locali)) (line 28)
and qrestartLocal(i, j, k) := ¬legitPairs(locali, arrivingj) (line 35) be the predi-
cates such that whenever either of them is true pi calls restartLocali() in a step
ak ∈ R′, where arrivingj is the pair received by pi in a message from pj in step
ak.

Definition 7.15 (f causes restartLocal(), for f ∈ {revive(), restartLocal()}).
Let |R′| ≤ MAXINT be an execution, pi, pj ∈ P , ak ∈ R′, and P(i, j, k) :=
prestartLocal(i, k) ∨ qrestartLocal(i, j, k). Moreover, let e, e′ be two edges in G(R′),
such that TR′(e) ∈ {revive(), restartLocal()}, TR′(e′) = restartLocal(), e ∈
Er(R

′), e′ ∈ Ek(R′), r ≤ k, and P(i, j, k) is true (in step ak). We say that
f := TR′(e) causes restartLocal() in R′, if and only if, the following hold:

(a) f is connected to restartLocal() in G(R′) through a path P = (e1, . . . , ex),
such that e1 = e and ex = e′,

(b) the value of a predicate π in P(i, j, k) depends on a vector clock item If in
f ’s output, and

(c) for every edge et ∈ P , such that et /∈ {e, e′}, it holds that the function
TR′(et) does not change the label and the offset of If .

For example, in Figure 5 revive() in step a0 causes restartLocal() in step
a1, since the pair (and hence the vector clock items) that pi sent to pj , was
incomparable (no pivot existed) with pj ’s local pair, was created when pi called
revive() in a0.

Function causality for revive(). In the following lemma, we show which
functions in F can change the value of the predicate exhausted(local) (Equa-
tion 1 and lines 17, 29, and 38), and thus cause a call to revive() (Lemma 7.16).
We note that the analysis for revive() (Lemma 7.16) is much simpler
than the one for restartLocal(), because the condition for calling revive(),
exhausted(local), depends only on vector clock increments. On the contrary,

43

the conditions for calling restartLocal() (lines 28 and 35) depend on every field
of local, as well as on whether an arriving pair can be merged with the local
one.

Lemma 7.16. Let pi ∈ P . (i) The value of the predicate exhaustedi(locali)
(cf. Section 5) can change to true only due to a call to incrementi() or
mergei(), or it can be true in the starting system state due to stale informa-
tion in pi’s state. (ii) The value of exhaustedi(locali) does not change after
pi calls a function in {labelBookkeepingi(), clonei(), encapsulatei()}. (iii)
The value of exhaustedi(locali) is false after pi calls a function in Ffocused =
{restartLocal(), revive()}.

Proof. Recall that exhausted(Z) ⇔ ΣNk=1(Z.curr.m[k] − Z.curr.o[k]) ≥
MAXINT − 1 (Equation 1). For part (i) of the claim, first note that the
starting system state, c0, of any execution, R, is arbitrary. Hence, it can be
the case that exhaustedi(locali) is true for locali in c0. The lemma state-
ment holds for increment(), since by its definition (lines 15–17) it increases
locali.curr.m. Similarly, mergei(locali, arrivingj) outputs a pair that possibly
includes more events that than locali and arrivingj (cf. lines 18–25 and Sec-
tion 5). Hence, it might be the case that exhaustedi(locali) is false before a call
to mergei(locali, arrivingj), but true for the new value of locali.curr.m, when
pi stores in locali the output of mergei().

For part (ii) of the claim, note that labelBookkeepingi(), clonei(), and
encapsulatei() do not change locali.curr.m. Finally, part (iii) of the claim is
true since by the definitions of restartLocal() (line 9) and revive() (lines 13–14),
locali.curr.m = locali.curr.o holds for their outputs, hence exhaustedi(locali)
is false.

7.5 Bounding the number of deviations from the abstract
task in an LS-scale execution

In Lemma 7.17, we show that the number of steps in which a processor calls
revive() or restartLocali() during an execution R′, such that |R′| ≤MAXINT ,
is significantly less than |R′|. We focus in these two functions, because due to
Section 7.4, only these two functions can cause a call to restartLocal() (cf.
Lemma 7.14 and Definition 7.15). Then, in Corollary 7.24 we show that Algo-
rithm 1 is practically-self-stabilizing (i.e., Theorem 7.1 holds).

Lemma 7.17. Let R be an execution of Algorithm 1 and R′ be a subexecution
of R, such that |R′| ≤ MAXINT . Then, the number of steps in which a
processor calls either revive() or restartLocal() in R′ is significantly less than
MAXINT .

Proof. The proof focuses on giving a bound on the number of steps in which a
processor calls restartLocal() in R′ and showing that the bound is significantly
less than MAXINT . As a by-product of this goal, Claim 7.18 shows that the
number of steps in R′ in which a processor calls revive() is significantly less
than MAXINT .

44

A processor can call restartLocal() either in line 28 or in line 35. The proof
considers both cases. We first show that there can be at most one call per
processor to restartLocal() during any execution due to line 28. To prove this
statement, first observe that the condition in line 28 can be false due to stale
information that resided in the processor’s state in the starting state. However,
by Corollary 7.7, for any function that changes local, it holds that the condition
in line 28 is false for the updated value of local.

In the remainder of this proof, we show that the number of steps in R′

that include a call to restartLocal() due to line 35 is significantly less than
MAXINT . We first bound the maximum number of steps that include a call
to revive() (Claim 7.18), as well as the maximum number of labels that can exist
during R′ (Claim 7.19). In claims 7.20 and 7.21 we bound the number of steps
that include a call to restartLocal() in line 35 due to the recovery of the link-
layer algorithm [13], and respectively, the token-passing mechanism (Section 6).
Moreover, in Claim 7.22 we bound the number of calls to restartLocal() in
line 35 that occur due to a single pair static part that appears in R′. Finally,
in Claim 7.23 we show that these bounds imply that the number of steps that
include a call to restartLocal() in line 35 during R′ is significantly less than |R′|,
by showing that the number of pair static parts that appear in R′ is significantly
less than MAXINT and combining Claims 7.18–7.22.

Claim 7.18. The number of steps during R′ that include a call to revive() is
at most N +N2 +N3 · C.

Proof of Claim 7.18. The proof considers the three causes for pair exhaustion
during R (cf. Lemma 7.16). That is, due to calls to increment() and merge(),
as well as due to stale information that appeared in the starting system state.

Since |R′| ≤MAXINT , the maximum number of increments that can occur
in R is less than MAXINT . Note that for a single vector clock pair exhaustion,
at most all processors can wrap around concurrently. This can occur when
processor pj holds a pair value Zj in localj that is close to be exhausted, say,
just one increment away (lines 15–17). Then, pj sends localj ’s value Zj to all
other processors pk ∈ P in the system. Every processor pk that receives Zj ,
merges it with localk, and in the following step calls incrementk(), which leads
to exhausting localk. Hence, there can be at most N steps in R′ that processors
pk take, that include a call to revivek() due to the exhaustion of a pair that
was merged with Zj . Indeed, pk can exhaust the output of mergek(localk, Zj)
at most once, because the call to revivek() produces a pair with a static part
(and hence the labels curr.` and prev.`) that is different than the one of Zj and
localk.

The remaining pair exhaustions can be only due to arbitrary values that
resided in the starting system state (cf. Lemma 7.16). At most N such vector
clocks have resided in the states of the processors, and at most M ≤ N2 · C
resided in the communication channels. Since for each of these N +N2 · C pair
values can lead to at most N concurrent exhaustions, there can be N2 +N3 · C
exhaustions due to pairs that come from the arbitrary starting state.

45

Note that we have counted the number of steps that include a call to revive()
in two ways; (i) calls to increment() or merge(), and (ii) stale information that
appeared in the starting system state. Of course, a pair can become exhausted
due to a combination of these two causes. The arguments above hold for such
combinations and the counting is correct because each pair exhausted is counted
at least once. Therefore, in total, there can be at most N + N2 + N3 · C
pair exhaustions that can occur during R′. Hence, at most that many calls to
revive() in R′.

Claim 7.19. The maximum number of labels that can exist in R′ (and hence the
number of steps that include a call to the newLabel() function) is in O(CN3).

Proof of Claim 7.19. Recall that from the proofs of corollaries 7.1, 7.2
and 7.3, proving that the labeling algorithm of Dolev et al. [12] is practically-
self-stabilizing depends on the existence of a bound on the maximum number of
labels, rather than the actual value of the bound. We give a (polynomial) bound
on the number of labels that exist during R′, which implies that the number of
steps that include a call to newLabel() (cf. Section 7.4) has the same bound.

By corollaries 7.1 and 7.2 there can be at most 4N2 + 4NM − 4N − 2M
labels in the system, where M = CN(N − 1) is the maximum capacity of pairs
in the communication channels. Note that there can be at most N+N2 +N3 ·C
additional labels creations, due to calls to the revive() function. Thus, there can
be at most L := (N +N2 +N3 · C)+(4N2 +4NM−4N−2M) ∈ O(CN3) labels
in the system during R′, and hence at most that many calls to newLabel().

In the labeling algorithm of Dolev et al. [12], each processor pi uses an N -
size array of bounded FIFO queues, storedLabelsi[], for keeping a label history.
The queue storedLabelsi[j] stores the labels that pi has received that show pj
as their creator, i.e., `.creator = j holds for every ` ∈ storedLabelsi[j] (cf.
Section 3.2). Recall that in Section 7.2 we extended the queue lengths for an
execution of Algorithm 1 in which no processor calls revive(), to accommodate
for the two labels that each pair includes. By Claim 7.19, we are able to extend
the size of the label storage of the labeling algorithm, in order to accommodate
for the extra label creations due to calls to the function revive() in Algorithm 1.
Thus, by Claim 7.19 and Section 7.2 we set |storedLabelsi[j]| = L, for every
pi, pj ∈ P , where L = (N +N2 +N3 · C)+(4N2 +4NM −4N −2M) ∈ O(CN3).

Claim 7.20. There can be at most (2C + 1)N2 steps that include a call to
restartLocal() in line 35 due to the recovery of the link-layer algorithm [13].

Proof of Claim 7.20. Recall that the self-stabilizing link-layer algorithm
of [13], which we rely on, requires at most 2C + 1 message arrivals per direction
of a communication channel to stabilize. Therefore, since there are N(N − 1)/2
links in the system, where each of them is a bidirectional communication chan-
nel, there can be at most 2 · (2C + 1) · N(N − 1)/2 ≤ (2C + 1)N2 steps that
include a call to restartLocal() due to stale information that, at the starting
system state, resides in the communication channels.

46

Claim 7.21. Let mj,i = 〈•, 〈arrivingj , rcvdLocalj〉〉 be a message that pi
receives from pj, via their communication channel, channelj,i. There can
be at most C steps that include a call to restartLocali() in line 34, due
to stale information that appears in the field rcvdLocalj of mj,i, where
mj,i appears in channelj,i in the starting system state and rcvdLocalj sets
equalStatici(locali, rcvdLocalj) to true. Hence, there can be at most M ≤ CN2

such calls to restartLocal() in any execution.

Proof of Claim 7.21. Notice that there can be at most C messages in the
communication channel from pj to pi, channelj,i, at any time, and specifically
in the starting system state. Each of these C messages in transit from pj to pi can
possibly store a value of rcvdLocalj , such that equalStatici(locali, rcvdLocalj)
is true in line 34, which leads to a call to restartLocali() in line 35.

We provide details about how this can occur. Consider a step ax ∈ R of pi
that includes a call to restartLocali() due to a message arrival (line 35). Hence,
equalStatici(locali, rcvdLocalj) was true during ax. The fact that ax includes
a call to restartLocali() does not cause the other C − 1 stale messages in the
channel from pj to pi to be omitted. Therefore, there could be a subsequent step
during which equalStatici(locali, rcvdLocalj) is true due to the other C−1 mes-
sages in channelj,i that have stale information, since those messages appeared
in the starting system state.

Such steps can be repeated at most C times for channelj,i and at most M
in total during R′, where M is the number of messages in transit at any given
time and hence in starting system state, c0.

Claim 7.22. Let L = (N+N2+N3 ·C)+(4N2+4NM−4N−2M) ∈ O(CN3) be
the maximum number of labels that can appear in the system in R′ (Claim 7.19).
During R′, there can be at most 2N · L calls to restartLocali() in line 34 for
every pair static part that appears in locali of a processor pi. Hence, for each
pair static part that appears in the state (local) of a processor in R′, there can
be at most 2N2L calls to restartLocali() in line 34.

Proof of Claim 7.22. Let pi, pj ∈ P be two processors and mj,i = 〈•,
〈arrivingj , rcvdLocalj〉〉 be a message that pj sends to pi by adding it to
channelj,i. Consider the case where the pair static part of arrivingj sent by pj
to pi causes pi in step ax to call restartLocali() and obtain locali = Z. Note
that when referring to a value Z or Zx that a variable takes, e.g., locali, we treat
Z and Zx as (immutable) literals, i.e., pair values that do not change. In Part I
of the proof, we show that there can be at most one more call to restartLocali()
(i.e., a total of at most two) due to receiving the same pair static part from pj ,
before pj stores a pair with a different static part in localj . The proof relies on
the token-passing mechanism (lines 30, 33, and 34). In the proof of this claim,
we assume that the token passing mechanism has stabilized (since Claim 7.21
has already showed that the token passing mechanism of lines 30, 33, and 34 can
cause an additive (bounded) number of calls to restartLocal(). Then, in Part
II of the proof, we show that each pair static part can be created by a processor
at most L times in R′. We combine Part I and II to obtain the claim’s bound.

47

Throughout the claim’s proof, we denote with S(Z) = 〈〈`1,⊥, o1〉, 〈`2,m2, o2〉〉
the static part of a pair Z = 〈〈`1,m1, o1〉, 〈`2,m2, o2〉〉.

Part I Recall from line 34 that for any message mj,i = 〈•, 〈arrivingj ,
rcvdLocalj〉〉 that pj sends to pi, equalStatici(locali, rcvdLocalj) has to be true
for pi to process arrivingj . Let locali = Zi1 in state cx and suppose in the step
ax that immediately follows cx, processor pi calls restartLocali() in line 34 after
receiving mj,i = 〈•, 〈Zj1 , rcvdLocalj〉〉, which produces locali = Zi2 . Due to the
token passing mechanism (lines 30, 33, and 34), pi can process a new message
from pj in a step that follows ax, only after pj receives Zi2 or a subsequent pair
that appeared in locali after ax (possibly after receiving other pairs). Let ax′ be
the first step after ax in which pj stores in localj a pair with static part different
than S(Zj1). We show that there can be at most one step between ax and ax′

(different than ax and ax′), in which pi calls restartLocali() due to receiving a
pair with static part equal to the one of Zj1 . Hence, there can be at most two
such calls to restartLocali(), until a state in which pj stores a pair in localj
with static part different than S(Zj1).

Recall that locali = Zi2 is the value of locali in the state that immediately
follows step ax, in which pi calls restartLocali(), and let `i2 = Zi2 .curr.` =
Zi2 .prev.` for brevity. Observe from the definition of restartLocal() (line 9),
that getLabeli() returns `i2 according to a possible update of the local maximal
label in line 32. Then `i2 is equal to either Zi1 .curr.` (Case a), or Zj1 .curr.`
(Case b), or `i3 is different than both Zi1 .curr.` and Zj1 .curr.` (Case c). The
latter case refers to a situation in which Zi1 .curr.` and Zj1 .curr.` cancel each
other and pi produces a new label in line 32 (which is then used in line 35).

Case a In this case Zj1 .curr.` ≺lb Zi1 .curr.` holds (cf. Section 3.2 re-
garding the ≺lb relation). That is, Zi1 .curr.` was the value of locali.curr.` in
the system state before ax, Zi1 .curr.` remains as the maximal label of pi even
after pi receives Zj1 in ax, and hence pi uses Zi1 .curr.` in the return pair of
restartLocali() in ax, Zi2 = 〈〈Zi1 .curr.`, zrs, zrs〉, 〈Zi1 .curr.`, zrs, zrs〉〉. We
show that in a system state that immediately follows a step aya in which pj
receives Zi2 from pi (hence after ax), S(Zj1) 6= S(localj) holds. This is true
due to the fact that pj receives the message mi,j = 〈•, 〈Zi2 , •〉〉 from pi, such
that Zi2 .curr.` = Zi1 .curr.`, or a message from pi with a pair which has a la-
bel larger than Zi2 .curr.` (due to the token passing mechanism in lines 30, 33,
and 34). Since Zj1 .curr.` ≺lb Zi1 .curr.` (this case’s assumption), we have that
Zj1 .curr.` cannot be the label that appears in localj .curr.` after aya , because
during aya line 32 causes pj to adopt the label Zi2 .curr.` = Zi1 .curr.`, since we
have Zj1 .curr.` ≺lb Zi1 .curr.` (or a label larger than Zi1 .curr.`).

Case b In this case Zi1 .curr.` ≺lb Zj1 .curr.` holds, due to the fact that
pi sets locali = Zi2 = 〈〈Zj1 .curr.`, zrs, zrs〉, 〈Zj1 .curr.`, zrs, zrs〉〉 when calling
restartLocali() in step ax. Let ayb be the step (that follows ax) when pj receives
Zi2 and cyb be the system state that immediately precedes ayb . Note that the

48

next pair after ax that pj will receive from pi can possibly have a larger label
than `i2 = Zi2 .curr.` = Zj1 .curr.`, but this event falls in Case c, which we study
below. Thus, in case pj indeed receives Zi2 in ayb , either (b-i) S(localj) = S(Zi2)
or (b-ii) S(localj) 6= S(Zi2) holds (in cyb).

In case (b-i) S(localj) = S(Zi2), the two pairs can be merged to localj = Zj2 ,
such that S(Zj2) = S(Zi2) = 〈〈`i2 ,⊥, zrs〉, 〈`i2 , zrs, zrs〉〉 is the representation
of Zj2 ’s static part. Thus, in a step that follows ayb , processor pj sends Zj2 to
pi and in step azb , processor pi receives Zj2 . Consider the case where pi merges
Zj2 with locali in azb to locali = Zi3 .

• If S(Zi3) = S(Zj2) (due to merge or a restartLocali() that used `i2 as pi’s
maximal label), then we loop back to the beginning of Case b (without
having an additional call to restartLocali()).

• Otherwise, if S(Zi3) 6= S(Zj2), then `i2 is not the maximal label in pi
(due to a call to mergei() (line 18) or a call to restartLocali() in azb).
Hence, Zi3 .curr.` is either larger than `i2 or cancels `i2 . Subsequently,
once pj receives Zi3 .curr.` from pi (due to the token passing mechanism
in lines 30, 33, and 34), localj .curr.` will change to either Zi3 .curr.` or a
larger label that resides in pj .

Hence, in this subcase (b-i), a single pair static part that was stored in localj ,
can cause pi to call restartLocali() at most twice due to the static part of Zj1
before pj changes the static part of localj to another one.

In case (b-ii), the fact that S(localj) 6= S(Zi2) holds in the system state
immediately before ayb implies that Zi2 .curr.` = Zj1 .curr.` is not the maximal
label in pj immediately before ayb . The latter holds, because localj used to hold
the value Zj1 before ayb and pj can only substitute the value of localj .curr.`
for a label with a larger label than Zi2 .curr.` = Zj1 .curr.`. Hence, for the
value of localj in the system state that immediately follows ayb , it holds that
S(localj) 6= S(Zj1), since localj .curr.` cannot be equal to Zj1 .curr.`.

Case c In this case both Zi1 .curr.` and Zj1 .curr.` are canceled in ax
and pi creates a larger label `i3 to use in Zi2 . Thus, in the system state that
immediately follows step ayc , in which pj receives Zi2 (or a pair with a curr.`
that is larger than Zi2 .curr.`), it holds that S(localj) 6= S(Zj1), since Zj1 .curr.`
will not be the largest label in pj ’s state that immediately precedes ayc .

By the case analysis above, we conclude that a single pair static part in pj
can cause pi to call restartLocali() either once (cases a, b-ii, and c) or twice
(case b-i), before pj changes the static part of localj to another one (different
from the static part of Zj1).

Part II We show that there is a bound on the number of times a processor can
create the same pair static part. Let us consider a scenario in which processor
pj stores the pair Z1 in localj at some system state c, and then stores the pair
Z2, such that S(Z1) 6= S(Z2), at a system state c′ that follows c, before creating

49

step ax1

locali = hh`1; •; zrsi; h`1; zrs; zrsii

step ax2

pi receives arrivingj from pj

`2 := arrivingj:curr:`

`1 ≺lb `2, hence pi sets locali:curr:` = `2

`1 is not canceled by arrivingj's labels

step ax3

pi receives arrivingk from pk

existsP ivoti(locali; arrivingk) is false

arrivingk:curr:` and `2 cancel each other

pi calls restartLocali()

since `2 and arrivingk:curr:` are canceled,

`1 is pi's local maximal label

Hence, restartLocali() returns

locali = hh`1; zrs; zrsi; h`1; zrs; zrsii

Figure 6: Recycling of a pair static part by a processor pi. In the end of step ax1
,

processor pi stores locali = 〈〈`1, •, zrs〉, 〈`1, zrs, zrs〉〉. In step ax2 , pi receives
arrivingj from pj , such that `2 := arrivingj .curr.` becomes pi’s maximal label
without canceling `1 (the labels were created by different processors). In step
ax3

, pi receives arrivingk from pk, such that arrivingk.curr.` and `2 cancel
each other. Hence, `1, becomes again pi’s local maximal label and after pi calls
restartLocali(), locali = 〈〈`1, zrs, zrs〉, 〈`1, zrs, zrs〉〉 holds. That is, pi recycled
the same pair static part. Steps ax1 , ax2 , and ax3 can be repeated (possibly with
other steps in between) at most L times (Claim 7.22, Part II).

(via restartLocalj()) the pair Z3, such that S(Z1) = S(Z3), which results in
a subsequent system state c′′ that follows c′. We illustrate this scenario in
Figure 6.

We argue that Z3.curr.` = Z3.prev.` holds in c′′. Assume, towards a contra-
diction, that Z3.curr.` 6= Z3.prev.` holds in c′′. Since S(Z1) = S(Z3), we have
that Z1.curr.` 6= Z1.prev.` holds in c. Moreover, since line 28 makes sure that
either Z1.curr.` = Z1.prev.` or Z1.prev.` is canceled, it holds that Z1.prev.` is
canceled, and hence Z3.prev.` = Z1.prev.` is canceled. Thus, pj in a step that
follows c used the canceled label Z1.prev.` to create a new pair and store it in
localj , which is a contradiction, because getLabelj() by its definition never re-
turns a canceled label. Thus, it can only be the case that Z3.curr.` = Z3.prev.`
in c′′, which means that pj created Z3 via a call to a restartLocalj(). The
latter implies that S(Z1) = S(Z3) = 〈〈`x,⊥, zrs〉, 〈`x, zrs, zrs〉〉, where `x :=
Zk.curr.` = Zk.prev.`, for k ∈ {1, 3}.

In fact, for this scenario to occur, `x should remain non-canceled in the label
storage of pj between c (where localj = Z1) and c′′ (where localj = Z3), so
that pj can recycle `x via the labeling algorithm and have `x returned through
getLabelj(), as part of a restartLocalj(). For that to happen, Z2.curr.` must
be canceled by another label (so then pj recycles `x). Such cancelation scenarios
can occur at most L times in R′, since there exist at most L labels in R′.

We remark that the number of pairs with static part different than S(Z1)
that pj stores in localj between the states c and c′′ does not change the fact
that pj can (create and thus) store Z3 in c′′. That is, the recycling scenario
that we describe above with Z1 and Z3, is possible to occur even if pj stores the
pairs Zk, for every k in a set of indices K, such that S(Zk) 6= S(Z1), k ∈ K.

50

However, for the recycling scenario to occur we require that all the labels of the
pairs Zk, k ∈ K, cancel each other and make `x the maximal label in pj ’s state
in a system state between c and c′′, which results to pj using `x to create Z3.

We now show that by combining Part I and II we obtain the claim’s bounds.
By Part I, a single pair static part of a pair Z that processor pj stores can cause
another processor pi to call restartLocali() at most twice before pj stores a pair
with a different static part than Z. By Part II, after pj stores a pair in localj
that has a static part different than Z, it can create again a pair with the same
static part as Z at most L times in R′. Hence, a single pair static part can cause
pi to call restartLocali() in at most 2L steps in R′, hence 2(N − 1) ·L ≤ 2N ·L
for all other processors (since there are N − 1 choices for pi). Since, there
are N choices for pj there can be at most 2N2L steps that include a call to
restartLocal() for each pair static part.

In the proof of Claim 7.23, we use the claims of this lemma and Lemma 7.14
to show that the number of steps in R′ that include a call to restartLocal() due
to line 35 is significantly less than |R′|.

Claim 7.23. The number of steps that include a call to restartLocal() due to
line 35 in R′ is in O(N8C).

Proof of Claim 7.23. First, we show that the claim is true when there are
no calls to revive() in R′. Then, we extend our arguments to show that the
claim holds even when there are calls to revive() during R′. In the following, we
denote with V = N +N2 +N3C the maximum number of steps that include a
call to revive() (Claim 7.18) and L = (N +N2 +N3 · C) + (4N2 + 4NM −4N −
2M) ∈ O(CN3) the maximum number of labels that can be created during R′

(Claim 7.19).
First, suppose that there are no calls to revive() during R′. Recall that there

are at most N + M distinct pairs in the starting system state of R′, cx. Since
there are no calls to revive() during R′ and due to Lemma 7.14, any pair that
appears in R′ and differs to the ones that appear in cx with respect to their pair
static part (i.e., all pair variables except for curr.m), can only be created in a
step of R′ in which a processor called restartLocal(). A pair that is an output
of restartLocal() has the form 〈〈`, zrs, zrs〉, 〈`, zrs, zrs〉〉, where ` = getLabel()
is the local maximal label and zrs is an N -size vector of zeros. Thus, during
R′ there can be at most N + M + L pairs with respect to their static part.
The latter holds, since (i) each of the N +M pairs from the starting state can
be the input of a call to restartLocal() (line 35), and (ii) any further call to
restartLocal() produces a pair of the form 〈〈`, zrs, zrs〉, 〈`, zrs, zrs〉〉, and there
can be at most L such pairs during R′ due to Claim 7.19 (since their static part
only differs on `).

Hence, if there are no calls to revive() during R′, there can be at most
(2C+1)N2+CN2+N2L(N+M+L) calls to restartLocal(). This bound holds,
since at most 2C+ 1 calls to restartLocal() can be caused due Claim 7.20, CN2

due to Claim 7.21, there can be at most N +M +L pair static parts in R′, and

51

each of them can cause at most 2N2L calls to restartLocal() due to Claim 7.22
(including concurrent calls).

In case there exist steps in R′ that include calls to revive(), then at most 2V
more pair static parts are added in the system. The latter holds, because each
of the V pair static parts are added in the system by the output of revive(),
can be the input to restartLocal(), which in turn creates a new pair static part
(hence at most V more pairs with different static parts). Thus, we update the
calculation of the bound as follows: (2C+1)N2+CN2+2N2L(N+M+L+2V) ∈
O(N8C).

We are now ready to combine the claims of this proof to prove the lemma
statement. In the beginning of the proof we showed that each processor calls
restartLocal() in line 28 at most once for any execution and in Claim 7.23 we
showed that during R′ each processor calls restartLocal() in line 35 in a number
of steps that is significantly less than MAXINT . Thus, the number of steps
in which a processor calls revive() (Claim 7.18) or restartLocal() during R′ is
significantly less than MAXINT .

Corollary 7.24. Let R be an LS-scale execution of Algorithm 1. By the def-
inition of LS-scale (Section 2), there exists an integer x � MAXINT , such
that |R| = x ·MAXINT holds. By Lemma 7.17 the number of steps in which a
processor calls restartLocal() or revive() in every MAXINT -segment R′ of R
is significantly less than |R′| = MAXINT . Hence, since x � MAXINT , the
number of steps in which a processor calls restartLocal() or revive() in R is
also significantly less than |R|. Therefore, by Lemma 7.12 the number of states
in R in which Requirement 1 does not hold is significantly less than |R|, and
thus (by Definition 2.3) Algorithm 1 is practically-self-stabilizing.

8 Conclusion

Self-stabilization often requires, within a bounded recovery period, the complete
absence of stale information (that is due to transient faults). This paper studies
stabilization criteria that are less restrictive than self-stabilization. The design
criteria that we consider allow recovery after the occurrence of transient faults
(without considering fair execution) and still tolerate crash failures, which we do
not model as transient faults. We show the composition of two practically-self-
stabilizing systems (Section 4) and present an elegant technique for dealing with
concurrent overflow events (Section 5). We believe that the proposed algorithm
(Section 6) and its techniques can be the basis of other practically-self-stabilizing
algorithms.

References

[1] José Bacelar Almeida, Paulo Sérgio Almeida, and Carlos Baquero. Bounded
version vectors. In Distributed Computing, 18th International Conference,

52

DISC 2004, Amsterdam, The Netherlands, October 4-7, 2004, Proceedings,
pages 102–116, 2004.

[2] Noga Alon, Hagit Attiya, Shlomi Dolev, Swan Dubois, Maria Potop-
Butucaru, and Sébastien Tixeuil. Practically stabilizing SWMR atomic
memory in message-passing systems. J. Comput. Syst. Sci., 81(4):692–701,
2015.

[3] Anish Arora, Sandeep S. Kulkarni, and Murat Demirbas. Resettable vector
clocks. J. Parallel Distrib. Comput., 66(2):221–237, 2006.

[4] Peva Blanchard, Shlomi Dolev, Joffroy Beauquier, and Sylvie Delaët. Prac-
tically self-stabilizing paxos replicated state-machine. In Guevara Noubir
and Michel Raynal, editors, Networked Systems - Second International
Conference, NETYS 2014, Marrakech, Morocco, May 15-17, 2014. Revised
Selected Papers, volume 8593 of Lecture Notes in Computer Science, pages
99–121. Springer, 2014.

[5] Silvia Bonomi, Shlomi Dolev, Maria Potop-Butucaru, and Michel Raynal.
Stabilizing server-based storage in byzantine asynchronous message-passing
systems: Extended abstract. In Chryssis Georgiou and Paul G. Spirakis,
editors, Proceedings of the 2015 ACM Symposium on Principles of Dis-
tributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21
- 23, 2015, pages 471–479. ACM, 2015.

[6] James E. Burns, Mohamed G. Gouda, and Raymond E. Miller. Stabiliza-
tion and pseudo-stabilization. Distributed Computing, 7(1):35–42, 1993.

[7] Sylvie Delaët, Stéphane Devismes, Mikhail Nesterenko, and Sébastien
Tixeuil. Snap-stabilization in message-passing systems. J. Parallel Dis-
trib. Comput., 70(12):1220–1230, 2010.

[8] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Commun. ACM, 17(11):643–644, 1974.

[9] Danny Dolev and Nir Shavit. Bounded concurrent time-stamping. SIAM
Journal on Computing, 26(2):418–455, 1997.

[10] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[11] Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, and Sébastien Tixeuil.
Stabilizing data-link over non-FIFO channels with optimal fault-resilience.
Inf. Process. Lett., 111(18):912–920, 2011.

[12] Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis, and Elad Michael
Schiller. Practically stabilizing virtual synchrony. CoRR, abs/1502.05183,
2015. An earlier version appeared in the Proceedings of the 17th Interna-
tional Symposium Stabilization, Safety, and Security of Distributed Sys-
tems, SSS 2015, Edmonton, AB, Canada, August 18-21, 2015.

53

[13] Shlomi Dolev, Ariel Hanemann, Elad Michael Schiller, and Shantanu
Sharma. Self-stabilizing end-to-end communication in (bounded capacity,
omitting, duplicating and non-FIFO) dynamic networks. In Stabilization,
Safety, and Security of Distributed Systems - 14th International Sympo-
sium, SSS 2012, Toronto, Canada, October 1-4, 2012. Proceedings, pages
133–147, 2012.

[14] Shlomi Dolev, Ronen I. Kat, and Elad Michael Schiller. When consensus
meets self-stabilization. J. Comput. Syst. Sci., 76(8):884–900, 2010.

[15] Colin J Fidge. Timestamps in message-passing systems that preserve the
partial ordering. In Proceedings of the 11th Australian Computer Sci-
ence Conference (ACSC’88), pages 56–66, February 1987. http://zoo.

cs.yale.edu/classes/cs426/2012/lab/bib/fidge88timestamps.pdf.

[16] Chryssis Georgiou and Alexander A Shvartsman. Cooperative task-oriented
computing: Algorithms and complexity. Synthesis Lectures on Distributed
Computing Theory, 2(2):1–167, 2011.

[17] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming.
Morgan Kaufmann, 2008.

[18] Amos Israeli and Ming Li. Bounded time-stamps. In Foundations of Com-
puter Science, 1987., 28th Annual Symposium on, pages 371–382. IEEE,
1987.

[19] Leander Jehl, Roman Vitenberg, and Hein Meling. Smartmerge: A new ap-
proach to reconfiguration for atomic storage. In Yoram Moses, editor, Dis-
tributed Computing - 29th International Symposium, DISC 2015, Tokyo,
Japan, October 7-9, 2015, Proceedings, volume 9363 of Lecture Notes in
Computer Science, pages 154–169. Springer, 2015.

[20] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[21] Dahlia Malkhi and Douglas B. Terry. Concise version vectors in WinFS.
Distributed Computing, 20(3):209–219, 2007.

[22] Friedemann Mattern. Virtual time and global states of distributed sys-
tems. In Proceedings of Workshop on Parallel and Distributed Algo-
rithms, pages 215–226, North-Holland / Elsevier, 1989. (Reprinted in:
IEEE, 1994, pp. 123–133.) https://www.vs.inf.ethz.ch/publ/papers/

VirtTimeGlobStates.pdf.

[23] Michel Raynal. Distributed Algorithms for Message-Passing Systems.
Springer, 2013.

[24] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski.
Conflict-free replicated data types. In Stabilization, Safety, and Security of
Distributed Systems - 13th International Symposium, SSS 2011, Grenoble,
France, October 10-12, 2011. Proceedings, pages 386–400, 2011.

54

http://zoo.cs.yale.edu/classes/cs426/2012/lab/bib/fidge88timestamps.pdf
http://zoo.cs.yale.edu/classes/cs426/2012/lab/bib/fidge88timestamps.pdf
https://www.vs.inf.ethz.ch/publ/papers/VirtTimeGlobStates.pdf
https://www.vs.inf.ethz.ch/publ/papers/VirtTimeGlobStates.pdf

[25] Dale Skeen. Nonblocking commit protocols. In Proceedings of the 1981
ACM SIGMOD International Conference on Management of Data, Ann
Arbor, Michigan, April 29 - May 1, 1981, pages 133–142, 1981.

[26] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: prin-
ciples and paradigms. Prentice-Hall, 2007.

55

	1 Introduction
	2 System Settings
	3 Background: Practically-self-stabilizing Labeling Schemes
	3.1 The case of no concurrent overflow events
	3.2 The case of concurrent overflow events

	4 Composing practically-self-stabilizing labeling algorithms and the interface to Dolev et al. DBLP:journals/corr/DolevGMS15 labeling scheme
	5 Vector Clock Pairs: operations, invariants, and event counting
	5.1 Merging two vector clock pairs
	5.2 Event counting and causal precedence

	6 Practically-self-stabilizing Vector Clock Algorithm
	7 Correctness Proof
	7.1 The proof in a nutshell
	7.1.1 Notation

	7.2 Convergence of the labeling algorithm in the absence of wrap around events
	7.3 Local and global invariants and their relation to Requirement 1
	7.4 Pair evolution graph and function causality
	7.5 Bounding the number of deviations from the abstract task in an LS-scale execution

	8 Conclusion

