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Abstract. Efficient networking of many-robot systems is considered one
of the grand challenges of robotics. In this article, we address the problem
of achieving resilient, dynamic interconnection topologies in multi-robot
systems. In scenarios in which the overall network topology is constantly
changing, we aim at avoiding the onset of single points of failure, par-
ticularly situations in which the failure of a single robot causes the loss
of connectivity for the overall network. We propose a method based on
the combination of multiple control objectives and we introduce an on-
line distributed optimization strategy that computes the optimal choice
of control parameters for each robot. This ensures that the connectiv-
ity of the multi-robot system is not only preserved but also made more
resilient to failures, as the network topology evolves. We provide simula-
tion results, as well as experiments with real robots to validate theoretical
findings and demonstrate the portability to robotic hardware.

Keywords: resilience; multi-robot systems; connectivity; graph theory;
control; online optimization; robotic hardware; experimental validation.

1 Introduction

Robot swarms are defined as one of the grand challenges of Science Robotics [21],
and resilient networking in particular is a key technology for their successful
implementation and deployment. Yang et al. [21] define resilience as a “property
that is about systems that can bend without breaking. Resilient systems are
self-aware and self-regulating, and can recover from large-scale disruptions”. In
this paper, we study the problem of optimizing the resilience of the connectivity
of a dynamic multi-robot network, with respect to robotic failures.

When looking at multi-robot and swarm systems, we can observe that they
are inherently redundant. Being composed of multiple entities, failure of a single
robot does not, in general, cause the complete failure of the multi-robot sys-
tem. It might still be able to complete its objectives, possibly with a decreased
performance by exhibiting graceful degradation.
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2 Optimized control law for resilient multi-robot topologies

To cooperate and achieve shared objectives, robots need to exchange informa-
tion among each other. When considering groups of mobile robots with limited-
range communication capabilities, the topology of the robot network changes
as the robots move. It is then imperative to impose constraints on the robots’
motion, so that connectivity is preserved. Several strategies can be found in the
literature to address the connectivity preservation problem [3,8, 15,17,19,22].

It is worth noting that, when considering real robotic systems, connectiv-
ity preservation is not always a sufficient safeguard for network resilience. In
general, robots can be prone to failures and in many interconnection topolo-
gies, individual failures can generate the immediate loss of connectivity of the
overall network, possibly preventing the multi-robot system from achieving the
desired cooperative results. The inherent reliability of multi-robot systems (due
to redundancy) is then heavily reduced by the presence of single points of failure.

To address this issue, Ghedini et al. propose a control strategy [4] to ensure
that a multi-robot system preserves a high level of connectivity, while perform-
ing its assigned task. The proposed methodology is based on the combination of
multiple control laws aiming at adjusting the interconnection topology when po-
tentially vulnerable topological configurations are identified. In [11], this method
was implemented on a real multi-robot system, controlled to perform area cov-
erage, and its performance was evaluated against the shortcomings of the real-
world, such as imperfect communication. Again, this is achieved through the
combination of different control laws, each associated to a gain. These gain com-
binations determine the overall performance of the system. To automate the
choice of the overall parameter set (i.e., the control law gains), we introduce an
offline optimization method [11].

The main drawback of this approach is that the chosen gains are optimal
values obtained by averaging metrics over a set of different topologies, therefore
losing the advantage of optimizing for the current topology of the network. This
is particularly significant for a mobile robot network, where the topology changes
dynamically as the robots move.

Consequently, in this paper, we propose an online optimization strategy, that
allows the multi-robot system to estimate, at run time, the optimal (or close to
optimal) set of control law gains that optimizes the overall performance of the
system.

The rest of this paper is organized as follows. The necessary background
on network properties is presented in Section 2. The system model and the
problem addressed here are discussed in Section 3. Section 4 outlines the control
architecture. The optimized control strategy is described in details in Section 5,
and the experimental validation on real set-up in presented in Section 6. Finally,
Section 7 discusses the future directions and concludes the document.

2 Preliminaries: network properties

Consider an undirected graph G, where V (G) and E (G) ⊂ V (G)×V (G) are the
vertex set and the edge set, respectively. Moreover, let W ∈ RN×N be the weight
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matrix: each element wij is a positive number if an edge exists between nodes i
and j, zero otherwise. Since G is undirected, then wij = wji.

Thus, let L ∈ RN×N be the Laplacian matrix of graph G and D = diag ({ki})
be the degree matrix, where ki is the degree of the i-th node of the graph, i.e.

ki =
N∑
j=1

wij . The (weighted) Laplacian matrix of the graph is then defined as

L = D −W . As it is well known from algebraic graph theory, the Laplacian
matrix of an undirected graph G exhibits some remarkable properties regarding
its connectivity [7]. Let λi, i = 1, . . . , N be the eigenvalues of the Laplacian
matrix, then:

– The eigenvalues are real, and can be ordered such that 0 = λ1 ≤ λ2 ≤ . . . ≤
λN

– Define now λ = λ2. Then, λ > 0 if and only if the graph is connected.
Therefore, λ is defined as the algebraic connectivity of the graph: in a
weighted graph, λ is a non-decreasing function of each edge weight.

Connected graphs may get disconnected in case of failure of one or more
nodes. Different nodes have different roles in maintaining the overall network
connectivity. The concept of centrality is usually exploited to identify the most
important nodes within a graph [9]. In particular, referring to connectivity main-
tenance, we will consider the concept of Betweenness Centrality (BC) [20], which
establishes higher scores for nodes that are contained in most of the shortest
paths between every pair of nodes in the network. According to this definition of
centrality, removing the most central nodes might quickly lead to network frag-
mentation. We, therefore, introduce the following definition of the Robustness
level.

Definition 1 (Robustness level [6]) Consider a graph G with N nodes. Let
[v1, . . . , vN ] be the list of nodes ordered by descending value of BC. Let ϕ < N
be the minimum index i ∈ [1, . . . , N ] such that, removing nodes [v1, . . . , vi] leads
to disconnecting the graph, that is, the graph including only nodes [vϕ+1, . . . , vN ]
is disconnected. Then, the network robustness level of G is defined as:

Θ(G) =
ϕ

N
(1)

The robustness level defines the fraction of central nodes that need to be
removed from the network to obtain a disconnected network. Small values of
Θ(G) imply that a small fraction of node failures may fragment the network.
Therefore, increasing this value means increasing the network resilience, that is,
its robustness to failures. We observe that Θ(G) is only an estimate of how far
the network is from getting disconnected w.r.t. fraction of nodes removed. In
fact, it might be the case that different orderings of nodes with the same BC
produce different values of Θ(G).

While the robustness level refers to the overall state of the network, from
a local perspective, a heuristic for estimating the vulnerability level of a node
by means of the information acquired from its 1-hop and 2-hops neighbors was
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proposed in [6]. We summarize it as follows: let d(v, u) be the shortest path
between nodes v and u, i.e., the minimum number of edges that connect nodes
v and u. Subsequently, define Π(v) as the set of nodes from which v can acquire
information:

Π(v) = {u ∈ V (G) : d(v, u) ≤ 2} (2)

Moreover, let |Π(v)| be the number of elements of Π(v). In addition, define
Π2(v) ⊆ Π(v) as the set of the 2-hop neighbors of v, that comprises only nodes
whose shortest path from v is exactly equal to 2 hops, namely:

Π2(v) = {u ∈ V (G) : d(v, u) = 2} (3)

Now define L(v, u) as the number of paths between nodes v and u, and let
Pathβ(v) ⊆ Π2(v) be the set of v’s 2-hop neighbors that are reachable through
at most β paths, namely:

Pathβ(v) = {u ∈ Π2(v) : L(v, u) ≤ β} (4)

Thus, β defines the threshold for the maximal number of paths between a node
v and each of its u neighbors that are necessary to include u in Pathβ(v). There-
fore, using a low value for β, it is possible to identify the most weakly connected
2-hop neighbors. Hence, the value of |Pathβ(v)| is an indicator of the magnitude
of node fragility w.r.t. connectivity, and the vulnerability level of a node
regarding failures is given by Pθ(v) ∈ (0, 1):

Pθ(v) =
|Pathβ(v)|
|Π(v)|

(5)

We will hereafter use β = 1, in order to identify 2-hop neighbors that are
connected by a single path, which can represent a critical situation for network
connectivity.

3 System model and problem formulation

We consider a multi-robot system composed of N mobile robots and we assume
that each robot is able to communicate with other robots within a communi-
cation radius R. The resulting communication topology is represented by an
undirected graph G.

Let the state of each robot be its position pi ∈ Rm, and let p =
[
pT1 . . . p

T
N

]T ∈
RNm be the state vector of the multi-robot system. Let each robot be modeled
as a single integrator system, whose velocity can be directly controlled:

ṗi = ui (6)

where ui ∈ Rm is a control input. For each robot, the control input has to be
defined so that a global objective can be achieved. As an example of a commonly
implemented application, in the rest of the paper, we will refer to a scenario in
which the robots are controlled to spread in a given area while avoiding collisions.
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However, the proposed methodology can be easily extended to other coordinated
control objectives.

It is worth noting that coordinated objectives can be achieved only if infor-
mation can be exchanged among the robots, that is if the communication graph
is connected, and the robots keep this property as the system evolves. However,
when considering real robotic systems, failures can not be neglected: robots can
stop working unexpectedly and become unable to collaborate.

In this paper we combine different control laws, guaranteeing the achievement
of a common objective (area coverage, in our case) while ensuring the preser-
vation of the connectivity for the communication graph, even in the presence
of failures. The combination of the different control laws aims at maximizing a
global performance index. This index defines a trade-off between the area actu-
ally covered by the robots, and the level of connectivity of the communication
network.

4 Overview of the control architecture

Referring to the kinematic model in Equation (6), in the following, we consider
each robot to be controlled by means of a control input defined as the superpo-
sition of three different terms, that is:

ui = σuci + ψuri + ζudi (7)

The contributions that constitute the control inputs are defined as follows:

– The term uci ∈ Rm represents the connectivity preservation control input.
The role of this control input is to enforce that, if the communication graph
is initially connected, then it will remain connected as the system evolves.

– The term uri ∈ Rm represents the topology resilience improvement control
input. This term aims at improving the robustness of the topology against
failures. In other words, its purpose is to minimize the presence of single
points of failure that could induce a disconnection in the communication
graph in case of failure of one or more robots.

– The term udi ∈ Rm represents the desired control action. This encodes the
coordinated objective that the multi-robot system needs to achieve. As a
representative example, in this paper, we consider the objective to be the
uniform coverage of a given area.

– The terms σ, ψ, ζ ≥ 0 represent linear combination gains. They define the
relative importance of the separate control laws.

It is worth noting that the overall behavior of the multi-robot system is
defined by the way in which each individual control action is defined, and by
how they are combined. Indeed, a different choice of the linear combination gains
leads to a different behavior of the multi-robot system.

In the following subsections we will introduce representative examples of the
individual control actions, that we will consider for implementation in the rest
of the paper.
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4.1 Connectivity preservation

We consider the connectivity preservation control term uci to be designed, as
in [18], to ensure that the value of the algebraic connectivity λ never goes below
a given threshold ε > 0. As in [18], the following energy function can be used for
generating the decentralized connectivity maintenance control strategy:

V (λ) =

{
coth (λ− ε) if λ > ε
0 otherwise.

(8)

The control law is then designed to drive the robots to perform a gradient descent
of V (·), which ensures preservation of the graph connectivity. Considering the
robot model introduced in (6), the control law is defined as follows:

ui = uci = −∂V (λ)

∂pi
= −∂V (λ)

∂λ

∂λ

∂pi
. (9)

We observe that the connectivity preservation framework can be enhanced to
consider also additional objectives. In particular, as shown in [16], the concept
of generalized connectivity can be utilized to simultaneously guarantee connec-
tivity maintenance and collision avoidance with environmental obstacles
and among the robots.

4.2 Topology resilience improvement

We consider the topology resilience improvement control term uri to be designed—
in accordance with the methodology defined in [4,5]—to drive the robots toward
an improved resilience of the interconnection topology.

Based on the concept of vulnerability level introduced in (5), this control
strategy aims at increasing the number of links of a potentially vulnerable node
i towards its 2-hop neighbors that are in Pathβ(i), for a given value of β. Let xiβ ∈
Rm be the barycenter of the positions of the robots in Pathβ(i). Considering
the robot model introduced in (6), the control law is defined as follows:

uri = ξi
xiβ − pi∥∥∥xiβ − pi∥∥∥α (t) , (10)

where α (t) ∈ R is the linear velocity of the robots1.
Parameter ξi takes into account the vulnerability state of a node i, i.e., ξi = 1

if node i identifies itself as vulnerable or ξi = 0 otherwise. As in [4,5], we set as
vulnerable those robots i exhibiting high values for Pθ(i): then, ξi is defined as
follows

ξi =

{
1 if Pθ(i) > r
0 otherwise,

(11)

1 Pathological situations may exist in which (10) is not well defined, namely when
pi = xiβ . However, this corresponds to the case where the i-th robot is exactly in the
barycenter of its weakly connected 2-hop neighbors: in practice, this never happens
when a robot detects itself as vulnerable.
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where r ∈ (0, 1) is a random number drawn from a uniform distribution, i.e., if
Pθ(i) > r, then the i-th robot considers itself as vulnerable. It is worth remark-
ing that, according to (5), each robot can evaluate its vulnerability level in a
decentralized manner.

To summarize, this control law drives the vulnerable robots towards the
barycenter of the robots in their Pathβ , thus decreasing their distance to them,
thus eventually creating new edges in the communication graph.

4.3 Area coverage and collision avoidance

To control the robot to evenly spread over a given area while avoiding collisions,
we propose to use the well-known control strategy based on the Lennard-Jones
potential [2].

At distance x from its origin, the potential and the desired control action
equations are:

PLJ = ι

((
δ

x

)a
− 2 ·

(
δ

x

)b)
; udi = −ι

((
a · δa

xa+1

)a
− 2 ·

(
b · δ
xb+1

)b)
(12)

Parameters ι and δ represent the depth and distance from the origin of the
potential’s minimum, respectively. Exponents a and b are set to 4 and 2. For the
sake of collision avoidance, we set δ to be larger than the communication range
of the robots.

5 Optimized control strategy

In this section, we introduce a new methodology to achieve online optimization
of the linear combination gains σ, ψ, ζ introduced in (7). The objective is to
make the robots able to identify the best set of parameters during the evolution
of the system.

The best solution is defined starting from the system-level objective we are
considering, that is, achieving area coverage while keeping a sufficiently high level
of connectivity. For this purpose, we define the following objective function:

fobj(t) = λ(t)A(t) (13)

where λ(t) is the algebraic connectivity of the communication graph at time t,
and A(t) is the value of the covered area at time t.

The choice of the objective function is motivated by the fact that this is a
fundamentally multi-objective problem of two inversely proportional functions at
different scales. A common way of avoiding an adaptive normalization scheme
for the two functions is to consider their product [10]. This approach favors
solutions that lead to a trade-off between maximizing the algebraic connectivity
and maximizing the covered area.
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5.1 Proposed optimization method

The proposed optimization method aims at finding the optimal combination of
the gains σ, ψ, ζ such that the objective function introduced in (13) is maximized
at the end of each iteration. It is worth noting that the objective function is a
product of nonlinear contributes, being computed using the algebraic connectiv-
ity (which, being an eigenvalue of the Laplacian matrix, is inherently nonlinear)
and the covered area (which is calculated considering circular overlapping areas
covered by each robot and therefore, it is also nonlinear).

Consequently, we consider the use of optimization methods that are well
suited for nonlinear problems. In particular, we adopted the following meth-
ods [1]:

1. The default search optimization provides a uniform and default screening
of the variable domain space. The main advantage of this method is the ac-
curacy of the solution, which can be freely defined if the system performance
is independent from the computation time.

2. Random search. This stochastic method does not require the gradient of
the objective function and can consider non continuous or non differentiable
objective functions. The optimal set of parameters is found randomly probing
the domain space and selecting the set which returns the highest objective
function value. Random search algorithms are typically used to achieve high
computational speed at the cost of losing formal guarantees of optimality.

3. The augmented Lagrangian optimization algorithm method. Suited for
constrained optimization problems, it requires to first penalize the objective
function, translate the constrained optimization problem to a series of un-
constrained problems, and then adds a term designed to mimic a Lagrange
multiplier and improve precision and convergence speed. This algorithm ex-
ploits the gradient of the objective function to get the optimal set of pa-
rameters. Since the gradient is hard to compute for nonlinear functions such
as (13), numerical differentiation is exploited.

5.2 Implementation and evaluation

We compared the optimization methods in terms of quality of the solution and
required computation resources. To achieve this, we implemented the following
procedure:

1. At each time step, the positions of all the robots are shared with all the
other robots, according to the protocol described in [11]. To achieve this
in a reasonable time without a fully connected network we use a consen-
sus implementation—virtual stigmergy [13]—that was shown to scale with
thousands of robots.

2. Based on the shared positions, each robot computes the output of its own
control law (7), and its local estimate of each other robot’s control law.

3. Every Op time steps, each robot runs the optimization process to find an
updated set of gains to be used in (7) according to the following sub-steps:



Optimized control law for resilient multi-robot topologies 9

(a) Each robot transforms the positions and the control laws in its local
reference frame.

(b) A set of Gp different values of the gains is generated (according to the
considered optimization method described in Section 5.1).

(c) For each value of the gains, the robots compute the predicted position
of all the robots at the subsequent time step, and evaluate the objective
function introduced in (13).

(d) The gains that provide the highest value of the objective function are
selected.

For evaluating the different optimization methods, we implemented the control
law using the Buzz scripting language [12], and run a set of simulations using
the multi-physics environment of ARGoS [14]. The optimization framework was
written as a C++ module which communicates, by means of a socket, with the
simulation set-up.

We evaluate the performance of each optimization method considering a net-
work of 8 robots and compare against a system constant gains, considering all
the possible combinations of the following sets:

ψ = {0, 1, 2} σ = {0, 1, 2} ζ = {0, 1} (14)

The configurations assessed start from the same (randomly selected) initial topol-
ogy and are compared using the aforementioned three optimization algorithms.

The results of the simulations are summarized in Fig. 1, which depicts the
value of the objective function (13) achieved with each optimization algorithm.
In particular, the green line represents the objective function obtained with
the optimization algorithm, while the red line with the corresponding shadow
represents the average value and standard deviation of the objective function
obtained with constant gains.

While in general the value of the objective function is typically greater when
using the optimization method (with respect to constant gains), results show
that random search performs significantly better than other methods. Further-
more, the computational requirements are generally smaller for random search,
in particular if compared with default search, whose convergence time is approx-
imately ten times larger.

According to these results, we choose random search as the preferred opti-
mization algorithm. Subsequently, we perform a set of simulations to investigate
how the choice of the parameters influences the results. In particular, we run sim-
ulations for different numbers of generated points Gp = {400, 2200, 4000} and
for different values of the optimization period Op = {1, 10, 50}. The results we
obtain from these simulations are summarized in Fig. 2. The sub-plots show the
value of the objective function achieved in each configuration. It is possible to
observe that different parameter choices provide similar results, in terms of the
objective function. Therefore, we conclude that the optimization algorithm can
be effectively run choosing the lowest values of generated points (i.e. Gp = 400),
and with the largest value of the optimization period (i.e. Op = 50): these choices
reduce the computational requirements without causing a significant decrease in
the quality of the achieved solution.
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Fig. 1. Objective function evolution comparison. Static gains simulations vs. optimized
gains simulations for augmented Lagrangian, random, and default searches.

6 Experimental validation

Segueing from simulation to real robots can be challenging and results in per-
formance degradation, especially with resource constraint hardware [11]. For
demonstrating the portability of the proposed online optimization, and to as-
sess how hardware limitations affect the choice of the optimization parameters
(i.e., the generated points Gp and optimization period Op), we transferred our
methodology onto a distributed multi-robot system. The robot team consists of
eight two-wheeled K-Team Khepera IV (KH4) depicted in Figure 3. Each robot
comes with an 800MHz ARM Cortex-A8 and the Yocto operating system2.

A camera-based tracking system (OptiTrack3’s Prime13, see Figure 3), and
the blabbermouth4 communication infrastructure are combined to emulate range
and bearing sensors for each robot. This also enables point-to-point communica-
tion with a limited communication range R between the robots (a similar setup
was used in [11]).

The optimization procedure described in Section 5.2 is embedded into the
executable bzzkh45 that runs the Buzz byte code of each robotic controller.
Starting from the in simulation investigated parameters, we determine the op-
timization times ∆t for processing on the KH4 multi-robot system by varying
Gp. A set of optimizations is performed with the initial topology configuration

2 https://www.k-team.com/mobile-robotics-products/khepera-iv
3 https://optitrack.com/products/prime-13/specs.html
4 https://github.com/MISTLab/blabbermouth
5 https://github.com/MISTLab/BuzzKH4

https://www.k-team.com/mobile-robotics-products/khepera-iv
https://optitrack.com/products/prime-13/specs.html
https://github.com/MISTLab/blabbermouth
https://github.com/MISTLab/BuzzKH4
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Fig. 2. Random search simulation objective function evolution: (a) comparison at con-
stant generated points, (b) comparison at constant optimization period.

Fig. 3. One of four OptiTrack Prime 13 cameras and one of eight K-Team’s Khepera
IV robots (ø= 14.0 cm, h = 6.0 cm) used for the experimental setup in Section 6.

(introduced in Section 5.2). We obtain ∆t’s of 8′41′′, 46′47′′ and 84′23′′ as run-
times for 400, 2200 and 4000 generated points Gp, respectively. With increasing
Gp, ∆t increases linearly and ranges from minutes to hours. Considering these
computational demands, it is sensible to run the online optimization on the KH4
every Op = 50 steps with Gp = 400 points.
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Simulations and experimental validation iterate over a fix number of control
steps. After 500 such iterations, we consider an experiment to be finished. Due to
different processing times on each member of the robot team, the KH4’s operate
asynchronously. Some reach the end of the experiment earlier and will thus
stop communicating and end their operations. Figure 4 shows the evolution of
three functions: objective function fobj , the coverage Ca and the connectivity λ2.
The objective function increases, which corresponds to the simulated behavior
(compare to Figure 2). The initial decrease in coverage, as well as the increasing
of connectivity have been observed in the previous experiments [11].

Fig. 4. Objective function fobj evolution achieved in real robot experiments using ran-
dom search optimization algorithm set with 400 Gp and 50 Op.

7 Conclusions

In this paper, we propose online optimization to automatically tune the gains of
a control law for resilient multi-robot networks. Our starting point is a control
law [4] that was proven to increase the robustness of an initially connected multi-
robot topology. Here, we extend that work with the following contributions: (i)
we implement an online framework to predict and optimize the multi-robot sys-
tem performance; (ii) within it, we compare three different optimization algo-
rithms; and finally, (iii) we assess the feasibility of implementing this framework
on a real robotic setup comprising of eight 2-wheel robots. Simulations demon-
strate the effectiveness of the proposed approach as well as its low sensitivity
to parameterization. We also demonstrate that the methodology can be exe-
cuted on robots with limited computational capabilities. Future developments of
this work will include the validation of our methodology using ROS-based flying
robots and its study with desired control actions other than coverage.
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