
SCALABLE COMPILER FOR TERMES
DISTRIBUTED ASSEMBLY SYSTEM

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

M.S.

by

Yawen Deng

May 2018

c© 2018 Yawen Deng

ALL RIGHTS RESERVED

ABSTRACT

The TERMES system is a robot collective capable of autonomously construct-

ing user-specified structures in three dimensions. The compiler is one of the

key components that convert the goal structure into a directed map which an

arbitrary number of robots can follow to perform decentralized construction.

In previous work, the compiler was limited to brute force search which scales

poorly with the size of structure. The purpose of this research is to enhance

the scalability of the compiler so that it can be applied to very large-scale struc-

tures. Correspondingly, a new scalable compiler is presented, with the ability

to generate directed maps for structures with up to 1 million stack of bricks. We

further recast the old compiler as a constraint satisfaction problem and compare

their performance on a range of structures. Results show that the new compiler

has significant advantages over the old compiler as the size and complexity of

the structures increase. We further developed an automated scheme for improv-

ing the transition probability between neighboring stack of bricks for efficient

construction. This work represents an important step towards real-world de-

ployment of robot collectives for construction.

BIOGRAPHICAL SKETCH

Yawen Deng was born in Taiyuan, China. After completing her schoolwork at

Taiyuan Foreign Language School in Taiyuan in 2012, Yawen entered Zhejiang

University in Hangzhou, China. During the summer of 2015, she attended Uni-

versity of California, Davis. She then went to Harvard University as a visiting

student for 8 months. She received Bachelor of Engineering with a major in

Energy and Environmental System Engineering in May 2016. In August 2016,

She entered the mechanical engineering master of science program at Cornell

University.

iii

ACKNOWLEDGEMENTS

This project would not have been possible without the support of many peo-

ple. Many thanks to my adviser, Kirstin H. Petersen, who always gives me

advice whenever I had questions about my research or writing. Also thanks to

my committee member, Ross A. Knepper, who offered guidance and support to

my research. I would also like to thank professor Nils Napp from University at

Buffalo, for his invaluable feedback in computer graphic and python implemen-

tation. Thanks to my teammate Yiwen Hua for being my teammate in TERMES

project and contribute my thesis. Thanks all the members in the Cornell Collec-

tive Embedded Intelligence Lab for their support and help.

Finally, I must express my very profound gratitude to my parents for provid-

ing me with unfailing support and continuous encouragement throughout my

years of study and through the process of researching and writing this thesis.

This accomplishment would not have been possible without them. Thank you.

iv

TABLE OF CONTENTS

Biographical Sketch . iii
Acknowledgements . iv
Table of Contents . v
List of Tables . vi
List of Figures . vii

1 Introduction 1
1.1 Motivation . 1
1.2 TERMES System . 2
1.3 Thesis Outline . 4
1.4 Contribution . 5

2 Related Work 7
2.1 Industry Application . 7
2.2 Scientific Research . 8

3 Background 11
3.1 TERMES Compiler . 11
3.2 TERMES Robot Algorithm . 13
3.3 Problem Formulation . 15

4 Constraint Satisfaction Problem 16
4.1 Backtracking Search for CSPs . 16
4.2 Edge-CSP Compiler . 17
4.3 Location-CSP Compiler . 19

5 Breadth First Disassembly Compiler 21
5.1 Algorithm . 21
5.2 Proof of Correctness . 24

6 Evaluation 28
6.1 Test Cases . 28
6.2 Results . 30

7 Probability Optimization 34

8 Conclusion 37
8.1 Conclusion . 37
8.2 Future Work . 38

A Chapter 1 of appendix 39
A.1 Generating Random Structures . 39

Bibliography 40

v

LIST OF TABLES

6.1 Description of different compilers 29

A.1 This table shows the probability of generating random heights
for square structures. P(+1) indicates the probability of increas-
ing the height by one. P(0) indicates the probability of staying
the same height. P(−1) indicates the probability of lowering the
height by one brick. 39

vi

LIST OF FIGURES

1.1 TERMES Pipeline. Adapted from ”Distributed Multi-Robot Al-
gorithms for the TERMES 3D Collective Construction System.”
by Justin Werfel, Kirstin Petersen, and Radhika Nagpal, The In-
ternational Journal of Robotics Research, 27(3-4):463-479, 2008 3

1.2 TERMES robots and bricks. Adapted from [17] 4

3.1 Sketch of how the compiler works. The compiler converts the
user input to a directed map indicated by arrows on the plot.
The numbers indicate the height of the stack of bricks at each site. 12

3.2 The compiler must comply with several restrictions. A) Cycles in
the path are not allowed as they will lead to unfillable gaps. (B)
If a site has no incoming arrow, it will be impossible for robots
to reach this site. (C) If a site has no outgoing arrow, it will be
impossible for robots to leave this site. (D) Arrows pointing to-
wards each other may lead to unfillable gaps. 13

4.1 Example of the edge-CSP compiler on a 2 × 3 uniform height
structure. Each square represents a location. Arrows represent
edges and their directions. For each location, the compiler as-
signs one edge at a time. 19

4.2 Example of the location-CSP compiler on a 2 × 3 uniform height
structure. Each square represents a location. Arrows represent
edges and their directions. For each location, the compiler as-
signs directions to all edges at the same time. 20

5.1 Example of the BFD compiler on a 3 × 3 structure. The compiler
starts at the exit and removes locations in a breadth-first manner
dependent on connectivity. Consider the start location to be (0,0)
and the exit location to be (2,2): The compiler first removes (2,1) -
arrows are added as bricks are removed. The compiler then tries
to remove (1,2), but cannot as this would cause (1,1) to become
disconnected. It then removes (2,0), and continues in the same
manner until only the start location is left (returns success), or
until no more locations can be removed (returns failure). Notice
that the green arrows are optional and do not count towards the
traversability check. 23

6.1 Base test structures. (a) shows the top view and 3D model of
one-height square. (b) shows the top view and 3D model of ran-
dom buildable square. (c) shows the top view and 3D model of
random unbuildable structure. The start site is marked in yellow
and exit site is marked in blue. 29

6.2 Scaling up squares . 30

vii

6.3 Log-log plot of different compilers on one height squares. The
dot indicates the median value of the runtime for 10 trials; the
error bars indicate the minimum and maximum value. 31

6.4 Results of different compilers on random buildable squares. The
dot indicates the median value of runtime of the compilers on 10
random structures of similar size; the error bars indicate mini-
mum and maximum values. 32

6.5 Results of different compilers on random unbuildable structures.
The dot indicates the median value of runtime over 10 trials; the
error bars indicate the minimum and maximum values. 33

7.1 Example of transition probability optimization for a 15 × 15 ran-
dom structure. (a) is the 3D model of input structure, the height
of each sites are randomly generated. It is a 15×15 structure con-
sists of 406 bricks. (b) is the direct map generated by compiler.
Notice that travel directions which are intraversable in the final
structure are colored in blue. (c) is the probability map before
optimization. The probability of reaching anti-diagonal corner is
6.1e-5. (d) is the probability map after optimization. The proba-
bility of reaching anti-diagonal corner is increased to 0.067. . . . 36

viii

CHAPTER 1

INTRODUCTION

Autonomous robots have the potential to revolutionize the industry by per-

forming high-precision, repetitive, and predictable tasks. Unlike human beings,

autonomous robots do not experience fatigue and inaccuracies. Furthermore,

the use of autonomous robots can improve the safety of workers and reduce

accidents. Robots have the potential to work in extreme environment such as

underwater, underground, the outer space, earthquake, and more. The focus

here is on construction, where autonomous robots may enable rapid fabrica-

tion of inexpensive and potentially novel types of structures outside in highly

unstructured environments.

1.1 Motivation

With expenditures reaching over 1,162 billion U.S. dollars, the United States is

one of the largest construction markets worldwide[15]. The use of robots in the

construction process may greatly minimize mistakes, which will further reduce

the cost in terms of money and time. According to the UN habitat, about 1.6

billion people currently lack adequate housing and more than 60 million peo-

ple flee their homes annually due to war, famine, etc[6]. Automated construc-

tion promises to lower the cost of construction and may lead to more afford-

able housing options. Up to 20% of worker injuries come from the construction

sector[2]. By introducing robots to take over heavy loads and dangerous tasks,

the health and safety of workers may be improved. It is predicted that by 2050

about 64% of the developing world and 86% of the developed world will be

urbanized[7]. The demand of new city construction will exceed the amount of

1

human resources available and robots have the potential to fill this growing la-

bor gap.

Collective of robots have the ability to efficiently assemble structures that are

much larger than the size of the individuals. Robot collectives may also be toler-

ant to individual failures. A great natural example of how such collectives may

operate include social insects such as ants, bees, and termites. These swarms

are highly organized and can have millions of individuals. Each individual only

has limited capacity, however, by working together they can achieve tasks be-

yond the reach of any individual. Although such robot collectives and swarms

have received a lot of attention over the past few years, most demonstrations

are limited to relatively small-scale assemblies and/or small scale collectives.

1.2 TERMES System

South African mound-building termites live in colonies with millions of work-

ers and are capable of building mounds which are orders of magnitude larger

than themselves. Inspired by termites, the TERMES system [11] consists of

large collectives of robots capable of automated construction. The system com-

prises mobile robots and specialized passive building blocks; the robot can au-

tonomously manipulate the blocks, build structures with them, and maneuver

on these structures in 2.5D.

Fig.1.1 shows the pipeline of TERMES system. First, a user specifies a de-

sired structure as well as start and exit site(s). A start site is where robots can

enter the structure. An exit site is where the robots can leave the structure. Next,

the off-line compiler generates traffic patterns that robots can follow to build

2

the structure with provable guarantees. Next, the system assigns an arbitrary

number of robots for building activity. Robots attach bricks according to a rule

set that guarantee no gaps which cannot be filled in later, and no cliffs which

would leave the structure intraversable by future robots. The final step is to let

the robots perform decentralized construction.

Figure 1.1: TERMES Pipeline. Adapted from ”Distributed Multi-Robot Al-
gorithms for the TERMES 3D Collective Construction System.”
by Justin Werfel, Kirstin Petersen, and Radhika Nagpal, The In-
ternational Journal of Robotics Research, 27(3-4):463-479, 2008

The original TERMES system is a successful case of decentralized control

and collective construction. However, it largely overlooked the performance of

the path compiler. The old compiler was limited to brute force search which

scales poorly with the size of structure making it very computationally ex-

pensive to generate paths for large-scale structures (even the size of a normal

house), let alone check if large structures can be built. The motivation of this

research is to enhance the scalability of the compiler so that it can be applied to

very large-scale structures.

In addition to the compiler, robots have a uniform probability of choosing

3

any of the traversable neighboring sites in the structure, which leads to wasted

trips where the robots exit the structure without finding a place to add a brick.

In this research, we aim to optimize the transition probability for efficient con-

struction.

Figure 1.2: TERMES robots and bricks. Adapted from [17]

1.3 Thesis Outline

Chapter 2 reviews related works of automated construction with special focus

on collective construction robots in both research and industry area.

Chapter 3 introduces algorithmic framework of TERMES system. we de-

scribe the system pipeline and provide details of the compiler algorithms, robot

building rules, and the challenges. A detailed problem formulation is also pro-

4

vided in this chapter.

Chapter 4 introduces the Constraint Satisfaction Problem (CSP). We recast

the original compiler into a constraint satisfaction problem, and show a number

of ways in which it can be tweaked to behave more efficiently.

Chapter 5 presents the Breadth First Disassembly (BFD) compiler, which is

our main contribution, and a proof of correctness.

Chapter 6 shows the performance and evaluation of the BFD compiler. We

implement BFD compiler, edge-CSP compiler, and location-CSP compiler in

python and test them on a range of structures. We use three types of structures

scaled in size.

Chapter 7 then discusses how the resulting directed map can be optimized

for faster construction. Specifically, we alter the transition probability between

neighboring stacks of bricks to efficiently guide the robots over the structure.

Chapter 8 summarizes and concludes this thesis.

1.4 Contribution

In this research, we focus on enhancing the scalability of TERMES compiler so

that it is be feasible to compile paths for human-scale structures. The previous

TERMES paper uses a search algorithm to assign travel directions, which we

recast as a backtracking solution to a CSP with pairwise, partial, and global con-

straint checking. We show that, worst case, the time complexity of this search is

O(2n), where n is the number of edges to be assigned. Although this may work

5

well on structures with many solutions, it will perform very poorly on struc-

tures with only a few or no solutions. We show simple methods for incremental

improvements to this scheme and then implement a completely new compiler

that works vastly better than the CSP. The new compiler is not based on search,

but instead builds up a feasible solution in a breadth-first manner from all exits.

We show that the new compiler has an average and worst-case time complex-

ity of O(n2). To compare the compilers mentioned above, we implement them

in Python, run them on the same computer, and evaluate their performance by

runtime on a range of buildable/non-buildable structures. In addition to the

compiler, transition probabilities between adjacent locations are altered for effi-

cient construction; the efficiency is structure dependent, but we show a simple

case in which the number of necessary steps taken by the robots is decreased by

more than 30 times.

6

CHAPTER 2

RELATED WORK

Research in automated construction started in the 1980s and has evolved into

two major thrusts: stationary and mobile assembly robots. This chapter focus

on the mobile robots, with special attention on collective robots. The follow sec-

tions review industry application, scientific research of automated construction

and related research on assembly compilers.

2.1 Industry Application

In construction, automation is challenging since the construction site and goal

structure changes from day-to-day. Many companies use automated robots for

onsite construction, but usually focus on short-term goals and explore practical

options.

Self-driving cars have gained a lot of attention during the past few years

and this application extends to construction. It requires a 3D map of the cur-

rent site created by a laser scanner, drones, etc. Engineers plan the construction

process based on the 3D map. By combining the real-time 3D map, the con-

struction plan, and the location of the robots, the controller assigns tasks to each

robot. Built Robotics developed such self-driving excavators for construction

sites and a fully autonomous skid steer that can be remotely directed via a com-

puter program to move around dirt. Komatsu[5] introduced their Intelligent

Machine Control (IMC) with a D61i-23 dozer. The blade is automatically con-

trolled according to 3D CAD construction data with the coordinates computed

from design drawings. Caterpillar[1] developed a CAT Command technology

7

for addition to their mining equipment. This makes them able to do manual or

semi-autonomous operation of their dozing and underground loading equip-

ment, as well as complete autonomous operation of their haul trucks.

When it comes to bricklaying robots, Construction Robotics[3] designed

a semi-automated mason (SAM) which is a combination of a conveyor belt,

robotic arm, and concrete pump. It has the ability of placing between 300 and

400 bricks an hour. Fastbrick[4] robotics developed Hadrian X to complete

brickwork at a lower cost and higher quality. This robot can handle different

brick sizes as well as cut, grind, mill, and route the bricks to fit the structure

before laying them down.

Such industrial robots work well for onsite construction, but either require

human intervention or depend heavily on a single robot system which repre-

sents a single point of failure. The following section describe systems of many

cooperating simple robots that have an easier time adapting to the circum-

stances at hand.

2.2 Scientific Research

Collective construction is the term used when more than one robot works to-

gether to complete the structure. Compared with stationary assembly, collective

construction offers better parallelism, scalability, and error tolerance. Collective

robots usually do not have pre-programmed actions or pre-assigned locations.

Researchers have implemented collective construction robots in many dif-

ferent ways. There are two major categories: ground robots and aerial robots.

8

Aerial robots are not limited by ground constraints. They can operate dynami-

cally in space and assemble directly in the required position. Willmann, et al.[18]

developed flying robots that lift building elements and drop them according to

blueprint. Similarly, Lindsey et al.[9] proposed a system that in which quadro-

tor helicopters autonomously assemble 2.5D truss-like structures. However, to

date, the majority of aerial robots still require a centralized controller and com-

plete global sensing, typically provided by motion capture systems. Centralized

controllers scale poorly with the size of the collective and represent a single

point of failure. Further, it is difficult to set up full sensing and communication

in every new construction site.

In contrast to aerial robots, ground robots are stable and capable of carrying

heavy objects. Many such systems have been presented, ranging from com-

plicated robots working in dedicated teams to do more complex assemblies,

to simple robots building simple structures. A representative example of the

former includes the work of Knepper et al.[8], where rather expensive robots

works together in small teams to assemble furniture kits from IKEA. Knepper

developed a geometric reasoning system that was capable of discovering the

correct arrangement without knowing the final shape. There are also many ex-

amples of the latter. The Automatic Modular Assembly System(AMAS)[16] was

one of the first such systems consisting of passive building blocks and assem-

bler robot. Algorithms with large collectives were shown extensively in simu-

lation, and a few, very simple robots and blocks were physically demonstrated.

Rubenstein et al.[12] created a thousand-robot swarm that could form 2D pre-

programmed shapes out of their own bodies. They developed a collective al-

gorithm which was highly robust to robot variability and other typical error

characteristics which occur in large-scale decentralized systems. coordination

9

of distributed construction robots have been achieved through gradients[16],

[13], templates[10], and a combination of offline compilers and rule sets[17].

The TERMES system, which is the focus of this thesis, stands in contrast to

these systems by focusing on simple climbing robots capable of building exact

structures in 2.5D out of dedicated building material. It takes user-specified

structures and generate low-level rules for robots to coordinate their construc-

tion activity. Robots use only local sensing and coordinate their activity via the

shared environment[17].

10

CHAPTER 3

BACKGROUND

Since this thesis is based on the original TERMES compiler, this chapter de-

scribes the background of the research. The TERMES compiler and its require-

ments are introduced in section 3.1. Next, the robot rule set which determines

when bricks can be placed is introduced in Section 3.2. Last but not least, the

problem formulation of the TERMES compiler is presented in section 3.3.

3.1 TERMES Compiler

The compiler is one of the key component of the TERMES system. It converts the

user-specified structure into a directed map similar to traffic patterns. Specifi-

cally, it generates a directed graph connecting reachable sites on the structure.

An arbitrary number of robots can follow such a map to conduct the building

activity. These traffic patterns prevent problems such as deadlock, unreachable

areas, and incomplete construction. In order to successfully build the structure,

the system must satisfy following requirements:

• Robots are physically capable of climbing up or down at most one brick

height. An edge connecting two neighboring sites that has a height differ-

ence larger than 1 is considered untraversable.

• Robots cannot place bricks directly in between two other bricks (this is

mechanically difficult to do), therefore the map cannot have arrows point-

ing towards each other in the same row or column. Furthermore, the map

11

cannot have cycles, as these will eventually also create unfillable gaps in

the structure.

• There must be one start site where robots can enter the structure and start

building activity. There must also be at least one exit site where robots can

leave the structure after they place the brick, or find that there is nowhere

to place one. Start and exit sites must be located on the external perimeter

of the input structure. The height of start point and exit point must be 1 so

that the robots can ascend/descend from there.

• For any site in the structure, there must exist at least one path that starts

from the start site, pass through this site, and ends at an exit site. Each site

must have at least one incoming arrow and at least one outgoing arrow. If

it has no incoming arrow, it is not possible for robots to reach the site. If it

has no outgoing arrow, it is not possible for robots to leave the site.

Figure 3.1: Sketch of how the compiler works. The compiler converts the
user input to a directed map indicated by arrows on the plot.
The numbers indicate the height of the stack of bricks at each
site.

12

Figure 3.2: The compiler must comply with several restrictions. A) Cycles
in the path are not allowed as they will lead to unfillable gaps.
(B) If a site has no incoming arrow, it will be impossible for
robots to reach this site. (C) If a site has no outgoing arrow,
it will be impossible for robots to leave this site. (D) Arrows
pointing towards each other may lead to unfillable gaps.

Note that a structure is considered unbuildable if it violates any of the re-

strictions mentioned above.

3.2 TERMES Robot Algorithm

Once receiving the directed map of the structure, an arbitrary number of robots

move along the paths in the map and place bricks following a common behav-

ioral program. This program does not change with the structures or the specific

map generated. If robots were allowed to place bricks anywhere along the path,

they would be likely to end up in situations that prevents future progress, e.g.

by creating a cliff that other robots could not traverse over.

13

Algorithm 1: Building Algorithm[17]. Hi is the target height of site i on
structure, hi is the current height of site i. The robot’s current
location is marked as site 0. Parent sites of site 0 is sites that
have outgoing arrows pointing to site i. Child sites of site 0
is sites that have incoming arrows pointing from site i. Next
sites are reachable child sites from site 0.

1: Loop:

2: while structure is not complete do

3: get a brick

4: climb onto structure

5: while on structure do

6: move to any next site

7: if holding a brick

and h0 < H0

and for all parent sites i: (hi > h0 or hi = Hi)

and for all child sites i: (hi = h0 or |Hi − H0| > 1) then

8: move to any next site

9: attach brick at site just vacated

10: interrupt:

11: if robot close ahead then

12: perform collision avoidance

Note that if one site has multiple children, the probability of going to each

child site is uniformly distributed. In order to attach a brick to a site, the parent

sites must either have reached their target height, or have a final height which

is greater than the current site. If one of the parent sites does not satisfy these

conditions, robots are not allowed to attach a brick there.

14

3.3 Problem Formulation

Based on the characteristics of the TERMES system, we state the problem as

following: A structure consists of a finite set of locations L that each have integer

x and y location, i.e. (lx, ly) = l ∈ L. Two locations l, k ∈ L are said to be neighbors

when either the x or y differ by one, but not when both are different. This type

of neighbor relation corresponds to a distance of 1 with the Manhattan distance

metric. A path is a sequence of locations p = (l1, l2, .., lN) such that consecutive

locations are neighbors. We assume that all the locations for a structure are path

connected, i.e. every location has a path to every other location. Disconnected

structures can be treated as separate structures.

There are two special types of locations, Lstart ⊂ L and Lexit ⊂ L, which cor-

respond to the start and exit locations. In a structure, each location has a target

height h ∈ N. We say that a path is traversable if each consecutive location differs

in target height by at most one, i.e. in the completed structure such a path could

be followed by a TERMES robot.

The goal of the compiler is to generate a directed, acyclic graph, on the vertex

set L that has directed edges between neighbors, with the additional properties

that: for every l ∈ L there is a directed, traversable path from a start location to

reach l, for every l ∈ L there is a directed, traversable path to reach an exit, and

that if bricks are only assembled after their predecessors have been assembled,

this will never result in assembly operations that violate the physical adjacency

constraints. To initialize, the compiler assigns outgoing arrows from Lstart and

ingoing arrows to Lexit.

15

CHAPTER 4

CONSTRAINT SATISFACTION PROBLEM

In this chapter, we recast the old compiler as backtracking search to a Con-

straint Satisfaction Problem (CSP) with pairwise, partial, and global constraint

checking. Constraint Satisfaction Problems represent states as a vector of vari-

able values. Each variable has a nonempty domain of possible values. It con-

tains a set of constraints such that each constraint specifies the allowable com-

binations of values for some subset of the variables. A solution to a CSP is

a complete assignment that satisfies all the constraints[14]. Section 4.1 intro-

duces backtracking search for CSPs. Section 4.2 presents an ”Edge-CSP” com-

piler similar to the original compiler. An improved version of the Edge-CSP is

introduced in section 4.3.

4.1 Backtracking Search for CSPs

Alg.2 shows the general formulation of backtracking search for CSPs. The back-

tracking search chooses values in the corresponding domain for variables one

at a time in a depth-first search manner. It searches all possible combinations

of values until it finds a solution. Worst case, it will search all combinations of

values and find there is no solution.

16

Algorithm 2: General formulation of recursive CSP, from [14]. Backtrack-
ing is abbreviated BT.

1: function BT-SEARCH(csp) returns a solution, or failure

return RECURSIVE-BT({ }, csp)

2: function RECURSIVE-BT(assignment, csp) returns a solution, or failure

3: if assignment is complete then return assignment

4: var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assign-

ment, csp)

5: for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

6: if value is consistent with assignment according to CON-

STRAINTS[csp] then

add {var = value} to assignment

7: result← RECURSIVE-BT(assignment, csp)

8: if result , failure then return result

9: remove {var = value} from assignment

10: return failure

4.2 Edge-CSP Compiler

The original compiler paper describes a search procedure for searching through

the space of available assignments [17]. We recast the search as a backtrack-

ing search to a constraint satisfaction problem with pairwise, partial, and global

constraints. Variables are defined as all edges connecting locations. Each vari-

able has a domain of two values: ingoing and outgoing. Local constraints check

if no neighboring edges pointing to the same location. Partial constraints check

17

the following conditions: 1) every assigned location, except for start and exit(s),

must have both incoming and outgoing travel directions; 2) There cannot be

cycles in the graph. The CSP checks, via a global constraint, if all locations are

reachable from the start and that all exit(s) are reachable from those locations.

This compiler does not take the height of the structure into consideration until

the final global check. The search continues until all options have been tried, or

no solution is found. Worst case, this amounts to O(2n) checks, where n corre-

sponds to the number of edges.

In the original paper, it does not specify how to pick directions for edges. So

we assume the choices are made randomly. We further optimize it by giving

priority to direction that is pointing away from start.

18

Figure 4.1: Example of the edge-CSP compiler on a 2 × 3 uniform height
structure. Each square represents a location. Arrows represent
edges and their directions. For each location, the compiler as-
signs one edge at a time.

4.3 Location-CSP Compiler

To speed up the backtracking search, we change the formulation of the CSP

such that the variables become the locations and the domains include all com-

binations of travel directions on the 4 edges. The constraints are that the edge

assignments of neighboring locations must be consistent (i.e. edges cannot have

19

arrows pointing towards each other). The benefit of this scheme is that it cre-

ates a fully connected graph, where a given constraint can more readily affect

other variables. Similarly, this compiler does not take the height of the structure

into consideration until the final global check. The search continues until all op-

tions have been tried, or no solution is found. Worst case, this amounts to O(2n)

checks, where n corresponds to the number of edges.

Figure 4.2: Example of the location-CSP compiler on a 2×3 uniform height
structure. Each square represents a location. Arrows represent
edges and their directions. For each location, the compiler as-
signs directions to all edges at the same time.

20

CHAPTER 5

BREADTH FIRST DISASSEMBLY COMPILER

In this chapter, the Breadth First Disassembly (BFD) Compiler is introduced.

This compiler is not based on search, but instead does an iterative assignment

of the travel directions in a breadth-first manner starting from all exit(s). Es-

sentially, it evaluates if each location may serve as a drain for the structure, if

locations whose travel directions have already been assigned were removed.

5.1 Algorithm

The process is shown in Fig. 5.1 and Alg.3. Upon initialization Lexit is fully de-

fined and added to the visited list, Lvisited. The neighbors to Lexit is enqueued in

Q f rontier. The compiler recursively dequeues Li and checks if it can serve as a

drain. To serve as a drain, Li 1) cannot be in between two unassigned locations,

and 2) cannot cause a disconnect in the structure. To check the connectivity, the

compiler conducts a breadth-first search starting from Lstart to count the num-

ber of reachable locations. If this count is equal to the number of non-visited

locations, Li may serve as a drain. It is added to Lvisited and ingoing arrows are

added to all reachable neighbors. The compiler continues to do this until Q f rontier

is empty or no solution is found. If successful, the compiler takes a final pass

over the structure and assigns any edges that have not already been assigned,

according to the restrictions mentioned above.

21

Algorithm 3: Pseudo code for the Breadth First Disassembly Compiler.
This either returns a valid labeling of travel directions (ar-
rows) between neighboring locations, or identifying that no
such labeling exists for the given input. l0 denotes the current
location in question and li the neighboring locations, with fi-
nal height of H0 and Hi respectively. Qvisited keeps track of
locations which have been ’disassembled’, i.e. fully deter-
mined; Q f rontier keeps track of the frontier. Each location, li,
has a distance property, di, indicating the distance to Lexit.

1: Initialize:

2: Add Lexit to Qvisited and add neighboring sites of Lexit to Q f rontier.

3: Set dexit to 0; all others to Inf.

Loop:

4: while Q f rontier is not empty do

5: l0 = dequeue(Q f rontier)

6: if l0 is not in between two other unvisited sites

and removing l0 does not disconnect the structure

and l0 has at least one traversably connected neighboring site ∈ Qvisited

then

7: Add l0 to Qvisited

8: for each neighboring site li of l0, li ∈ Qvisited do

9: if |Hi − H0| <= 1 then

10: add arrows from l0 to li

11: d0 = min(di + 1, d0)

12: add unvisited neighboring locations to Q f rontier if no in Q f rontier

13: if length(Qvisited) < number of locations in the structure then

14: the structure is unbuildable

15: else

16: while any locations have unlabeled edges do

17: add arrows from higher d to lower d.

22

Figure 5.1: Example of the BFD compiler on a 3×3 structure. The compiler
starts at the exit and removes locations in a breadth-first man-
ner dependent on connectivity. Consider the start location to be
(0,0) and the exit location to be (2,2): The compiler first removes
(2,1) - arrows are added as bricks are removed. The compiler
then tries to remove (1,2), but cannot as this would cause (1,1)
to become disconnected. It then removes (2,0), and continues
in the same manner until only the start location is left (returns
success), or until no more locations can be removed (returns
failure). Notice that the green arrows are optional and do not
count towards the traversability check.

The connectivity check is further optimized. We compute a tree, in a breadth

first manner starting from the start site, that connects all unvisited sites. When

we want to remove another node, we can check if it is a leaf node in the tree and

23

then know that the rest stays connected without doing any extra work.

5.2 Proof of Correctness

There are several properties we need to maintain:

1. for every l ∈ L there is a directed, traversable path from a start location to

reach l, for every l ∈ L there is a directed, traversable path to reach an exit

2. there are no cycles in the paths

3. there are no arrows which points towards each other in each row/column

The correctness proof of BFD compiler is by induction on a partition between

the visited and unvisited locations.

Notation:

Traversable paths: paths are considered as traversable if target height of con-

nected locations never have more than unit difference. Traversably connected:

two locations are connected if they are adjacent, two locations are traversably

connected if their height difference is no larger than 1.

Lemma 5.2.1. During the partially assembled states, all visited sites can reach at least

one exit via a traversable path.

Proof. Base case: visited set is empty. All locations are considered as unvisited.

Inductive Step: If in nth iteration, all visited sites can reach at least one exit via

traversable paths. Then in the (n + 1)th iteration, a new location from Q f rontier

is considered as visited if it is not in between two unvisited locations and does

24

not disconnect unvisited locations. The directions of edges that connects the

new location and visited locations are marked from the new location to visited

locations. Since all visited locations are traversably connected to at least one

of the exit sites, the new location is traversably connected to visited locations.

There is a traversable path from the new location to one of the exit sites. �

Lemma 5.2.2. During the partially assembled states, all unvisited sites are traversably

connected to the start site.

Proof. Every time the compiler dequeues a new location, it conduct connectiv-

ity check. The connectivity checks if all unvisited sites are are traversably con-

nected to start site. If not, this location cannot be visited. �

Lemma 5.2.3. During the partially assembled states, there is no cycle in the directed

paths that connect all visited locations.

Proof. Base case: visited set is empty. All locations are considered as unvisited.

Inductive Step: If in nth iteration, there is no cycle in the directed paths that con-

nect all visited locations, then in (n+1)th iteration, a new location from Q f rontier is

considered as visited or not. If it is not considered as visited, nothing changes.

If it is considered as visited, arrows are assigned from the new location to its

traversably connected visited neighboring sites. A cycle requires a traversable

path from a visited location to itself. To form a cycle in the (n + 1)th iteration,

the newly visited location must be in the cycle. It requires at least one arrow

pointing from visited locations to the new location and at least one arrow point-

ing from the new location to visited locations. It contradicts with the rules we

assign arrows. Therefore, there is no cycle in the directed paths that connect all

visited locations. �

25

Lemma 5.2.4. There are no arrows pointing towards each other in each row/column.

Proof. From Alg.3 we know that the compiler only assigns arrows from newly

visited locations to previously visited locations. If there are opposing arrows in

a row/column, the first location being visited in this row/column is in the mid-

dle instead of at end. In other words, one of the locations that is in between two

unvisited locations is visited. This causes contradiction. The compiler only vis-

its a location if it is in between two unvisited locations and does not disconnect

unvisited locations. Therefore, it is impossible to create opposing arrows.

�

Lemma 5.2.5. If the input structure is buildable, all locations in the structure will be

added to Qvisited. Otherwise the structure is unbuildable.

Proof. Assume the input structure is buildable and there are some locations in

the structure are not added to Qvisited. For those locations, the times one is added

to Q f rontier is the same as the number of its neighboring sites. Every time de-

queued from Q f rontier, one of the following situation must happen: 1) This lo-

cation is in between two unvisited locations, 2) Visiting this location will dis-

connect unvisited locations. Since it is a buildable structure, each location must

have at least two traversable edges, which means locations that are not added

to Qvisited must be added to Q f rontier at least two times. The first situation can only

happen when the first time a location is added to Q f rontier. The second time it

is added to Q f rontier, two of its neighbors are already visited. It is not possible

to have this location in between two unvisited location. The second situation

can not happen during the last time a location is added to Q f rontier. If it is the

last a location is added to Q f rontier, all its traversably connected neighbors are

26

visited. Visiting this location won’t disconnect unvisited locations. Therefore, if

the input structure is buildable, every locations in the structure will be added to

Lvisited. �

27

CHAPTER 6

EVALUATION

To test the performance of the compilers, the BFD compiler, the location-

CSP compiler and the edge-CSP compiler were implemented in Python. All

experimental tasks were performed a on a standard laptop, ThinkPad T580. We

use runtime to evaluate their performance. The following details characterized

the experiment.

6.1 Test Cases

Table 6.1 describes five compilers we implement. Three test structures are used

to test the performance of the compilers. 1) A one-height square. It has the most

parallel choices and feasible solutions. 2) A buildable random-height square.

Such a structure requires the compiler to conduct height checks and it may be

difficult to find a feasible solution comparing with case 1. 3) An unbuildable

random-height square. The purpose of this test is to examine the performance

of compilers to detect structures that are impossible to compile. For each test we

grow these structures in size to see how the compilers scale with the number of

locations. Fig.6.2 shows the way we scale up one-height squares. We use the

same method to scale up the random squares. For each structure, we run the

compiler 10 times and use maximum, minimum, and median runtime value.

28

Compiler Description
BFD NT BFD compiler as described in section 5.1
BFD BFD compiler as described in section 5.1 with optimized connectiv-

ity check.
LCSP Location-CSP compiler as described in section 4.3
ECSP RD Edge-CSP compiler as described in section 4.2 with random order-

ing of domains.
ECSP Edge-CSP compiler as described in section 4.2 with priority on as-

signing arrows outwards from start site

Table 6.1: Description of different compilers

(a) one-height squares (b) buildable random
squares

(c)unbuildable random
squares

Figure 6.1: Base test structures. (a) shows the top view and 3D model
of one-height square. (b) shows the top view and 3D model
of random buildable square. (c) shows the top view and
3D model of random unbuildable structure. The start site is
marked in yellow and exit site is marked in blue.

29

Figure 6.2: Scaling up squares

6.2 Results

Fig.6.3 is the log-log plot of runtime for one-height structures. The BFD com-

piler has the best performance while the Edge CSP RD scales very poorly with

the size of the structure. The Edge CSP and the Location CSP are expected to

have relatively good performance since one-height square has many feasible

solutions. Note that 104 locations corresponds to the approximate number of

bricks in an average American house.

30

Figure 6.3: Log-log plot of different compilers on one height squares. The
dot indicates the median value of the runtime for 10 trials; the
error bars indicate the minimum and maximum value.

Fig.6.4 is the log-log plot of runtime for random buildable structures. The

result is similar to the test of one-height square structures. The BFD compiler

has the best performance while the Edge CSP RD scales poorly with the size of

structure. Note that in this case the BFD NT has better performance than the

Location CSP. This happens because random structures are likely to have less

feasible solutions compared to one-height structures.

31

Figure 6.4: Results of different compilers on random buildable squares.
The dot indicates the median value of runtime of the compilers
on 10 random structures of similar size; the error bars indicate
minimum and maximum values.

Fig.6.5 is the log-log plot of runtime for random unbuildable structures. Un-

buildable structures which have no feasible solution may take a long time for

the search-based algorithms to check unless there exist a local constraint which

is impossible. As seen in the graph, the runtime fro ECSP and ECSP RD grows

rapidly with the size of structures. LCSP has better performance than ECSPs

because the local check enable LCSP to stop early for certain branches during

the backtracking search. However, the performance of LCSP will drop rapidly

with the increase of structure size since the number of possible solutions also in-

creases. We stop testing the Location CSP, the Edge CSP, and the Edge CSP RD

on 7×7 structures since it takes hours for those compilers to complete. The BFD

and BFD NT, however, have similar performance as the previous cases as they

are not influenced by the number of possible solutions.

32

Figure 6.5: Results of different compilers on random unbuildable struc-
tures. The dot indicates the median value of runtime over 10
trials; the error bars indicate the minimum and maximum val-
ues.

33

CHAPTER 7

PROBABILITY OPTIMIZATION

In the standard maps, a robot on the structure has a uniform probability

of choosing any of the traversable child locations. However, since the struc-

ture must expand from one point outwards this leads to many wasted trips

where the robot exits the structure without finding a viable construction site.

This is especially true for dense structures where many outer bricks must be

inserted before the rest can be added. An example of such a structure is shown

in Fig. 7.1.A-B. The probability, Pi, of finding a robot in a location li, with parent

locations, P j, is calculated as:

Pi =

J∑
j=1

P jP j→i (7.1)

where P j→i denotes the transition probability from l j to li, and J the total

number of parents. Figure 7.1.C shows an example of how uniform transition

probabilities in this map cause the robots to be more likely in the center of the

structure.

By using the connected graph of parent and child nodes, we can optimize

the transition probabilities to more effectively spread the flow of robots over

the structure. We base this optimization on the distance in the graph to the exit

site. For locations with the same distance, we need to minimize the difference

of Pi. We use Sequential Least Square Programming (SLQSP) minimization to

find improved transition values. We formulate the problem as follows:

34

minimize
P j→i

∑
Id⊆I

Var(PId)

subject to Pstart = 1

Pi =
∑

j

P jP j→i, i ∈ I, j ∈ Ip(i),

∑
k

Pi→k = 1, i ∈ I, k ∈ Ic(i),

Pi > 0, Pi ≤ 1, i ∈ I

(7.2)

I donates a set of all sites on structure. Id donates sites that are d distance

away exits. Ip(i) donates parent sites of site i. Ic(i) donates child sites of site i.

Fig. 7.1 shows an example of how this affects the probability of robots mov-

ing over the structures. To test the difference in construction speed, we run 5

simulated robots and count the number of steps between locations until struc-

ture completion. With uniform transition probabilities, the system completes

the structure in 718,611 steps (run once). With improved transition probabili-

ties, the structure is completed in an average of 44,322 steps out of 10 runs -

indicating over 100 times speedup. This speedup will of course be structure

dependent.

Note, that this scheme only considers flat structures, in the future it may be

further optimized by considering the bulk of bricks that needs to be placed in

different locations.

35

(a) input structure (b) directed map

(c) probability map before
optimization

(d) probability map after
optimization

Figure 7.1: Example of transition probability optimization for a 15×15 ran-
dom structure. (a) is the 3D model of input structure, the height
of each sites are randomly generated. It is a 15 × 15 structure
consists of 406 bricks. (b) is the direct map generated by com-
piler. Notice that travel directions which are intraversable in
the final structure are colored in blue. (c) is the probability map
before optimization. The probability of reaching anti-diagonal
corner is 6.1e-5. (d) is the probability map after optimization.
The probability of reaching anti-diagonal corner is increased to
0.067.

36

CHAPTER 8

CONCLUSION

8.1 Conclusion

In this research, my main contribution is BFD compiler, a scalable compiler for

the TERMES system.

We first recast the original compiler as a backtracking solution to a Con-

straint Satisfaction Problem with pairwise, partial, and global constraint check-

ing in which the variables are the edges between locations, and the domains are

the travel directions. We refer to this as an Edge CSP compiler. We improved

on this by creating a Location CSP compiler, where the variables are the loca-

tions in the structure, which sped up the backtracking search. The worst case

time complexity for the Edge CSP and the Location CSP is O(2n). We then de-

veloped a new compiler, named BFD compiler, that is not based on search, but

instead builds up a feasible solution in a breadth-first manner from all exits.

The new compiler has O(n2) time complexity for average and worst case. We

implemented the Edge CSP compiler, the Location CSP compiler, and the BFD

compiler in Python and compared their performance on a range of structures.

As expected, the BFD compiler became especially advantageous as the size and

complexity of the structure increases. It is also superior when it comes to de-

tecting unbuildable structures. We showed the ability of this compiler to work

on a structure of up to 1 million bricks, comparable to the number of bricks in

the Great Pyramid of Giza. As a secondary contribution, we altered the tran-

sition probabilities between adjacent locations to make construction more effi-

cient. This work represents an important step towards real-world deployment

37

of robot collectives for construction.

8.2 Future Work

I imagine several ways in which this work could progress. The current compil-

ers were evaluated with respect to their runtime, however, they have not been

evaluated with respect to the quality of the solution they find. For a buildable

structure with more than one feasible solution, different compilers might out-

put different solutions. As a next step we could design an evaluation method

to compare those solutions and pass on only that which permits the fastest and

safest way to success. Furthermore, when finding that the desired structure

is unbuildable, we could automatically give the user suggestions on minimal

modifications by which it could become buildable. Furthermore, as previously

mentioned, the current transition probability optimization does not take the

height of the structure into consideration; this could certainly be optimized in a

second iteration.

38

APPENDIX A

CHAPTER 1 OF APPENDIX

A.1 Generating Random Structures

Given the size of the structure, we assign heights based on a breadth-first ex-

pansion. The algorithm starts from all exits and start at the same time and then

expands to their neighbors. The heights of the start site and exit site(s) are 1.

When expanding from one site to its neighbors, we assign the heights of the

neighbors based on the probability in Table A.1. The height of neighbors can be

one brick higher, one brick lower, or the same as the height of the current site.

Note that this algorithm works for any structure, but here we only generate

squares.

Size P(+1) p(0) p(-1)
< 10 × 10 0.4 0.2 0.4
< 20 × 20 0.3 0.4 0.3
< 25 × 25 0.2 0.6 0.2
< 30 × 30 0.1 0.8 0.1

Table A.1: This table shows the probability of generating random heights
for square structures. P(+1) indicates the probability of increas-
ing the height by one. P(0) indicates the probability of staying
the same height. P(−1) indicates the probability of lowering the
height by one brick.

39

BIBLIOGRAPHY

[1] Caterpillar. https://www.caterpillar.com.

[2] Commonly used statistics. https://www.osha.gov/oshstats/commonstats.html
2. Worlds population increasingly urban with more than half living in
urban ar- eas (2014).

[3] Construction robotics. http://www.construction-robotics.com.

[4] Fastbrick robotics. fastbrick robotics.

[5] Komatsu ltd. https://home.komatsu/en/.

[6] World cities report 2016. http://wcr.unhabitat.org/wp-
content/uploads/sites/16/2016/05/WCR- Full-Report-2016.pdf.

[7] Open-air computers, Oct 2012. https://www.economist.com/news/special-
report/21564998-cities-are-turning-vast-data-factories-open-air-
computers.

[8] Ross A Knepper, Todd Layton, John Romanishin, and Daniela Rus. Ikeabot:
An autonomous multi-robot coordinated furniture assembly system. In
Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages
855–862. IEEE, 2013.

[9] Quentin Lindsey, Daniel Mellinger, and Vijay Kumar. Construction of cubic
structures with quadrotor teams. Proc. Robotics: Science & Systems VII, 2011.

[10] Nils Napp and Radhika Nagpal. Distributed amorphous ramp construc-
tion in unstructured environments. Robotica, 32(2):279–290, 2014.

[11] Kirstin Petersen, Radhika Nagpal, and Justin Werfel. Termes: An au-
tonomous robotic system for three-dimensional collective construction.
Proc. Robotics: Science & Systems VII, 2011.

[12] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Pro-
grammable self-assembly in a thousand-robot swarm. Science,
345(6198):795–799, 2014.

40

[13] Michael Rubenstein and Wei-Min Shen. Scalable self-assembly and self-
repair in a collective of robots. In Intelligent Robots and Systems, 2009. IROS
2009. IEEE/RSJ International Conference on, pages 1484–1489. IEEE, 2009.

[14] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2 edition, 2003.

[15] Statista. U.s. construction - total value of new construction 2017.
https://www.statista.com/statistics/184341/total-value-of-new-
construction-put-in-place-in-the-us-from-1999/.

[16] Yuzuru Terada and Satoshi Murata. Automatic modular assembly system
and its distributed control. The International Journal of Robotics Research,
27(3-4):445–462, 2008.

[17] Justin Werfel, Kirstin Petersen, and Radhika Nagpal. Designing col-
lective behavior in a termite-inspired robot construction team. Science,
343(6172):754–758, 2014.

[18] Jan Willmann, Federico Augugliaro, Thomas Cadalbert, Raffaello
D’Andrea, Fabio Gramazio, and Matthias Kohler. Aerial robotic construc-
tion towards a new field of architectural research. International journal of
architectural computing, 10(3):439–459, 2012.

41

