Skip to main content

Wireless Power Transfer Under Secure Communication with Multiple Antennas and Eavesdroppers

  • Conference paper
  • First Online:
Industrial Networks and Intelligent Systems (INISCOM 2018)

Abstract

In this paper, we analyze the physical layer secrecy performance of a 5G radio frequency energy harvesting (RF-EH) network in the presence of multiple passive eavesdroppers. In this system, the source is considered as an energy-limited node, hence it harvests energy from RF signals generated by a power transfer station to use for information transmission. Additionally, in order to enhance the energy harvesting and system performance, the source is equipped with multiple antennas and employs maximal ratio combining (MRC) and transmit antenna selection (TAS) techniques to exploit the benefits of spatial diversity. Given these settings, the exact close-form expressions of existence probability of secrecy capacity and secrecy outage probability are derived. Furthermore, the obtained results indicate that multiple antennas technique applied at the source not only facilitates energy harvesting but also improves secrecy performance of the investigated network. Finally, Monte-Carlo simulation is provided to confirm our analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z.: Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutor. 17(2), 757–789 (2015)

    Article  Google Scholar 

  2. Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D.W.K., Schober, R.: Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag. 52(11), 104–110 (2014)

    Article  Google Scholar 

  3. Ha, D.B., Tran, D.D., Tran, H.V., Hong, E.K.: Performance of amplify-and-forward relaying with wireless power transfer over dissimilar channels. Elektronika ir Elektrotechnika J. 21(5), 90–95 (2015)

    Google Scholar 

  4. Bloch, M., Barros, J., Rodrigues, M.R., McLaughlin, S.W.: Wireless information-theoretic security. IEEE Trans. Inform. Theory 54(6), 2515–2534 (2008)

    Article  MathSciNet  Google Scholar 

  5. Tran, D.D., Ha, D.-B., Tran-Ha, V., Hong, E.K.: Secrecy analysis with MRC/SC-based eavesdropper over heterogeneous channels. IETE J. Res. 61(4), 363–371 (2015)

    Article  Google Scholar 

  6. Liu, Y., Wang, L., Duy, T.T., Elkashlan, M., Duong, T.Q.: Relay selection for security enhancement in cognitive relay networks. IEEE Wirel. Commun. Lett. 4, 46–49 (2015)

    Article  Google Scholar 

  7. Yang, N., Yeoh, P.L., Elkashlan, M.: Transmit antenna selection for security enhancement in MIMO wiretap channels. IEEE Trans. Comm. 61(1), 144–154 (2013)

    Article  Google Scholar 

  8. Li, Q., Zhang, Q., Qin, J.: Secure relay beamforming for simultaneous wireless information and power transfer in nonregenerative relay networks. IEEE Trans. Veh. Technol. 63(5), 2462–2467 (2014)

    Article  Google Scholar 

  9. Kalamkar, S.S., Banerjee, A.: Secure communication via a wireless energy harvesting untrusted relay. IEEE Trans. Veh. Technol. 66(3), 2199–2213 (2017)

    Article  Google Scholar 

  10. Chen, X., Chen, J., Liu, T.: Secure wireless information and power transfer in large-scale MIMO relaying systems with imperfect CSI. In: IEEE GLOBECOM, pp. 4131–4136 (2014)

    Google Scholar 

  11. He, B., Zhou, X.: On the placement of RF energy harvesting node in wireless networks with secrecy considerations. In: IEEE Globecom Workshops, pp. 1355–1360 (2014)

    Google Scholar 

  12. Xing, H., Liu, L., Zhang, R.: Secrecy wireless information and power transfer in fading wiretap channel. IEEE Trans. Veh. Technol. 65(1), 180–190 (2016)

    Article  Google Scholar 

  13. Shi, Q., Xu, W., Wu, J., Song, E., Wang, Y.: Secure beamforming for MIMO broadcasting with wireless information and power transfer. IEEE Trans. Wirel. Commun. 14(5), 2841–2853 (2015)

    Article  Google Scholar 

  14. Ng, D.W.K., Lo, E.S., Schober, R.: Robust beamforming for secure communication in systems with wireless information and power transfer. IEEE Trans. Wirel. Commun. 13(8), 4599–4615 (2014)

    Article  Google Scholar 

  15. Nasir, A.A., Zhou, X., Durrani, S., Kennedy, R.A.: Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Commun. 12(7), 3622–3636 (2013)

    Article  Google Scholar 

  16. Gradshteyn, I., Ryzhik, I.: Table of Integrals, Series, and Products, 7th edn. Academic Press, Cambridge (2007)

    MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by Newton Prize 2017 and by a Research Environment Links grant, ID 339568416, under the Newton Programme Vietnam partnership. The grant is funded by the UK Department of Business, Energy and Industrial Strategy (BEIS) and delivered by the British Council. For further information, please visit www.newtonfund.ac.uk/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dac-Binh Ha .

Editor information

Editors and Affiliations

Appendices

Appendix A: Proof of Lemma 1

According to the probability definition, the joint CDF of X and Y is given by

$$\begin{aligned} {\begin{matrix} F_{X,Y}^{(k)}(x,y) &{}= \Pr \left( {X< x,Y< y} \right) \\ &{}= \Pr \left( {{\gamma _D}< \frac{x}{{a{\gamma _S}}},{\gamma _{E,k}} < \frac{y}{{a{\gamma _S}}}} \right) \\ &{}= \int \limits _0^\infty {{F_{{\gamma _D}}}\left( {\frac{x}{{az}}} \right) {F_{{\gamma _{E,k}}}}\left( {\frac{y}{{az}}} \right) {f_{{\gamma _S}}}(z)dz}. \end{matrix}} \end{aligned}$$
(A.1)

Substituting (2), (7), and (8) into (A.1) and then using ([16], Eq. (3.471.9)), the final result is obtained as shown in (10).

Appendix B: Proof of Proposition 1

By employing ([16], Eq. (6.561.16)) and ([16], Eq. (8.486.14)), (11) is expanded as

$$\begin{aligned} {\begin{matrix} {P_{CS,k}} &{}= \sum \limits _{p = 1}^\infty {\left( {\begin{array}{*{20}{c}} {{N_S}}\\ p \end{array}} \right) \frac{{{{\left( { - 1} \right) }^p}2p}}{{\varGamma \left( {{N_S}} \right) {2^{{N_S} - 1}}a{\lambda _S}{\lambda _D}}}\left\{ {\int \limits _0^\infty {v_x^{{N_S} - 1}{\mathcal{K}_{{N_S} - 1}}\left[ {{v_x}} \right] dx} } \right. } \\ &{}\qquad \qquad \qquad \qquad \qquad \qquad \qquad \left. { - \int \limits _0^\infty {{{\left( u \right) }^{{N_S} - 1}}{\mathcal{K}_{{N_S} - 1}}\left( u \right) dx} } \right\} \\ &{}= \sum \limits _{p = 1}^\infty {\left( {\begin{array}{*{20}{c}} {{N_S}} \\ p \end{array}} \right) \frac{{{{\left( { - 1} \right) }^p}}}{{\varGamma \left( {{N_S}} \right) {2^{{N_S} - 1}}}}\left\{ {\frac{{p{\lambda _{E,k}}}}{{p{\lambda _{E,k}} + {\lambda _D}}}\int \limits _0^\infty {{t^{{N_S}}}{\mathcal{K}_{{N_S} - 1}}\left( t \right) dx} } \right. } \qquad \\ &{}\qquad \qquad \qquad \qquad \qquad \qquad \qquad \left. { - \int \limits _0^\infty {{t^{{N_S}}}{\mathcal{K}_{{N_S} - 1}}\left( t \right) dx} } \right\} \\ &{}= \sum \limits _{p = 1}^\infty {\left( {\begin{array}{*{20}{c}} {{N_S}}\\ p \end{array}} \right) \frac{{{{\left( { - 1} \right) }^{p + 1}}{\lambda _D}}}{{p{\lambda _{E,k}} + {\lambda _D}}}}, \end{matrix}} \end{aligned}$$
(B.1)

where, \({v_x} = 2\sqrt{\frac{{\left( {p{\lambda _{E,k}} + {\lambda _D}} \right) x}}{{a{\lambda _S}{\lambda _D}{\lambda _{E,k}}}}}\) and \(u = {2\sqrt{\frac{{px}}{{a{\lambda _S}{\lambda _D}}}}}\).

In the presence of K eavesdroppers, the existence probability of secrecy capacity is given by

$$\begin{aligned} {\begin{matrix} {P_{CS}} &{}= \Pr \left( {{C_{S,1}}> 0,\mathrm{{ }}...,\mathrm{{ }}{C_{S,K}}> 0} \right) \\ &{}= \prod \limits _{k = 1}^K {\Pr \left( {{C_{S,k}} > 0} \right) }. \end{matrix}} \end{aligned}$$
(B.2)

The final result of \(P_{CS}\) in (12) is obtained by substituting (B.1) into (B.2).

