Skip to main content

Consensus Control of Distributed Robots Using Direction of Arrival of  Wireless Signals

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 9))

Abstract

In multi-robot applications, consensus control and coordination are vital and potentially repetitive tasks. To circumvent practical limitations such as a global localization system, researchers have focused on bearing-based consensus controllers, but most assumed that measurements from sensors (e.g., vision) are noise-free. In this paper, we propose to use wireless signal measurements to estimate the direction of arrival (relative bearings) of neighboring robots and introduce a weighted bearing consensus controller to achieve coordinate-free distributed multi-robot rendezvous. We prove that the proposed controller guarantees connectivity maintenance and convergence even in the presence of measurement noise. We conduct extensive numerical simulation experiments using the Robotarium multi-robot platform to verify and demonstrate the properties of the proposed controller and to compare the performance of the rendezvous task against several state-of-the-art rendezvous controllers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Robotarium is a freely accessible remote multi-robot software and hardware testbed provided by Georgia Tech, available at https://www.robotarium.gatech.edu.

  2. 2.

    Available at https://github.com/SMARTlab-Purdue/robotarium-rendezvous-RSSDOA.

  3. 3.

    Note the problem can be adapted to higher dimensions (e.g. for aerial and underwater vehicles).

  4. 4.

    We assume RSS is measured in dBm as provided by most Wi-Fi manufacturers. However, to retain the exponential mapping of the signal power with distance, we convert the RSS in dBm to Watts using \(R (W) = E^{-3} 10^{[\frac{R(dBm)}{10}]}\) for use in our controller.

  5. 5.

    Details on the SOTA controllers and the results are shown in https://youtu.be/6BkFrJ8vceg.

References

  1. Aranda, M., López-Nicolás, G., Sagüés, C.: Coordinate-free control of multirobot formations. In: Control of Multiple Robots Using Vision Sensors, pp. 131–181. Springer (2017)

    Google Scholar 

  2. Banfi, J., Li, A.Q., Basilico, N., Rekleitis, I., Amigoni, F.: Multirobot online construction of communication maps. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2577–2583, May 2017

    Google Scholar 

  3. Caccamo, S., Parasuraman, R., Båberg, F., Ögren, P.: Extending a UGV teleoperation FLC interface with wireless network connectivity information. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4305–4312. IEEE (2015)

    Google Scholar 

  4. Dantu, K., Goyal, P., Sukhatme, G.S.: Relative bearing estimation from commodity radios. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09, pp. 3871–3877. IEEE (2009)

    Google Scholar 

  5. Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)

    Article  Google Scholar 

  6. Dimarogonas, D.V., Kyriakopoulos, K.J.: On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Autom. Control 52(5), 916–922 (2007)

    Article  MathSciNet  Google Scholar 

  7. Feng, Z., Sun, C., Hu, G.: Robust connectivity preserving rendezvous of multi-robot systems under unknown dynamics and disturbances. IEEE Trans. Control Netw. Syst. PP(99), 1–1 (2016)

    Google Scholar 

  8. Ghaffarkhah, A., Mostofi, Y.: Communication-aware motion planning in mobile networks. IEEE Trans. Autom. Control 56(10), 2478–2485 (2011)

    Article  MathSciNet  Google Scholar 

  9. Gil, S., Kumar, S., Katabi, D., Rus, D.: Adaptive communication in multi-robot systems using directionality of signal strength. Int. J. Robot. Res. 34(7), 946–968 (2015)

    Article  Google Scholar 

  10. Gowal, S., Martinoli, A.: Bayesian rendezvous for distributed robotic systems. In: IEEE/RSJ 2011 International Conference on Intelligent Robots and Systems, pp. 2765–2771. IEEE (2011)

    Google Scholar 

  11. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. In: Proceedings of the 41st IEEE Conference on Decision and Control, 2002, vol. 3, pp. 2953–2958, Dec 2002

    Google Scholar 

  12. Ji, M., Egerstedt, M.: Distributed coordination control of multi-agent systems while preserving connectedness. IEEE Trans. Robot. 23(4), 693–703 (2007)

    Article  Google Scholar 

  13. Kriegleder, M., Digumarti, S.T., Oung, R., D’Andrea, R.: Rendezvous with bearing-only information and limited sensing range. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5941–5947. IEEE (2015)

    Google Scholar 

  14. La Salle, J.P.: The Stability of Dynamical Systems. SIAM (1976)

    Google Scholar 

  15. Li, B., Moridian, B., Mahmoudian, N.: Underwater multi-robot persistent area coverage mission planning. In: OCEANS 2016 MTS/IEEE Monterey, pp. 1–6, Sept 2016

    Google Scholar 

  16. Lin, J., Morse, A., Anderson, B.: The multi-agent rendezvous problem. an extended summary. In: Cooperative Control, pp. 257–289. Springer (2005)

    Google Scholar 

  17. Lindhé, M., Johansson, K.H., Bicchi, A.: An experimental study of exploiting multipath fading for robot communications. In: 3rd International Conference on Robotics Science and Systems, RSS 2007, 27–30 June 2007, Atlanta, GA, USA, pp. 289–296 (2008)

    Google Scholar 

  18. Lopez-Nicolas, G., Aranda, M., Mezouar, Y., Sagues, C.: Visual control for multirobot organized rendezvous. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(4), 1155–1168 (2012)

    Article  Google Scholar 

  19. Lowrance, C.J., Lauf, A.P.: Direction of arrival estimation for robots using radio signal strength and mobility. In: 2016 13th Workshop on Positioning, Navigation and Communications (WPNC), pp. 1–6. IEEE (2016)

    Google Scholar 

  20. Mathew, N., Smith, S.L., Waslander, S.L.: A graph-based approach to multi-robot rendezvous for recharging in persistent tasks. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3497–3502. IEEE (2013)

    Google Scholar 

  21. Min, B.C., Matson, E.T., Jung, J.W.: Active antenna tracking system with directional antennas for enhancing wireless communication capabilities of a networked robotic system. J. Field Robot. 33(3), 391–406 (2016)

    Article  Google Scholar 

  22. Min, B.C., Parasuraman, R., Lee, S., Jung, J.W., Matson, E.T.: A directional antenna based leader-follower relay system for end-to-end robot communications. Robot. Auton. Syst. 101, 57–73 (2018)

    Article  Google Scholar 

  23. Montijano, E., Cristofalo, E., Zhou, D., Schwager, M., Sagüés, C.: Vision-based distributed formation control without an external positioning system. IEEE Trans. Robot. 32(2), 339–351 (2016)

    Article  Google Scholar 

  24. Mostofi, Y., Malmirchegini, M., Ghaffarkhah, A.: Estimation of communication signal strength in robotic networks. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1946–1951. IEEE (2010)

    Google Scholar 

  25. Muralidharan, A., Mostofi, Y.: Statistics of the distance traveled until connectivity for unmanned vehicles (2018). arXiv:1808.02538

  26. Owen-Hill, A., Parasuraman, R., Ferre, M.: Haptic teleoperation of mobile robots for augmentation of operator perception in environments with low-wireless signal. In: 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–7. IEEE (2013)

    Google Scholar 

  27. Parasuraman, R., Fabry, T., Molinari, L., Kershaw, K., Castro, M.D., Masi, A., Ferre, M.: A multi-sensor RSS spatial sensing-based robust stochastic optimization algorithm for enhanced wireless tethering. Sensors 14(12), 23970–24003 (2014)

    Article  Google Scholar 

  28. Park, H., Hutchinson, S.: An efficient algorithm for fault-tolerant rendezvous of multi-robot systems with controllable sensing range. In: 2016 IEEE International Conference on Robotics and Automation (ICRA 2016), pp. 358–365. IEEE (2016)

    Google Scholar 

  29. Pickem, D., Glotfelter, P., Wang, L., Mote, M., Ames, A., Feron, E., Egerstedt, M.: The robotarium: a remotely accessible swarm robotics research testbed. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1699–1706. IEEE (2017)

    Google Scholar 

  30. Rappaport, T.: Wireless Communications: Principles and Practice, 2nd edn. Prentice Hall PTR, Upper Saddle River, NJ, USA (2001)

    Google Scholar 

  31. Setter, T., Egerstedt, M.: Energy-constrained coordination of multi-robot teams. IEEE Trans. Control Syst. Technol. (2016)

    Google Scholar 

  32. Tang, Z.J., Huang, T.Z., Shao, J.L.: Consensus of multiagent systems with sampled information and noisy measurements. In: Discrete Dynamics in Nature and Society 2013 (2013)

    MATH  Google Scholar 

  33. Twigg, J.N., Fink, J.R., Yu, P., Sadler, B.M.: RSS gradient-assisted frontier exploration and radio source localization. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 889–895. IEEE (2012)

    Google Scholar 

  34. Venkateswaran, S., Isaacs, J.T., Fregene, K., Ratmansky, R., Sadler, B.M., Hespanha, J.P., Madhow, U.: RF source-seeking by a micro aerial vehicle using rotation-based angle of arrival estimates. In: American Control Conference (ACC), 2013, pp. 2581–2587. IEEE (2013)

    Google Scholar 

  35. Wang, Y., Xie, Y., Cheng, L.: Leader-following consensus of multi-agent systems with dynamic leader and measurement noises. In: 2017 36th Chinese Control Conference (CCC), pp. 8379–8384. IEEE (2017)

    Google Scholar 

  36. Yu, J., LaValle, S.M., Liberzon, D.: Rendezvous without coordinates. IEEE Trans. Autom. Control 57(2), 421–434 (2012)

    Article  MathSciNet  Google Scholar 

  37. Zavlanos, M., Egerstedt, M., Pappas, G.: Graph theoretic connectivity control of mobile robot networks. Proc. IEEE 99(9), 1525–1540 (2011)

    Article  Google Scholar 

  38. Zhao, S., Zheng, R.: Flexible bearing-only rendezvous control of mobile robots. In: 2017 36th Chinese Control Conference (CCC), pp. 8051–8056. IEEE (2017)

    Google Scholar 

  39. Zheng, R., Sun, D.: Rendezvous of unicycles: a bearings-only and perimeter shortening approach. Syst. Control Lett. 62(5), 401–407 (2013)

    Article  MathSciNet  Google Scholar 

  40. Zheng, R., Sun, D.: Multirobot rendezvous with bearing-only or range-only measurements. Robot. Biomim. 1(1), 4 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramviyas Parasuraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parasuraman, R., Min, BC. (2019). Consensus Control of Distributed Robots Using Direction of Arrival of  Wireless Signals. In: Correll, N., Schwager, M., Otte, M. (eds) Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-05816-6_2

Download citation

Publish with us

Policies and ethics