Skip to main content

Adaptation of Late Acceptance Hill Climbing Algorithm for Optimizing the Office-Space Allocation Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11299))

Abstract

Office-space-allocation (OFA) problem is a category of a timetabling problem that involves the distribution of a set of limited entities to a set of resources subject to satisfying a set of given constraints. The constraints in OFA problem is of two types: hard and soft. The hard constraints are the one that must be satisfied for the solution to be feasible while the violation of soft constraints is allowed but it must be reduced as much as possible. The quality of the OFA solution is determined by the satisfaction of the soft constraints in a feasible solution. The complexity of the OFA problem motivated the researchers in the domain of AI and Operational research to develop numerous metaheuristic-based techniques. Among recently introduced local search-based metaheuristic techniques that have been successfully utilized to solve complex optimization problem is the Late Acceptance Hill Climbing (LAHC) algorithm. This paper presents an adaptation of LAHC algorithm to tackle the OFA problem in which three neighbourhood structures are embedded with the operators of the LAHC algorithm in order to explore the solution space of the OFA efficiently. The benchmark instances proposed by the University of Nottingham and University of Wolverhampton datasets are employed in the evaluation of the proposed algorithm. The LAHC algorithm is able to produced one new result, two best results and competitive results when compared with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kellerer, H., Pferschy, U.: Cardinality constrained bin-packing problems. Ann. Oper. Res. 92, 335–348 (1999)

    Article  MathSciNet  Google Scholar 

  2. McCollum, B.: A perspective on bridging the gap between theory and practice in university timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS, vol. 3867, pp. 3–23. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77345-0_1

    Chapter  Google Scholar 

  3. Ülker, Ö., Landa-Silva, D.: A 0/1 integer programming model for the office space allocation problem. Electron. Not. Discrete Math. 36, 575–582 (2010)

    Article  Google Scholar 

  4. Benjamin, C.O., Ehie, I.C., Omurtag, Y.: Planning facilities at the University of Missouri-Rolla. Interfaces 22(4), 95–105 (1992)

    Article  Google Scholar 

  5. Ritzman, L., Bradford, J., Jacobs, R.: A multiple objective approach to space planning for academic facilities. Manag. Sci. 25(9), 895–906 (1979)

    Article  MathSciNet  Google Scholar 

  6. Awadallah, M.A., Khader, A.T., Al-Betar, M.A., Woon, P.C.: Office-space-allocation problem using harmony search algorithm. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7664, pp. 365–374. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34481-7_45

    Chapter  Google Scholar 

  7. Burke, E.K., Cowling, P., Landa Silva, J.D., McCollum, B.: Three methods to automate the space allocation process in UK universities. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 254–273. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44629-X_16

    Chapter  Google Scholar 

  8. Ülker, Ö., Landa-Silva, D.: Evolutionary local search for solving the office space allocation problem. In: 2012 IEEE Congress on Evolutionary Computation, CEC, pp. 1–8. IEEE (2012)

    Google Scholar 

  9. Bolaji, A.L., Michael, I., Shola, P.B.: Optimization of office-space allocation problem using artificial bee colony algorithm. In: Tan, Y., Takagi, H., Shi, Y. (eds.) ICSI 2017. LNCS, vol. 10385, pp. 337–346. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61824-1_37

    Chapter  Google Scholar 

  10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  11. Lopes, R., Girimonte, D.: The office-space-allocation problem in strongly hierarchized organizations. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 143–153. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12139-5_13

    Chapter  Google Scholar 

  12. Burke, E., Cowling, P., Silva, J.L.: Hybrid population-based metaheuristic approaches for the space allocation problem. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 232–239. IEEE (2001)

    Google Scholar 

  13. Burke, E., Cowling, P., Landa Silva, J., Petrovic, S.: Combining hybrid metaheuristics and populations for the multiobjective optimisation of space allocation problems. In: Proceedings of the 2001 Genetic and Evolutionary Computation Conference, GECCO 2001, pp. 1252–1259 (2001)

    Google Scholar 

  14. Burke, E.K., