Skip to main content

Simultaneous EEG Analysis and Feature Extraction Selection Based on Unsupervised Learning

  • Conference paper
  • First Online:
Brain Informatics (BI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11309))

Included in the following conference series:

Abstract

Time-series EEG signals in a raw form are challenging to analyze, train, and compute. Several feature extraction methods, such as fast Fourier transform, wavelet transform, and time-frequency distributions, are commonly employed for this purpose. However, when applied to different datasets, the alignment between the method and machine learning algorithms varies significantly. Through an EEG experiment, we test a simultaneous analysis and unsupervised learning application that can effectively determine what feature extraction method will potentially lead to a higher prediction precision when the ground truth is provided by the participants at a later stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abootalebi, V., Moradi, M.H., Khalilzadeh, M.A.: A new approach for EEG feature extraction in P300-based lie detection. Comput. Methods Programs Biomed. 94(1), 48–57 (2009)

    Article  Google Scholar 

  2. Amin, H.U., et al.: Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas. Phys. Eng. Sci. Med. 38(1), 139–149 (2015)

    Article  Google Scholar 

  3. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete algorithms, pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)

    Google Scholar 

  4. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  5. Frantzidis, C.A., et al.: Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli. IEEE Trans. Inf. Technol. Biomed. 14(3), 589–597 (2010)

    Article  Google Scholar 

  6. Hong, K.S., Khan, M.J., Hong, M.J.: Feature extraction and classification methods for hybrid fNIRS-EEG brain-computer interfaces. Front. Hum. Neurosci. 12 (2018)

    Google Scholar 

  7. Jenke, R., Peer, A., Buss, M.: Feature extraction and selection for emotion recognition from EEG. IEEE T. Affect. Comput. 5(3), 327–339 (2014)

    Article  Google Scholar 

  8. Kevric, J., Subasi, A.: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal Process. Control 31, 398–406 (2017)

    Article  Google Scholar 

  9. Koelstra, S., et al.: Deap: a database for emotion analysis; using physiological signals. IEEE T. Affect. Comput. 3(1), 18–31 (2012)

    Article  Google Scholar 

  10. Lan, Z., Sourina, O., Wang, L., Liu, Y.: Real-time EEG-based emotion monitoring using stable features. Vis. Comput. 32(3), 347–358 (2016)

    Article  Google Scholar 

  11. Liu, C., Abu-Jamous, B., Brattico, E., Nandi, A.: Clustering consistency in neuroimaging data analysis. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 1118–1122. IEEE (2015)

    Google Scholar 

  12. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1 (2007)

    Article  Google Scholar 

  13. Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recognit. 33(9), 1455–1465 (2000)

    Article  Google Scholar 

  14. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

    Google Scholar 

  15. O’Toole, J.M., Temko, A., Stevenson, N.: Assessing instantaneous energy in the EEG: a non-negative, frequency-weighted energy operator. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3288–3291. IEEE (2014)

    Google Scholar 

  16. Patkar, V.P., Das, L., Joshi, P.: Evaluation of PSE, STFT and probability coefficients for classifying two directions from EEG using radial basis function. In: 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–4. IEEE (2015)

    Google Scholar 

  17. Rathore, S., Habes, M., Iftikhar, M.A., Shacklett, A., Davatzikos, C.: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. NeuroImage 155, 530–548 (2017)

    Article  Google Scholar 

  18. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  19. Vakman, D.: On the analytic signal, the Teager-Kaiser Energy algorithm, and other methods for defining amplitude and frequency. IEEE Trans. Signal Process. 44(4), 791–797 (1996)

    Article  Google Scholar 

  20. Wu, K., Zhang, D., Lu, G.: GMAT: Glottal closure instants detection based on the multiresolution absolute Teager-Kaiser energy operator. Digit. Signal Process. 69, 286–299 (2017)

    Article  Google Scholar 

  21. Xi, X., Tang, M., Miran, S.M., Luo, Z.: Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors. Sensors 17(6), 1229 (2017)

    Article  Google Scholar 

  22. Yap, H.-Y., Choo, Y.-H., Khoh, W.-H.: Overview of acquisition protocol in EEG based recognition system. In: Zeng, Y., He, Y., Kotaleski, J.H., Martone, M., Xu, B., Peng, H., Luo, Q. (eds.) BI 2017. LNCS (LNAI), vol. 10654, pp. 129–138. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70772-3_12

    Chapter  Google Scholar 

  23. Zhong, M., Lotte, F., Girolami, M., Lécuyer, A.: Classifying EEG for brain computer interfaces using Gaussian processes. Pattern Recogn. Lett. 29(3), 354–359 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badar Almarri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almarri, B., Huang, CH. (2018). Simultaneous EEG Analysis and Feature Extraction Selection Based on Unsupervised Learning. In: Wang, S., et al. Brain Informatics. BI 2018. Lecture Notes in Computer Science(), vol 11309. Springer, Cham. https://doi.org/10.1007/978-3-030-05587-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05587-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05586-8

  • Online ISBN: 978-3-030-05587-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics