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Abstract. Periocular characteristics is gaining prominence in biometric
systems and surveillance systems that operate either in NIR spectrum
or visible spectrum. While the ocular information can be well utilized,
there exists a challenge to compare images from different spectra such
as Near-Infra-Red (NIR) versus Visible spectrum (VIS). In addition, the
ocular biometric templates from both NIR and VIS domain need to be
protected after the extraction of features to avoid the leakage or linkabil-
ity of biometric data. In this work, we explore a new approach based on
anchored kernel hashing to obtain a cancelable biometric template that
is both discriminative for recognition purposes while preserving privacy.
The key benefit is that the proposed approach not only works for both
NIR and the Visible spectrum, it can also be used with good accuracy
for cross-spectral protected template comparison. Through the set of
experiments using a cross-spectral periocular database, we demonstrate
the performance with EER = 1.39% and EER = 1.61% for NIR and
VIS protected templates respectively. We further present a set of cross-
spectral template comparison by comparing the protected templates from
one spectrum to another spectra to demonstrate the applicability of the
proposed approach.
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1 Introduction

Many of the current day biometric systems are based on the physiological char-
acteristics due to ease of capturing data such as face data in unobtrusive manner.
The recent works have investigated the use of periocular region and indicated
it’s use as a supplementary information [1,6-8,10,13,16,22]. The works have
focused on visible spectrum (VIS) periocular recognition, and Near-Infra-Red
(NIR) spectrum periocular recognition. A limited number of the recent works
have evaluated the cross-spectrum periocular recognition (NIR to Visible spec-
trum (VIS)) [1,8,22].
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The variability of the data from NIR and VIS domain introduces a challenge
in cross-spectral data verification and this is acknowledged by many existing
works, for instance in [1,8,22]. An added challenge is to provide a template
protection mechanism that can be employed in both the domains. Our key moti-
vation remains that the template protection mechanisms should preserve the
privacy of biometric data adhering to recent guidelines enforced by European
Union (EU) General Data Protection Regulation (GDPR) 2016/679 [2] which
does not discriminate the data from NIR or VIS.

According to guidelines of ISO-24745 [3] and GDPR 2016/679 [2], irrespec-
tive of the spectrum employed for biometric system, biometric data must be
protected in a template format such that the biometric characteristic as source
shall be remain usable even under the compromise of the entire database. The
template protection schemes must also minimize the risks of inverting the tem-
plates to biometric raw images adhering to the principles of irreversibility. Under
the extreme scenarios, the template of same biometric characterisitc from the
same spectrum or from different spectrum of any compromised database should
be rendered unusable to access other services using exactly the same biomet-
ric characteristic. Therefore, it is necessary to make biometric reference data
unlinkable irrespective of spectrum employed for the same biometric character-
istics. While these properties of irreversibility and unlinkability are accounted
for, a biometric system should not compromise in the identification or verifica-
tion performance, even under the challenging conditions of highly varying data
due to cross-spectrum comparison (NIR versus VIS). An inherent need therefore
is to preserve the privacy of the subject while operating with pre-determined
performance of biometric system without any template protection mechanisms.
Summarizing, the challenge therefore is to protect the data not only in one par-
ticular domain (NIR or VIS), but also to maintain the sensitiveness and privacy
of biometric data across domains while providing optimal biometric recognition
performance.

Motivated by such arguments provided above, in this work, we investigate
the template protection scheme that can be adapted across spectrum and pro-
vide good recognition performance. To the best of our knowledge, there are no
reported works that have provided the template protection schemes for biomet-
ric data captured across spectrum. Further, we limit our work to explore the
problem in a closed set biometric system where the enrolment data of all users
in database is known. The apriori assumption thus remains our primary argu-
ment to employ data-dependent hashing to derive protected template. It has to
be noted that there exist a number of data-dependent and data-independent
schemes in the earlier works that have been explored for a single spectrum tem-
plate protection in earlier works. The template protection mechanisms can be
classified under (1) biometric cryptosystems [23] and, (2) cancelable biometrics
based systems [5,14,14,15,17-20].

In this work, we present a new approach for biometric template protection
that is designed for closed set biometric system (i.e., known subjects and enrol-
ment dataset) but independent of spectrum (VIS - NIR). The approach is based
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on deriving the protected templates using the data-dependent hashing approach
while introducing the cancelability through the use of randomly chosen anchor
points. The key feature relies on employability of anchor points for hashing from
one particular spectrum (for e.g., VIS spectrum) to data captured in other spec-
trum. The hashing approach is further supplemented through the kernalization
to maximize the separability of hashed templates for two different subjects (inter-
subject) while minimizing the distance of hashed templates stemming from same
subject (intra-subject). Given the apriori known enrolment set (i.e., closed set),
we adopt supervised hashing approach to optimize the biometric performance
while maintaining the properties of ideal template protection. Further, to vali-
date the applicability of the proposed approach, we present set of results on a
recent large scale cross-spectral periocular dataset - Cross-eyed database which
consists of periocular images corresponding to 120 subjects (240 unique perioc-
ular instances) captured in both NIR and VIS spectrum.
Our contributions from this work can thus be listed as below:

1. Presents a novel approach of cancelable biometric template protection using
anchored points and kernalized hashing that can be employed across different
spectrum such as NIR and VIS.

2. Demonstrates the use of anchor point based hashing as a mode of achieving
cancelability for template protection. The approach is demonstrated to work
for both NIR and VIS spectrum template protection.

3. Presents an experimental evaluation of new template protection approach
on a large scale closed-set cross-spectral periocular database. To the best of
our knowledge, this is the first work attempting at cross-spectral template
protection. The obtained results exemplify the performance of the template
protection scheme which achieves the performance comparable to unprotected
biometric system.

In the remainder of this article, Sect.2 describes the proposed biometric
template protection system and Sect.3 presents the experiments including a
brief discussion of the database in Sect.3.1. Section4 presents the concluding
remarks and lists potential future work.

2 Proposed Biometric Template Protection

The proposed framework consists of extracting the features from the given peri-
ocular image followed by protected template creation as shown in Fig. 1. Bina-
rized Statistical Image Features (BSIF) are extracted from each periocular image
using a set of filters which serve as unprotected features. These biometric fea-
tures from the enrolment database is used to learn the hash projection function
using anchored kernels. Through the randomly chosen anchor points, the pro-
posed approach obtains the cancelable biometric template for a given biometric
image. In the similar manner, the learned hash function is used to transform
the biometric features emerging from the probe attempts to obtain the cance-
lable protected templates. The protected templates are further used in biometric
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pipeline for verification where they are compared using simple Hamming distance
to obtain the comparison score. The obtained comparison score for a particular
probe attempt determines the acceptance or rejection of the attempt by the sys-
tem. Each of the individual step in the proposed framework is provided in the
section below.

: Anchored
Multi-scale BSIF || il
Features Projection
Learning ) Biometric
Training/Enrollment Learning Verification
Database Template Pipeline
Protection
Features " Templates
Projection

Obtaining Protected Template

Fig. 1. Schematic of the proposed template protection scheme in closed-set biometric
verification pipeline.

2.1 Multi-scale Fused BSIF Features

Given the biometric image (periocular image), the first step is to extract the
features. We employ multi-scale fused feature representation which consists of
the texture features extracted using Binarized Statistical Image Features (BSIF)
owing to high performance reported earlier on this database [22]. The textural
features are extracted using a set of filters that provide holistic, multi-feature and
multi-level feature representation. Following the earlier works [8,22], we employ
BSIF filters of size 9 x 9, 11 x 11, 13 x 13, 15 x 15, 17 x 17 with a bit size of
11 leading to 2048 levels of the histogram features. The features are represented
as f1, fa, f3, fa and f5 corresponding to 5 different filters respectively. In order
to reduce the difference between the features of images of same person and
increase the difference between images of different persons, we employ feature
fusion leading to a total number of 10240 features for each image. The equivalent
representation of the fused features is given by §f = {f1|fa2|fs|fa|f5} where |
operator represents the fusion of the individual histogram features obtained from
different filters.

2.2 Anchored Kernel Hash Function

Given the features f of an image in an enrolment database of | subjects, to
obtain the unique templates, we need to derive r hash functions resulting in r



Anchored Kernel Hashing for Cross-Spectral Template Protection 107

bit representation. Thus, the objective is to learn r hash functions {hy}}_, for r
hash bits given X;. If X is [ labelled samples {1, 22, ... x;}, the similarity label
matrix can be represented by S;; = 1 for i = j and S;; = —1 for i # j where
i and j are biometric samples. The goal in obtaining the unique hash functions
can therefore be interpreted as learning hash function H such that:

Sij :l,DH(l‘i,l‘j) :0 (1)
Sij = —1,DH(.’L‘1‘,.’L“7‘) 75 0
Where Dy (x;,x;) is the Hamming distance between hash of two templates
H(z;) and H(x;), assuming the binary representation of the biometric templates.
The practical implication for a system operating on r binary bits is that when
S;; = —1, the Hamming distance Dy (z;, mj) — r as theoretically there can be
r differing bits. The generalized conclusion of this observation leads to the fact
that the distance between two dissimilar hash of r bits is 7 [11]. The goal of
learning hash representation is therefore to minimize the distance between two
hash functions (= 0 in ideal case) and maximize the distance between the dis-
similar biometric templates (= r for r bit hash representation). One method to
achieve such a goal can be through kernalized representation as suggested by [11]
which helps in maximizing the Hamming distance between two dissimilar hash
and minimizing Hamming distance between two similar hash through employing
the inner product as described in earlier work [11]. We therefore adopt the app-
roach of kernalized representation in this work. The Hamming distance between
two templates can further be represented as inner product given by ©:

H(w;) © H(x;) = H(x)H" () (2)

where H(x;) and H(z;) are hash of two templates.

For a hash representation of  bits, the problem of obtaining best hash codes
in a similarity space S can be given as an optimization problem as given by
Eq. 3%

2
minimize @ = )
Hle_Lllxr

HH(m»IjT(acj) 5

F

where \|||2F represents the Frobenius norm. For a r bit hash code of sample
[h1(2), ha() ... he(x)] € {1, —1}*" for [ subjects. The matrix representation of
kernalized hashes can be given as:

hl(ﬂi‘l) hz(l‘l), hr(l‘l)
hl(iL’Q) hg(l‘g), v h

hl(.’L‘l) hg(!El), hr({ﬁl)

! For the sake of simplicity, the detailed derivations of the problem is not presented
here. The reader if further referred to [11] and [9] for details.
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The representation in Eq.4 can be rewritten as 5 using a set of anchors [11]:

= sgn E (xj,x)a;L)

= sgn(kT(:c)ak)

where m is the number of anchors chosen from the dataset and k(z) is a kernel
function. Considering the Eqgs. 3 and 5, the optimization can be written as:

(5)

o uin Q= [[sgn(KiA)(sgn(KiA)" — 7S] -

~ —239n(Klak)(sgn(Klak))TRk,1

The solution of the Eq. 6 is provided through Spectral Relaxation and Sig-
moid Smoothing as proposed in [11]. As it can be noted from the Eq.5, the use
of anchor points provide a basis for the Anchored Kernel Hashing [12] which
forms the basis for our template extraction framework.

2.3 Cancelability Through Random Anchors

In order to satisfy the cancelability property, we choose the anchor points corre-
sponding to a specific application where randomized anchors are used for kernel
representation as given by Eq.7. The anchor points for m points are chosen
according to a specific application or database, for example specific application
s1 or specific application sg, generally represented by s. Thus, the anchor points
a is replaced by a®.

= sgn Z IJ, (7)
Js=1

In practicality, choosing these anchor points can be a challenge to make
the templates cancelable and therefore, in this work we propose to choose the
anchor points based on a subset of samples corresponding to randomly chosen
users which reduces the chances of guessability. The underlying argument for
the low chances of guessability is that there can be a number of combinations to
select the subset of users z in larger sample set X (also, enrolment set). The set
of hash function is finally used to transform the unprotected biometric features x
to hashed representation z" simply by employing the following transformation:

et =xxHT.

2.4 Protected Template Comparison in Same Spectrum

Given a protected biometric reference template corresponding to ;2" and the
biometric probe template m-rx’; in NIR domain, the Hamming distance between
the two biometric templates is computed through measuring the number of dif-
fering bits as compared to total number of bits. The obtained Hamming distance
D(nirz? pir x’;) is considered as the biometric comparison score.
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In the similar manner, given a protected biometric reference template corre-
sponding to y;sz) and the biometric probe template sz} in VIS domain, the
Hamming distance between the two biometric templates is computed through
Hamming distance D(m-sacff,m-s x;;) is considered as the biometric comparison
score.

2.5 Protected Template Comparison in Cross-Spectrum

In alignment with the motivation of this article, we intend to perform the cross-
spectral template comparison in protected domain. Thus, given a protected
biometric reference template corresponding to sz from visible domain and
the biometric probe template m-rxz in NIR domain, the Hamming distance
between the two biometric templates is computed through Hamming measure

D(yis} snir xt) is considered as the biometric comparison score.

Table 1. Details of the cross-spectrum periocular image database

Camera Subjects | Unique eye | Samples Total
(Spectrum) Subjects | Instances | per Instance | images
NIR - camera | 120 240 8 1920
Visible camera | 120 240 8 1920

NIR Images

Fig. 2. Sample images from Cross-Eyed periocular subset. Note that the iris and sclera
portions of images are masked by the providers of database.

3 Experiments and Results

This section presents the database, evaluation protocols and the obtained results
using the proposed approach. The proposed approach is also compared against
the performance of unprotected template comparison.

3.1 Cross-Spectral Periocular Database

This section presents the details of the database employed in this work for the
purpose of evaluating the proposed biometric template protection method. Read-
ing Cross-Spectral Periocular Dataset (Cross-Eyed) [21]?, was used to bench-
mark the proposed approach with template protection and the same cross-
spectral biometric verification system without template protection. The dataset

2 Available by request at www.crosseyed.eu.
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consists of periocular images captured in both VIS and NIR domain with a
custom developed dual spectrum imaging sensor. The unique property of the
images in this dataset is that they are captured at the same time through mirror
splitting of the images resulting in minimal changes in pairs of NIR-VIS images.
The database consists of 120 subjects in total from various nationalities and
ethnicities. For each of the 120 subjects, 8 images are captured from eyes in VIS
and NIR spectra and the complete distribution of the images are given in the
Table 1. A set of sample images from the database are presented in Fig. 2.

3.2 Database Division

In order to evaluate the proposed approach, we divide the database in three parts
constituting development, testing set-1 and testing set-2 with disjoint subjects
and images. The distribution of the database subset is provided in the Table 2.
We employ the development set consisting of 10 subjects (20 unique periocu-
lar instances, a total of 320 samples) to derive the optimal parameters for the
hashing approach, number of anchor point and to tune the parameters of the
kernalization. The testing set-1 corresponds to dataset of 20 subjects which is
used to validate the parameters obtained for the proposed approach. Finally, the
performance of the proposed approach is reported using the testing set-2 which
consists of images from the rest of the 90 subjects who are not present within
the development set or testing set-1.

Table 2. Division of the database for the experimental validation. The development
database is employed for choosing the parameters of the hashing approach, number of
anchor point and to tune the parameters of the kernalization.

Description Development* Testing Set-1 Testing Set-2
(Parameter Selection)|(Parameter Validation)|(Performance Evaluation)
Number of Subjects (NIR) 10 20 90
Number of Subjects (VIS) 10 20 90
Number of Unique Ocular Images
VIS 20 40 180
NIR 20 40 180
Number of samples per eye instance| 8 8 8
Total images (NIR) 160 320 1440
Total images (VIS) 160 320 1440

3.3 Performance Metrics

As the focus of the current work is to measure the performance of the pro-
posed approach to protect the biometric templates and to provide robust perfor-
mance, we present the results in two different terms. To denote the robustness in
terms of dealing with symmetrical errors of False Accepts and False Rejects, we
present the Detection Error Trade-off (DET) which presents the False Accept
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Rate (FAR) against False Reject Rate (FRR). In order to complement the DET,
we also present the Equal Error Rate (EER). The performance is also provided
in terms of Genuine Match Rate (GMR) versus False Match Rate (FMR) which
is derived on the basis of False Match Rate (FMR) and the False Non-Match
Rate (FNMR)[4]. Higher values of GMR at a specified FMR indicate superior
recognition accuracy at verification. The GMR is defined using False Non Match
Rate (FNMR) (%) at a given False Match Rate (FMR) and is given by:

GMR=1—-FNMR

3.4 Experimental Settings

This section presents the specific details of the settings employed in this work
for the evaluation. All the periocular images are resized to a common size of
128 x 128 pixels for the sake of computational complexity. Further, to derive the
unprotected and also protected templates, we employ BSIF histograms extracted
using 9 x 9, 11 x 11, 13 x 13, 15 x 15, 17 x 17 with a bit size of 11 leading to
2048 levels of the histograms. In order to derive the optimal setting for kernels,
anchors and hashing, we employ the specific parameter as follows: number of
anchor points equal to 100 (~=> (number —of —subjects)/2), kernel - exponential
kernel based on the Hamming distance.

3.5 Experiments and Results

In this section, we present the experiments conducted in two specific parts which
correspond to unprotected biometric template verification and protected biomet-
ric template verification. Further, for the case of protected template verification,
we present three cases of protected template verification corresponding to NIR
spectrum alone, VIS spectrum alone, NIR versus VIS templates. All the exper-
iments correspond to closed-set verification where the enrolment samples are
available prior hand to derive the hash projection and protected templates for
enrolment set. We specifically follow three protocols for three separate cases: (1)
NIR data alone (2) VIS data alone (3) NIR versus VIS data. In each of these
cases, we employ first 4 images for enrolment set and rest of the 4 images for
probe set.

Unprotected Biometric Verification Performance. Considering the bio-
metric system has no template protection mechanism in-place, we employ the
BSIF histograms and x? distance to obtain the performance of unprotected tem-
plates [8]. The results from the obtained experimental evaluation on testing set-2
is presented in the Table3 for VIS templates and Table4 for NIR templates.?

3 It has to be noted that the performance reported here cannot be directly compared
with performance reported earlier due to changes in number of images in enrolment
and probe set. A slight change in the performance can be observed as compared to
earlier reported results.
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Table 3. Verification - VIS images Table 4. Verification - NIR images
Schemes Verification accuracy Schemes Verification accuracy
EER|GMR @ EER|GMR @
FMR =0.01% FMR =0.01%

Unprotected|2.05 {96.63

Protected [1.61/93.33

Unprotected |2.51 |96.89
Protected |1.39/93.09

As seen from the results, it can be noted that the EER obtained for NIR and
VIS image unprotected comparison results in EER equalling to 2.51% and 2.05%
respectively. We also present the unprotected biometric performance when NIR
data is enrolled and VIS data is probed in Table5. As it can be noted, the chal-
lenging nature of cross-spectral data verification can be seen from EER equalling
to 10.18%.

Table 5. Verification performance of cross-spectrum (NIR v/s VIS) image comparison
for various algorithms

Schemes Verification accuracy
EER |GMR @
FMR=0.01%
Unprotected | 10.18 | 17.80
Protected 13.32 | 11.07

Cross-Spectral Protected Template Comparison. Further, Tableb
presents the results of protected templates when NIR templates are compared

against VIS in protected domain.
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Protected Biometric Verification Performance. This section presents the
results and analysis with the proposed template protection scheme. Along the
lines of unprotected template comparison, we present the results for NIR tem-
plate verification alone, VIS template verification alone and NIR versus VIS
template verification. The results of the protected templates using the proposed
approach is presented in Table4 for NIR spectrum and in Table 3 for VIS spec-
trum which correspond to an EER of 1.61% and 1.39% indicating the applica-
bility of the proposed approach. The obtained results are highly comparable to
templates without any protection. One can note a slight performance improve-
ment in protected template performance and this is mainly due to optimized
hash representation for the closed set of enrolment templates. The DET curves
for the experimental evaluation can be seen in Figs.4 and 3.

Similarly, we also validate the proposed approach for protected template
comparison for cross-spectral template protection as indicated in Table5 and
correspondingly DET presented in Fig.5. It can be noted that the protected
template comparison from NIR against VIS data results in a degraded perfor-
mance. This is in-line with the unprotected data comparison from NIR to VIS
data which is already a challenging task. We provide the arguments for perfor-
mance in the section below.

3.6 Discussion
The set of observations from the experimental results are listed herewith:

— It can be observed from the obtained results, the proposed approach of tem-
plate protection is agnostic of the spectrum, i.e., can be used for NIR or VIS
spectrum. The template protection scheme performs with better accuracy
that is comparable to unprotected templates when both enrolment and probe
data emerge from the same spectrum in the closed-set. This can be attributed
to optimized hash representation for closed-set enrolment data.
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— However, the challenge of verifying the templates from NIR against VIS can
be evidently seen with the drop in performance, both in protected and unpro-
tected domain. The performance degradation is seen in both the cases with
a very high EER.

— Although the EER is reasonably high (10.18%, 13.32% for unprotected and
protected template comparison respectively), the GMR in the cross-spectral
comparison of both unprotected and protected data are very low indicating
the need for robust methods and further investigations.

Potential future works can investigate on joint template learning using both NIR
and VIS images so that common features across both domain are identified.
Another direction is to adapt the approach from closed-set biometric system to
open-set biometric system. This implies investigating data-independent template
protection mechanisms that can be used in both spectrum and cross-spectrum
biometric systems.

4 Conclusion

Template protection in biometric applications are important to preserve the pri-
vacy and sensitiveness of the biometric data. The challenge in cross-spectral
applications is that they provide different kind of data and thus, a common tem-
plate protection algorithm may not work for optimally for both NIR and VIS
spectrum. Further, it is necessary to obtain good biometric performance even
when the templates are compared from different spectrum. In this work, we have
presented a new template protection technique based on anchored kernel hashing
which works for data from both VIS and NIR spectrum. The proposed approach
being highly cancelable, provides privacy protection for biometric templates. The
detailed set of experiments on the large scale cross-spectral biometric dataset has
demonstrated promising results for template protection for both NIR and VIS
spectrum. The obtained protected templates using the proposed approach have
provided a performance of EER lesser than 2% for both VIS and NIR spectrum
data indicating the applicability of anchored kernel hashing. The limited appli-
cability is also demonstrated for cross-spectral protected template verification
which reflected the need for further investigations.

Future works in this direction include in evaluating the strengths of proposed
privacy preserving template protection schemes by incorporating new security
and privacy analysis. Another future work can be in the direction of open-set
biometric data where the enrolment images are not available while learning the
hashing space. The scalability of proposed approach can be evaluated for han-
dling the changes due to open-set data or unconstrained data for template pro-
tection, especially in cross-spectral imaging scenario.
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