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Abstract

Advancing the knowledge about neural speech mechanisms is critical for developing next-

generation, faster brain computer interface to assist in speech communication for the patients with 

severe neurological conditions (e.g., locked-in syndrome). Among current neuroimaging 

techniques, Magnetoencephalography (MEG) provides direct representation for the large-scale 

neural dynamics of underlying cognitive processes based on its optimal spatiotemporal resolution. 

However, the MEG measured neural signals are smaller in magnitude compared to the background 

noise and hence, MEG usually suffers from a low signal-to-noise ratio (SNR) at the single-trial 

level. To overcome this limitation, it is common to record many trials of the same event-task and 

use the time-locked average signal for analysis, which can be very time consuming. In this study, 

we investigated the effect of the number of MEG recording trials required for speech decoding 

using a machine learning algorithm. We used a wavelet filter for generating the denoised neural 

features to train an Artificial Neural Network (ANN) for speech decoding. We found that wavelet 

based denoising increased the SNR of the neural signal prior to analysis and facilitated accurate 

speech decoding performance using as few as 40 single-trials. This study may open up the 

possibility of limiting MEG trials for other task evoked studies as well.

Keywords

MEG; Speech; Wavelets; Artificial Neural Network

debadatta.dash@utdallas.edu. 

HHS Public Access
Author manuscript
Brain Inform (2018). Author manuscript; available in PMC 2019 December 01.

Published in final edited form as:
Brain Inform (2018). 2019 December ; 11309: 163–172. doi:10.1007/978-3-030-05587-5_16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 Introduction

Speech is an important inherent attribute of the humans for effective communication. Speech 

centers of the brain along with speech articulators function synergistically to produce 

speech. Epochs of air, originating from the lungs, with the help of pulmonary pressure are 

excited using the vocal cords at specifically designed frequencies, passed through the vocal 

tract to the oral cavity, modulated through various articulators such as the tongue, lips, and 

jaw and then are radiated as ‘speech’ from the mouth. Similarly, the speech centers of the 

brain include Wernicke’s area: responsible for language recognition; Broca’s area: 

responsible for constructing the sentence structure of speech; motor cortex: directs the 

motion of articulators; and auditory cortex: provides auditory feedback. With regard to the 

motor cortex, the left cerebral hemisphere of the brain consisting of bilateral supplementary 

motor area, the left posterior inferior frontal gyrus, the left insula, the left primary motor 

cortex, and temporal cortex is the major contributor towards the motor control of speech 

production [1]. Also, several sub-cortical areas of the brain such as basal ganglia help in 

voluntary motor control for language processing [2]; and cerebellum aids in the rhythmical 

organized sequencing of speech syllables [3]. While it is known that a myriad of brain 

regions participate in speech production, the true neural basis for speech production is still 

poorly understood.

A better understanding of the speech mechanism is critical to help the patients with severe 

neurological conditions (e.g., locked-in syndrome). Locked-in syndrome (patients are fully 

paralyzed but aware) usually occurs due to quadriplegia, severe brain damage, or 

neurodegenerative disease (e.g., amyotrophic lateral sclerosis, ALS) [4] and results in the 

inability to speak in otherwise cognitively intact individuals [5]. Neural signal based 

communication might be the only way to help these patients to resume a meaningful life 

with some level of verbal communication. Current Brain Computer Interfaces (BCIs) send 

directional commands to a computer based on the signal acquired from the brain without 

needing any acoustic sound production [6]. EEG is the present de-facto standard for BCIs 

owing to its characteristics of non-invasiveness, easy setup requirement and high-quality 

signal acquisition with high temporal resolution [7,8]. EEG-BCIs are believed to remain as 

the optimal choice for communication in paralyzed and completely locked-in patients with 

debilitating neurological diseases [9]. However, typical EEG-BCI experiments require the 

subjects to select letters from a screen with a visual/attention cue. This is time consuming 

with an average synthesis rate of 1 Word/Minute [10] and hence not suitable for spontaneous 

conversations in daily life. Recently, ECoG, which measures electric potentials directly from 

the brain surface [11], has also been used for decoding continuous spoken speech from the 

cortical surface [12]. However, it is invasive in nature and hence can not be used for data 

collection from healthy subjects. FMRI, on the other hand, estimates the neural activity from 

the voxels of the brain by measuring changes in blood oxygenation [13]. Although fMRI has 

a very high spatial precision [14] and has been used in related neuroscientific studies [15], 

its slow nature hinders in continuous speech recognition.

MEG measures the weak magnetic field induced synchronized neuronal ionic currents 

during synaptic transmission using very sensitive magnetometers positioned around the head 

[16]. The higher temporal resolution and quiet nature of MEG are advantageous over fMRI. 
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It is also non-invasive and hence more practically suitable than ECoG. In contrast to EEG, 

the magnetic fields recorded by MEG are less distorted than the EEG recorded electric fields 

at skull and scalp. Also, it is reference-free and provides higher spatial resolution. Compared 

to other modalities MEG might be a better choice to analyze the neural dynamics during 

oromotor tasks of speech production. Moreover, prior studies on MEG for decoding speech 

[17-19] support its advantages over other approaches.

Despite the advantages, MEG signals are sensitive to background noise and motion artifacts. 

The motion of the facial muscles during speech utterance and eye blinks yield large artifacts 

in the MEG signals. The recorded magnetic field gradients are typically temporally averaged 

across trails to obtain an effective signal above background activity [20]. However, recording 

a large number of trials for the study of a particular stimulus evoked response can be very 

time consuming. The number of required trials for the study of a stimulus evoked response is 

a trade-off between the brain physiology (e.g., cell density, cell types, and location) and the 

maximum number of possible trials with similar performance level, maintaining a stable 

head position and avoiding eye blinks, etc. [21]. It has also been shown that ensembles 

containing too many trials can also be problematic [22]. With time, there is always a higher 

chance of motion artifact induction (due to head movement or eye blinks) which 

subsequently reduces the signal quality. Hence, the optimal number of trials of a MEG 

experiment is highly variable and is still debated. Very few studies have suggested a 

reasonable number of MEG trials as beyond either as many as possible [20] or typically 

between 100–300 [22]. However, no experimental evidence is given in these studies and the 

conclusions are made based on assumptions of good practice.

In this study, we aimed to determine the optimal number of MEG trials that are necessary 

and sufficient for effective speech decoding from the brain using a machine learning 

algorithm, which has rarely been studied, to our knowledge. We performed a speech 

decoding analysis based on a set of total trials from 5 to 70, respectively, where a high 

decoding accuracy indicates that more information is encoded in the signals. An optimal 

number of trials N will be determined if the decoding accuracy is decreased when the total 

number of trials is less than N and also if the accuracy is not significantly increased (remains 

at the similar level or even decreased) when the total number of trials is greater than N.

2 Data Collection

2.1 The MEG Unit

A 306 channel Elekta Triux MEG machine as shown in Fig. 1(a) was used in the experiment. 

The machine is equipped with 204 number of planar gradiometers and 102 number of 

magnetometers. The experiments were conducted at the MEG Center, Cook Children’s 

Hospital, Forth Worth, Texas. The machine was housed within a two-layered magnetically 

shielded room, which reduced the interference of unwanted background magnetic fields. A 3 

fiducial point based coordinate system was created for the subjects. Polhemus Fastrack 

digitalized 5 head-position-coils were used for the head positioning of the subjects inside the 

MEG scanner. Comfortable seating of the subjects inside the MEG unit was ensured with 

their arms resting on a table. A computer interfaced DLP projector was used to display the 
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visual cue of the stimulus on a back-projection screen. The projector was situated at a 

distance of 90 cm from the MEG unit.

2.2 Participants and Protocol

Four young healthy, right-handed, English-speaking adults (2 males and 2 females) 

participated with their consent in the data collection. All the subjects had normal vision and 

had no speech, language, and/or cognitive disorders.

The experiment was designed as a delayed overt reading task. Subjects were asked to speak 

five short commonly used phrases: Do you understand me, That’s perfect, How are you, 
Good-bye, and I need help. These sentences were chosen from Augmentative and 

Alternative Communication (AAC) data. The experiment was designed as 4 consecutive 

stages/segments: Pre-stimuli, Perception, Imagination (or preparation), and Articulation 

(Fig. 2). The pre-stimuli stage was a state of rest designed for 0.5 s. In the perception stage, 

a phrase stimulus was displayed on the screen for 1 s. During preparation, the subjects were 

asked to prepare the phrase displayed in the previous stage with a 1-s fixation cross 

displayed on the screen. In the final stage, the fixation was terminated by displaying a blank 

screen that signaled the subjects to speak the phrase (stimulus) at their natural speaking rate. 

The average time period of this articulation stage was 2 (up to 2.5) s. A total of 100 trials for 

each of the 5 stimuli were recorded after providing for roughly 1 s of non-movement 

baseline. To avoid the response suppression to repeated exposure the stimuli were presented 

in a pseudo-randomized order [23]. A prior training of subjects on sample stimuli was 

conducted to ensure subject compliance. The entire experiment lasted for an average of 45 

min per subject. Sample MEG signals recorded through one of the sensors for the five 

phrases are displayed in Fig. 1(b).

2.3 Data Preprocessing

MEG signals were acquired with a 4 kHz sampling frequency. A band-pass filter of 

frequency range 0.1 Hz–1.3 kHz was applied to the MEG signals. Eye-blinking and cardiac 

signals were recorded using integrated bipolar EOG and EEG channels. Head motion of the 

subjects was tracked using a scanner based continuous head localization technique [24]. The 

articulated speech was recorded with a standard microphone attached to a transducer placed 

outside the magnetically shielded room. A custom air-pressure sensor was connected to an 

air-filled bladder attached below the jaw of the subjects. This recorded the jaw movements 

of the subjects during articulation by measuring the depression in the bladder. Both speech 

and jaw movement analog signals were fed into the MEG ADC channels and were digitized 

in real-time as separate channels. The data recorded through the MEG sensors were then 

epoched into trials from −0.5 to +4.0 s centered on stimulus onset. The trials that contained 

high motion artifacts were inspected visually and discarded [24]. Further, signals with 

erroneous movements due to incorrect articulation (started either before the cue to speak or 

existed within the baseline period for the next trial) were also removed. The remaining trials 

were then down sampled to 1 kHz. After preprocessing, a total of 1635 valid samples 

collected from the four subjects remained for analysis.
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3 Methods

For unbiased data length among subjects, a maximum of 70 trials per phase per subject was 

considered for this study, as the minimum number of valid trials remained after processing 

for one subject was 73 for one phrase. In order to find the optimal number of trials, the data 

was partitioned into batches consisting 10n trials (for n = 0.5, 1, 2, …7). Each batch was 

considered separately for analysis, denoised and then spatiotemporal wavelet features were 

extracted. An ANN model was trained with these features separately for each batch and the 

classification accuracies were compared. In our prior work [25], we had experimented with 

Gaussian Mixture Model (GMM) and Support Vector Machines (SVM), but these classifiers 

were not able to produce good decoding accuracy. We also tested Deep Neural Networks 

(DNN) for this purpose, but, as the data size was limited, it resulted in data generalization 

even with two hidden layers.

3.1 Wavelet Analysis

Before analysis, first the MEG acquired signals were denoised using a complex Morlet 

wavelet. These wavelets have a sinusoidal shape and are weighted by a Gaussian kernel. 

Morlet wavelets effectively capture the local harmonic components in the MEG time series 

and hence are popularly used in MEG data processing [26]. Complex Morlet Wavelet w in 

the time domain t at different frequencies f is given as:

w(t, f ) = A exp( − t2 ∕ 2σt
2) exp(2iπ f t) (1)

where, A = (σt pi)−1 ∕ 2, t = time, σt = wavelet time period, and i = −1. In our analysis f0/σf 

= 5 was used, where σf is the shape of the Gaussian in the frequency domain and f0 is the 

central frequency. The denoising was performed in the frequency range of 0.1–120 Hz to 

accommodate for neuromagnetic signals up to the high gamma frequency range with a 

central frequency at 1 Hz intervals.

Further, we decomposed the denoised signals into respective neural frequency bands by 

using a Discrete Wavelet Transform (DWT) approach to select the spatiotemporal features 

for further analysis. The underlying principle of wavelet analysis is to express a signal X as a 

linear combination of a particular set of functions, obtained by shifting and scaling a single 

function Ψ(t) as:

X(a, b) = 1
a∫−∞

∞
Ψ( t − b

a ) X(t)dt, (2)

where, a and b are the scaling and shifting factors respectively. We have used Daubechies 

(db)-4 wavelet transform and performed a 5 level decomposition of the denoised MEG 

signal to find 5 different signals in the range of 0.1–4 Hz (delta), 4–8 Hz (theta), 8–15 Hz 

(alpha), 15–30 Hz (beta), 30–60 Hz (gamma), and 60–120 Hz (high gamma). 

Mathematically, the wavelet decomposition is represented as

s = a5 + d5 + d4 + d3 + d2 + d1 (3)
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where a5 is the 5th level approximation of the signal representing the delta band frequency 

component whereas d1–5 are the respective layer detail components such that d1 to d5 

represent high gamma, gamma, beta, alpha, and theta band frequency range respectively. 

Root Mean Square (RMS) values of the decomposed signals of all the trials were taken as 

the feature set to train the model.

3.2 Artificial Neural Network

A shallow ANN classifier was used in this study for its robust and effective non-linear 

computational modeling attributes of data classification. ANNs have been widely used in 

pattern classification problems to model the particular inputs leading to specific target 

outputs. The ANN model was designed to take the RMS values of the wavelet decomposed 

sensor signals in the input layer. A single hidden layer consisting of 256 nodes were used 

with random weights during initialization. The maximum number of epochs was set to 100 

to properly train the model. A sigmoid activation function was used after the hidden layer 

which transformed the learned weights into a non-linear hyper-dimensional space. A 5 

dimensional fully connected softmax layer was used as the final layer to represent the 

minimized cross-entropy of the 5 phrases. The weights (ωij) for nodes in the hidden layer of 

the ANN at iteration (t + 1) are updated based on iteration (t) via back-propagation using a 

stochastic gradient descent as:

ωij(t + 1) = ωij(t) + η ∂C
∂ωij

, (4)

where C is the cost function, η is the learning rate set to 0.01, i and j are the input and 

hidden layer neuron labels respectively. The data was divided into three parts as training, 

testing and validation data. Training data consisted 70% of the whole data whereas the 

testing and validation data consisted 15% each of the whole data. The validation data was 

used to check for data over-fitting during training. Early stopping of the training resulted 

when the data starts to generalize with this approach. Further, we have experimented with 

various number of nodes to train the model to find that with a lower number of nodes the 

accuracy decreased whereas with higher node selection the performance of the model 

remained constant. Data over fitting resulted with more than 512 nodes in the hidden layer 

even after the 3rd epoch.

4 Results and Discussions

Figure 3 shows a comparison of the average speech decoding accuracies of the 4 subjects, 

obtained for each of the 4 stages of the speech production task at different trials. A peak at 

the 40th can be observed for the articulation, imagination and perception stages indicating 

the best performance with 40 number of trials. Although, as hypothesized, for the 

articulation and perception stage the speech decoding performance more or less saturated 

after 40 trials, the accuracy of imagination stage resulted in a continuous decrease. Although 

at present, there is no clear explanation for this behavior of the imagination stage, the 

absence of external stimuli or overt movement (For perception there were visual stimuli and 

during articulation, the produced overt speech sound was the feedback stimuli) might allow 
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for more endogenous variability in the neural signal. After reaching optimal SNR, this 

variability may override any increased value of more trials.

To more accurately verify, if 40 is the optimal number, we performed the analysis with 32, 

35, 37, 39, 41, 43, 45, 47 and 49 trials. The pattern remained consistent with the best 

accuracy obtained with either 39 or with 40 number of trials. Further, for statistical 

validation, we implemented a 4-way ANOVA across trials with the four subjects as the 4 

factors for each stage (pre-stimuli, perception, imagination, and articulation) respectively. 

Results indicated no statistically significant differences across subjects (p > .05) for each 

stage.

Figure 4 manifests the variation of the min-max normalized SNR of the raw MEG signal and 

wavelet decomposed MEG signal at different numbers of trials. It can be seen that, in case of 

the raw MEG signal, the SNR value was increased continuously with an increase in the 

number of trials. However, after denoising with wavelets, the SNR values were saturated 

after 40 trials. Hence, with proper denoising of the signal prior to analysis, 40 number of 

MEG trials could be sufficient for best speech decoding performance.

Among the 4 stages, during articulation, the highest model performance was obtained with 

an average accuracy of 89.03%. The average accuracy of 78.35% was maximum for 

classification of covert speech, i.e., during the stage of imagination. The additional 

involvement of the motor and auditory cortex regions of the brain to facilitate articulation 

and auditory feedback respectively could be the reason for the resulting higher accuracy in 

articulation. Perceived speech phrase classification was poorer. The pattern of increasing 

accuracy during the pre-stimuli stage can be clearly observed in the Fig. 3. Although, the 

subjects were at rest and the accuracy should be at the chance level for this stage, with an 

increase in the number of trials the speech decoding accuracy was increased. The most 

probable reason for this is that the subjects may have started to memorize the stimulus with 

time, as in total 5 number of stimuli were used.

Limitation.

Although the results are promising, the dataset considered in this study is relatively small. A 

further analysis with a larger data set from more number of subjects is needed to validate 

these findings.

5 Conclusion

In this study, we investigated to determine the optimal number of MEG trials from a 

machine learning and speech decoding perspective. A total of 40 trials were found to be 

sufficient and necessary for the maximum speech decoding performance. Wavelet denoising 

resulted in a saturated SNR after 40 trials. Limiting the MEG trials will facilitate for huge 

improvement in experiment and computation time as well as cost reduction. We also 

demonstrated that speech decoding directly from the brain is possible with an accuracy of 

89.03% during articulation whereas the imagined speech information can be extracted with 

an accuracy of 78.35%. Although 40 trials were obtained to be optimal for speech decoding 

task, it may not be optimal for other task-evoked MEG experiments.
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Fig. 1. 
(a) The MEG unit, (b) MEG signal for 5 spoken phrases with a sensor
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Fig. 2. 
Design of the experiment.
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Fig. 3. 
Speech decoding accuracy at various total number of MEG trials
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Fig. 4. 
Comparison of SNR for raw and denoised MEG signal at different trials

Dash et al. Page 13

Brain Inform (2018). Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Data Collection
	The MEG Unit
	Participants and Protocol
	Data Preprocessing

	Methods
	Wavelet Analysis
	Artificial Neural Network

	Results and Discussions
	Limitation.

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.

