Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 258

Editorial Board

Ozgur Akan Middle East Technical University, Ankara, Turkey Paolo Bellavista University of Bologna, Bologna, Italy Jiannong Cao Hong Kong Polytechnic University, Hong Kong, Hong Kong Geoffrey Coulson Lancaster University, Lancaster, UK Falko Dressler University of Erlangen, Erlangen, Germany Domenico Ferrari Università Cattolica Piacenza, Piacenza, Italy Mario Gerla UCLA, Los Angeles, USA Hisashi Kobavashi Princeton University, Princeton, USA Sergio Palazzo University of Catania, Catania, Italy Sartai Sahni University of Florida, Florida, USA Xuemin Sherman Shen University of Waterloo, Waterloo, Canada Mircea Stan University of Virginia, Charlottesville, USA Jia Xiaohua City University of Hong Kong, Kowloon, Hong Kong Albert Y. Zomaya University of Sydney, Sydney, Australia

More information about this series at http://www.springer.com/series/8197

Jun Zheng · Wei Xiang Pascal Lorenz · Shiwen Mao Feng Yan (Eds.)

Ad Hoc Networks

10th EAI International Conference, ADHOCNETS 2018 Cairns, Australia, September 20–23, 2018 Proceedings

Editors Jun Zheng National Mobile Communications Research Laboratory Southeast University Nanjing, China

Wei Xiang College of Science and Engineering James Cook University Cairns, QLD, Australia

Pascal Lorenz IUT University of Haute Alsace Colmar, France Shiwen Mao Department of Electrical and Computer Engineering Auburn University Auburn, AL, USA

Feng Yan National Mobile Communications Research Laboratory Southeast University Nanjing, China

ISSN 1867-8211ISSN 1867-822X (electronic)Lecture Notes of the Institute for Computer Sciences, Social Informaticsand Telecommunications EngineeringISBN 978-3-030-05887-6ISBN 978-3-030-05888-3(eBook)https://doi.org/10.1007/978-3-030-05888-3

Library of Congress Control Number: 2018964126

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

An ad hoc network is a wireless system for a specific purpose, in which mobile or static nodes are connected using wireless links and dynamically auto-configure themselves into a network without the requirement for any infrastructures such as access points or base stations. Ad hoc networking covers a variety of network paradigms, including mobile ad hoc networks, sensor networks, vehicular networks, unmanned aerial vehicle (UAV) networks, underwater networks, airborne networks, underground networks, personal area networks, device-to-device (D2D) communications in 5G cellular networks, and home networks etc. It promises a wide range of applications in civilian, commercial, and military areas. In contrast to the traditional wireless networking paradigm, this new networking paradigm is characterized by sporadic connections, distributed autonomous operations, and fragile multi-hop relay paths, which have introduced many formidable challenges, such as scalability, quality of service, reliability and security, and energy-constrained operations. Thus, while it is essential to advance theoretical research on fundamental and practical research on efficient architectures and protocols for ad hoc networks, it is also critical to develop useful applications, experimental prototypes, and real-world deployments to achieve immediate impacts on the society for the success of this wireless networking paradigm.

The annual International Conference on Ad Hoc Networks (AdHocNets) aims at providing a forum to bring together researchers from academia as well as practitioners from industry to meet and exchange ideas and recent research work on all aspects of ad hoc networks. As the tenth edition of this event, AdHocNets 2018 was successfully held in Cairns, Australia, during September 20–23, 2018. The conference featured one keynote speech, by Dr. Guoqiang Mao from the University of Technology Sydney (UTS), Australia. The technical program of the conference included 27 regular papers that were selected out of 50 submissions through a rigorous review process.

This volume of proceedings includes all the technical papers that were presented at AdHocNets 2018. We hope that it will become a useful reference for researchers and practitioners working in the area of ad hoc networks.

November 2018

Jun Zheng Wei Xiang Pascal Lorenz Shiwen Mao Feng Yan

Organization

Steering Committee

Imrich Chlamtac	University of Trento, Italy
Shiwen Mao	Auburn University, USA
Jun Zheng	Southeast University, China

Organizing Committee

General Chair

Jun Zheng	Southeast	University,	China
Juli Elleng	Southeast	omversity,	Cinnu

TPC Chair and Co-chairs

Wei Xiang	James Cook University, Australia
Pascal Lorenz	University of Haute-Alsace, France
Shiwen Mao	Auburn University, USA

Local Chair

Workshops Co-chairs

Nirwan Ansari	New Jersey Institute of Technology, USA
Weixiao Meng	Harbin Institute of Technology, China

Publicity and Social Media Co-chairs

Yonghui Li	University of Sydney, Australia
Nathalie Mitton	Inria, Lille-Nord Europe, France
Baoxian Zhang	University of Chinese Academy of Sciences, China

Publications Chair

Feng Yan	Southeast University, China
Web Co-chairs	
Bingying Wang	Southeast University, China
Yuying Wu	Southeast University, China

Conference Manager

Technical Program Committee

Hamada Alshaer	University of Edinburgh, UK
Jalel Ben-Othman	Université de Paris 13, France
David Brown	Defence Research and Development, Canada
Claude Chaudet	Telecom ParisTech, France
Yin Chen	Keio University, Japan
Omer Farooq	University College Cork, Ireland
Antoine Gallais	Université de Strasbourg, France
Shuai Han	Harbin Institute of Technology, China
Changle Li	Xidian University, China
Pascal Lorenz	University of Haute Alsace, France
Shiwen Mao	Auburn University, USA
Nathalie Mitton	Inria Lille – Nord Europe, France
Amiya Nayak	University of Ottawa, Canada
Symeon Papavassiliou	National Technical University of Athens, Greece
Joel Rodrigues	University of Beira Interior, Portugal
Alex Sprintson	Texas A&M University, USA
Marc St-Hilaire	Carleton University, Canada
Zhi Sun	State University of New York at Buffalo, USA
Kun Wang	Nanjing University of Posts and Telecommunications,
	China
Kui Wu	University of Victoria, Canada
Wei Xiang	James Cook University, Australia
Feng Yan	Southeast University, China
Jie Zeng	Tsinghua University, China
Baoxian Zhang	University of China Academy of Sciences, China
Sihai Zhang	University of Science and Technology of China, China
Yuan Zhang	Southeast University, China
Jun Zheng	Southeast University, China
Sheng Zhou	Tsinghua University, China

Contents

Ad Hoc Networks

Task Assignment for Semi-opportunistic Mobile Crowdsensing. Wei Gong, Baoxian Zhang, and Cheng Li	3
Caching on Vehicles: A Lyapunov Based Online Algorithm Yao Zhang, Changle Li, Tom H. Luan, Yuchuan Fu, and Lina Zhu	15
Simplicial Complex Reduction Algorithm for Simplifying WSN's Topology Wenyu Ma, Feng Yan, Xuzhou Zuo, Jin Hu, Weiwei Xia, and Lianfeng Shen	25
Resource Allocation	
Resource Allocation Scheme for D2D Communication Based on ILA Zhifang Gu, Pingping Xu, Guilu Wu, and Hao Liu	39
Content Aware Resource Allocation for Video Service Provisioning in Wireless Networks	49
A Power Allocation Algorithm for D2D-Direct Communication in Relay Cellular Networks Chenguang He, Wenbin Zhang, Weixiao Meng, and Yuwei Cui	59
A Joint Power Control and Cooperative Transmission Scheme in Random Networks Dan Zhang, Xin Su, Lu Ge, Jie Zeng, Bei Liu, and Xiangyun Zheng	71
Routing and Network Planning	

An Energy-Efficient Distributed Routing Protocol for Wireless Sensor Networks with Mobile Sinks Hengyi Wen, Tao Wang, Daren Zha, and Baoxian Zhang Asymptotical Performance of Ring Based Routing for Wireless Sensor Networks with a Mobile Sink: An Analysis Sheng Yu, Baoxian Zhang, Chunxi Li, Kun Hao, and Cheng Li

83

93

Energy Efficient Based Splitting for MPTCP in Heterogeneous Networks Huanxi Cui, Xin Su, Jie Zeng, and Bei Liu	105
RPMA Low-Power Wide-Area Network Planning Method Basing on Data Mining	115
Localization and Tracking	
Mobility Assisted Wireless Sensor Network Cooperative Localization via SOCP Sijia Yu, Xin Su, Jie Zeng, and Huanxi Cui	129
A Lightweight Filter-Based Target Tracking Model in Wireless	120
Sensor Network	139
Radio-Map Search Algorithm Based on Steepest Descent Principle Deyue Zou, Yuwei Shi, and Shuai Han	144
Node Scheduling for Localization in Heterogeneous Software-Defined Wireless Sensor Networks	154
Handover, Scheduling, and Action Recognition	
A Speed-Adjusted Vertical Handover Algorithm Based on Fuzzy Logic Dongdong Yao, Xin Su, Bei Liu, and Jie Zeng	167
A Self-adaptive Feedback Handoff Algorithm Based Decision Tree for Internet of Vehicles	177
Segment-Based Scheduling Algorithm in Cache-Enabled Device-to-Device Wireless Networks	191

An Action Recognition Method Based on Wearable Sensors	202
Fuliang Ma, Jing Tan, Xiubing Liu, Huiqiang Wang, Guangsheng Feng,	
Bingyang Li, Hongwu Lv, Junyu Lin, and Mao Tang	

Security

Speed Based Attacker Placement for Evaluating Location Privacy in VANET	215
HACIT2: A Privacy Preserving, Region Based and Blockchain Application for Dynamic Navigation and Forensics in VANET Decoster Kevin and Billard David	225
A Lightweight Security and Energy-Efficient Clustering Protocol for Wireless Sensor Networks <i>Guangsong Yang and Xin-Wen Wu</i>	237
Power Allocation for Physical Layer Security Among Similar Channels Xiangxue Tai, Shuai Han, Xi Chen, and Qingli Zhang	247
Miscellaneous Topics in Wireless Networks	
A Decision Tree Candidate Property Selection Method Based on Improved Manifold Learning Algorithm Fangfang Guo, Luomeng Chao, and Huiqiang Wang	261
Repairable Fountain Codes with Unequal Repairing Locality in D2D Storage System	272
Channel Impulse Response Analysis of the Indoor Propagation Based on Auto-Regressive Modeling	282
Predicting Freezing of WebRTC Videos in WiFi Networks Suying Yan, Yuchun Guo, Yishuai Chen, and Feng Xie	292
Author Index	303