Appendix C: Proof of Proposition 2

Similar to the process of calculating (11) in Appendix B, the integral in (13) is solved by the help of ([16], Eq. (6.561.16)) and ([16], Eq. (8.486.14)) and the result is indicated in (C.1) as follows:

$$\begin{aligned} {\begin{matrix} {P_{Out,k}} &{}= \frac{2}{{\varGamma \left( {{N_S}} \right) {2^{{N_S} - 1}}a{\lambda _S}{\lambda _{SE,k}}}}\left\{ {\int \limits _0^\infty {{{\left( t \right) }^{{N_S} - 1}}{\mathcal{K}_{{N_S} - 1}}\left( t \right) dy} + \sum \limits _{p = 1}^{{N_S}} {\left( {\begin{array}{*{20}{c}} {{N_S}}\\ p \end{array}} \right) {{\left( { - 1} \right) }^p}} } \right. \\ &{}\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \left. { \times \int \limits _0^\infty {{{\left[ w \right] }^{{N_S} - 1}}{\mathcal{K}_{{N_S} - 1}}\left[ w \right] dy} } \right\} \\ &{}= \frac{1}{{\varGamma \left( {{N_S}} \right) {2^{{N_S} - 1}}}}\left\{ {\int \limits _0^\infty {{t^{{N_S}}}{\mathcal{K}_{{N_S} - 1}}\left( t \right) dt} } \right. \qquad \qquad \qquad \qquad \qquad \qquad \quad \\ &{}\qquad \qquad \qquad \qquad \left. { + \sum \limits _{p = 1}^{{N_S}} {\left( {\begin{array}{*{20}{c}} {{N_S}}\\ p \end{array}} \right) \frac{{{{\left( { - 1} \right) }^p}{\lambda _D}}}{{p{2^R}{\lambda _{E,k}} + {\lambda _D}}}\int \limits _u^\infty {{t^{{N_S}}}{\mathcal{K}_{{N_S} - 1}}\left( t \right) dt} } } \right\} \\ &{}= 1 - \sum \limits _{p = 1}^{{N_S}} {\left( {\begin{array}{*{20}{c}} {{N_S}}\\ p \end{array}} \right) \frac{{{{\left( { - 1} \right) }^{p + 1}}{\lambda _D}}}{{\varGamma \left( {{N_S}} \right) {2^{{N_S} - 1}}\left( {p{2^R}{\lambda _{E,k}} + {\lambda _D}} \right) }}} \\ &{}\qquad \qquad \qquad \times {\left[ {2\sqrt{\frac{{p\left( {{2^R} - 1} \right) }}{{a{\lambda _S}{\lambda _D}}}} } \right] ^{{N_S}}}{\mathcal{K}_{{N_S}}}\left[ {2\sqrt{\frac{{p\left( {{2^R} - 1} \right) }}{{a{\lambda _S}{\lambda _D}}}} } \right] , \end{matrix}} \end{aligned}$$
(C.1)

where, \(t = 2\sqrt{\frac{y}{{a{\lambda _S}{\lambda _{E,k}}}}}\) and \(w = 2\sqrt{\frac{{\left( {p{2^R}{\lambda _{E,k}} + {\lambda _D}} \right) y + p{\lambda _{E,k}}\left( {{2^R} - 1} \right) }}{{a{\lambda _S}{\lambda _D}{\lambda _{E,k}}}}}\).

For K eavesdroppers, the secrecy outage probability is computed as

$$\begin{aligned} {\begin{matrix} {P_{Out}} &{}= 1 - \Pr \left( {{C_{S,1}} \ge R,\mathrm{{ }}...,\mathrm{{ }}{C_{S,K}} \ge R} \right) \\ &{}= 1 - \prod \limits _{k = 1}^K {\Pr \left( {{C_{S,k}} \ge R} \right) } \\ &{}= 1 - \prod \limits _{k = 1}^K {\left[ {1 - \Pr \left( {{C_{S,k}} < R} \right) } \right] }. \end{matrix}} \end{aligned}$$
(C.2)

Substituting (C.1) into (C.2), the final result of \(P_{Out}\) in (14) is derived.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, DD., Ha, DB., Nayyar, A. (2019). Wireless Power Transfer Under Secure Communication with Multiple Antennas and Eavesdroppers. In: Duong, T., Vo, NS. (eds) Industrial Networks and Intelligent Systems. INISCOM 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 257. Springer, Cham. https://doi.org/10.1007/978-3-030-05873-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05873-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05872-2

  • Online ISBN: 978-3-030-05873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics