Skip to main content

Optimal Beamforming for Multiuser Secure SWIPT Systems (Invited Paper)

  • Conference paper
  • First Online:
  • 450 Accesses

Abstract

In this paper, we study the beamforming design for simultaneous wireless information and power transfer (SWIPT) downlink systems. The design is formulated as a non-convex optimization problem which takes into account the quality of service (QoS) requirements of communication security and minimum harvested power. In particular, the proposed design advocates the dual use of energy signal to enable secure communication and efficient WPT. The globally optimal solution of the optimization problem is obtained via the semidefinite programming relaxation (SDR). Our simulation results show that there exists a non-trivial tradeoff between the achievable data rate and the total harvested power in the system. Besides, our proposed optimal scheme provides a substantial performance gain compared to a simple suboptimal scheme based on the maximum ratio transmission (MRT).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Recently, various non-linear energy harvesting models have been proposed in the literature, e.g. [33, 34]. However, in this paper, we adopt the conventional linear energy harvesting model for the ease of illustration.

  2. 2.

    It can be verified that matrix \(\mathbf {B}\) is not a negative definite or a negative semi-definite matrix.

References

  1. Ng, D.W.K., Leng, S., Schober, R.: Multiple Antennas and Beamforming for SWIPT Systems, pp. 170–216. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  2. Ding, Z., et al.: Application of smart antenna technologies in simultaneous wireless information and power transfer. IEEE Commun. Mag. 53(4), 86–93 (2015)

    Article  Google Scholar 

  3. Wong, V., Schober, R., Ng, D.W.K., Wang, L.-C.: Key Technologies for 5G Wireless Systems. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  4. Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  5. Ng, D.W.K., Lo, E.S., Schober, R.: Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Trans. Wirel. Commun. 11(9), 3292–3304 (2012)

    Article  Google Scholar 

  6. Wu, Q., Li, G.Y., Chen, W., Ng, D.W.K., Schober, R.: An overview of sustainable green 5G networks. IEEE Wirel. Commun. 24(4), 72–80 (2017)

    Article  Google Scholar 

  7. Marzetta, T.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9, 3590–3600 (2010)

    Article  Google Scholar 

  8. Ng, D.W.K., Lo, E.S., Schober, R.: Energy-efficient resource allocation in multi-cell OFDMA systems with limited backhaul capacity. IEEE Trans. Wirel. Commun. 11, 3618–3631 (2012)

    Article  Google Scholar 

  9. Zorzi, M., Gluhak, A., Lange, S., Bassi, A.: From today’s INTRAnet of things to a future INTERnet of Things: a wireless- and mobility-related view. IEEE Wirel. Commun. 17, 44–51 (2010)

    Article  Google Scholar 

  10. Ahmed, I., Ikhlef, A., Ng, D.W.K., Schober, R.: Power allocation for an energy harvesting transmitter with hybrid energy sources. IEEE Trans. Wirel. Commun. 12, 6255–6267 (2013)

    Article  Google Scholar 

  11. Ng, D.W.K., Lo, E.S., Schober, R.: Energy-efficient resource allocation in OFDMA systems with hybrid energy harvesting base station. IEEE Trans. Wirel. Commun. 12, 3412–3427 (2013)

    Article  Google Scholar 

  12. Chen, X., Zhang, Z., Chen, H.-H., Zhang, H.: Enhancing wireless information and power transfer by exploiting multi-antenna techniques. IEEE Commun. Mag. 4, 133–141 (2015)

    Article  Google Scholar 

  13. Varshney, L.: Transporting Information and Energy Simultaneously. In: Proceedings of IEEE International Symposium on Information Theory, pp. 1612–1616, July 2008

    Google Scholar 

  14. Tesla Memroial Society of New York, “Nikola Tesla’s Idea of Wireless Transmission of Electrical Energy is a solution for World Energy Crisis” (2011). [Online]. http://www.teslasociety.com/tesla_tower.htm

  15. Powercast Coporation: “RF Energy Harvesting and Wireless Power for Low-Power Applications” (2011). [Online]. http://www.mouser.com/pdfdocs/Powercast-Overview-2011-01-25.pdf

  16. Ng, D., Schober, R.: Max-min fair wireless energy transfer for secure multiuser communication systems. In: IEEE Information Theory Workshop (ITW), pp. 326–330, November 2014

    Google Scholar 

  17. Ng, D.W.K., Schober, R., Alnuweiri, H.: Secure layered transmission in multicast systems with wireless information and power transfer. In: Proceedings of IEEE International Communication Conference, pp. 5389–5395, June 2014

    Google Scholar 

  18. Wyner, A.D.: The Wire-Tap Channel. Technical report, October 1975

    Google Scholar 

  19. Zhu, J., Schober, R., Bhargava, V.: Secure transmission in multicell massive MIMO systems. IEEE Trans. Wirel. Commun. 13, 4766–4781 (2014)

    Article  Google Scholar 

  20. Goel, S., Negi, R.: Guaranteeing secrecy using artificial noise. IEEE Trans. Wirel. Commun. 7, 2180–2189 (2008)

    Article  Google Scholar 

  21. Wang, H.M., Wang, C., Ng, D., Lee, M., Xiao, J.: Artificial noise assisted secure transmission for distributed antenna systems. IEEE Trans. Sig. Process. 64(15), 4050–4064 (2016)

    Article  MathSciNet  Google Scholar 

  22. Chen, J., Chen, X., Gerstacker, W.H., Ng, D.W.K.: Resource allocation for a massive MIMO relay aided secure communication. IEEE Trans. Inf. Forensics Secur. 11(8), 1700–1711 (2016)

    Article  Google Scholar 

  23. Ng, D.W.K., Lo, E.S., Schober, R.: Efficient resource allocation for secure OFDMA systems. IEEE Trans. Veh. Technol. 61, 2572–2585 (2012)

    Article  Google Scholar 

  24. Wang, H.M., Wang, C., Ng, D.W.K.: Artificial noise assisted secure transmission under training and feedback. IEEE Trans. Sig. Process. 63(23), 6285–6298 (2015)

    Article  MathSciNet  Google Scholar 

  25. Chen, X., Ng, D.W.K., Chen, H.H.: Secrecy wireless information and power transfer: challenges and opportunities. IEEE Wirel. Commun. 23(2), 54–61 (2016)

    Article  Google Scholar 

  26. Zhou, X., Zhang, R., Ho, C.K.: Wireless information and power transfer: architecture design and rate-energy tradeoff. In: Proceedings of IEEE Global Telecommunication Conference, December 2012

    Google Scholar 

  27. Ng, D.W.K., Lo, E.S., Schober, R.: Energy-efficient resource allocation in multiuser OFDM systems with wireless information and power transfer. In: Proceedings of IEEE Wireless Communication and Networking Conference (2013)

    Google Scholar 

  28. Leng, S., Ng, D.W.K., Schober, R.: Power efficient and secure multiuser communication systems with wireless information and power transfer. In: Proceedings of IEEE International Communication Conference, June 2014

    Google Scholar 

  29. Ng, D.W.K., Xiang, L., Schober, R.: Multi-objective beamforming for secure communication in systems with wireless information and power transfer. In: Proceedings of IEEE Personal Indoor and Mobile Radio Communication Symposium (2013)

    Google Scholar 

  30. Ng, D.W.K., Schober, R.: Resource allocation for coordinated multipoint networks with wireless information and power transfer. In: Proceedings of IEEE Global Telecommunication Conference, pp. 4281–4287, December 2014

    Google Scholar 

  31. Chynonova, M., Morsi, R., Ng, D.W.K., Schober, R.: Optimal multiuser scheduling schemes for simultaneous wireless information and power transfer. In: 23rd European Signal Processing Conference (EUSIPCO), August 2015

    Google Scholar 

  32. Wu, Q., Tao, M., Ng, D.W.K., Chen, W., Schober, R.: Energy-efficient transmission for wireless powered multiuser communication networks. In: Proceedings of IEEE International Communication Conference, June 2015

    Google Scholar 

  33. Boshkovska, E., Ng, D., Zlatanov, N., Schober, R.: Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Commun. Lett. 19, 2082–2085 (2015)

    Article  Google Scholar 

  34. Boshkovska, E., Ng, D.W.K., Zlatanov, N., Koelpin, A., Schober, R.: Robust resource allocation for MIMO wireless powered communication networks based on a non-linear EH model. IEEE Trans. Commun. 65(5), 1984–1999 (2017)

    Article  Google Scholar 

  35. Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications, 1st edn. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  36. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication, 1st edn. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derrick Wing Kwan Ng .

Editor information

Editors and Affiliations

6 Appendix – Proof of Theorem 1

6 Appendix – Proof of Theorem 1

It can be verified that the transformed optimization problem in (10) is convex and satisfies the Slater’s constraint qualification, hence, strong duality holds. In other words, solving its dual problem is equivalent to solving the primal problem. In this section, we intend to prove Theorem 1 via first defining the Lagrangian function:

$$\begin{aligned} L= & {} -{{\,\mathrm{\mathrm {Tr}}\,}}(\mathbf {W}\mathbf {H})-\lambda _{\mathrm {C1}}{{\,\mathrm{\mathrm {Tr}}\,}}((\mathbf {W}+\mathbf {W}_{\mathrm {E}})\mathbf {G})+\lambda _{\mathrm {C2}}{{\,\mathrm{\mathrm {Tr}}\,}}(\mathbf {W}+\mathbf {W}_{\mathrm {E}})\nonumber \\+ & {} \lambda _{\mathrm {C3}}{{\,\mathrm{\mathrm {Tr}}\,}}(\mathbf {W}\mathbf {G}_{j})-{{\,\mathrm{\mathrm {Tr}}\,}}(\mathbf {Y}\mathbf {W})+\varDelta , \end{aligned}$$
(11)

where \(\varDelta \) represents the variables and the constants that are independent of \(\mathbf {W}\) and therefore irrelevant in the proof. \(\mathbf {Y}\) and \(\lambda _{\mathrm {C1}}\), \(\lambda _{\mathrm {C2}}\), \(\lambda _{\mathrm {C3}}\) are dual variables related to the constraints C4 and C1, C2, C3, respectively. Now, we can express the dual problem of (10) as

$$\begin{aligned} \underset{\mathbf {Y},\lambda _{\mathrm {C1}}, \lambda _{\mathrm {C2}}, \lambda _{\mathrm {C3}}}{\max }\,\,\underset{\mathbf {W},\mathbf {W}_{\mathrm {E}}\in \mathbb {H}^{N_{\mathrm {T}}}}{\min } \quad L . \end{aligned}$$
(12)

Then, we study the structure of \(\mathbf {W}\) via applying the Karush-Kuhn-Tucker (KKT) conditions:

figure c

where (14) is obtained by taking the derivative of the Lagrangian function with respect to \(\mathbf {W}\) and \(\mathbf {B} = -\lambda _{\mathrm {C1}}\mathbf {G}+\lambda _{\mathrm {C2}}\mathbf {I}+\lambda _{\mathrm {C3}}\mathbf {G}_{j}\). Equation (13) is the complementary slackness property which implies that the columns of matrix \(\mathbf {W}\) fall into the null-space spanned by \(\mathbf {Y}\) for \(\mathbf {W}\ne {{\,\mathrm{\mathbf {0}}\,}}\). Hence, if we can prove that \({{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {Y}) \ge N_{\mathrm {T}}-1\), the optimal beamforming matrix \(\mathbf {W}\) is a rank-one matrix or a zero matrix. Now, we study the structure of \(\mathbf {Y}\) via examining (15). First, we prove by contradiction that \(\mathbf {B}\) is a positive definite matrix with probability one. Suppose not, \(\mathbf {B}\) is a positive semi-definite matrix. Then, there exist at least one zero eigenvalue and we denote the associated eigenvector as \(\mathbf {v}\). Without loss of generality, we create a matrix \(\mathbf {V} = \mathbf {v}\mathbf {v}^H\) from the eigenvector. By multiplying both sides of (15) with \(\mathbf {V}\) and applying the trace operation, we obtain

$$\begin{aligned} {{\,\mathrm{\mathrm {Tr}}\,}}(\mathbf {Y} \mathbf {V})= & {} -{{\,\mathrm{\mathrm {Tr}}\,}}(\mathbf {H}\mathbf {V})+{{\,\mathrm{\mathrm {Tr}}\,}}(\mathbf {B}\mathbf {V})= -{{\,\mathrm{\mathrm {Tr}}\,}}(\mathbf {H}\mathbf {V}). \end{aligned}$$
(16)

Since \(\mathbf {H}\) and \(\mathbf {G}_j\) are statistically independent, we have \({{\,\mathrm{\mathrm {Tr}}\,}}(\mathbf {H}\mathbf {V})>0\). This leads to contradiction as \({{\,\mathrm{\mathrm {Tr}}\,}}(\mathbf {Y} \mathbf {V})\ge 0\). Hence, matrix \(\mathbf {B}\) is a positive definite matrixFootnote 2, i.e., \({{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {B})=N_{\mathrm {T}}\). To further proceed the proof, we introduce the following rank inequality:

Lemma 1

Let \(\mathbf {A}\) and \(\mathbf {B}\) be two matrices with same dimension. The inequality of matrix \({{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {A}+\mathbf {B})\ge {{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {A})-{{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {B})\) holds.

Proof:

By basic rule of inequality for the rank of matrix, \({{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {A})+{{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {B})\ge {{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {A}+\mathbf {B})\) with both matrices of same dimension. Thus we have \({{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {A}+\mathbf {B})+{{\,\mathrm{\mathrm {Rank}}\,}}(-\mathbf {B})\ge {{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {A})\). Since \({{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {B})={{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {-B})\), the lemma is proved.

   \(\square \)

Now, we apply Lemma 1 on (14) which yields:

$$\begin{aligned} {{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {Y})= & {} {{\,\mathrm{\mathrm {Rank}}\,}}(-\mathbf {Y})={{\,\mathrm{\mathrm {Rank}}\,}}(-\mathbf {B}+\mathbf {H})\nonumber \\\ge & {} {{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {-B})-{{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {H})=N_{\mathrm {T}}-1 \end{aligned}$$
(17)

As \({{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {Y})\ge N_{\mathrm {T}}-1\), we have \({{\,\mathrm{\mathrm {Rank}}\,}}(\mathbf {W})\le 1\) which completes the proof.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, Y., Ng, D.W.K. (2019). Optimal Beamforming for Multiuser Secure SWIPT Systems (Invited Paper). In: Duong, T., Vo, NS. (eds) Industrial Networks and Intelligent Systems. INISCOM 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 257. Springer, Cham. https://doi.org/10.1007/978-3-030-05873-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05873-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05872-2

  • Online ISBN: 978-3-030-05873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics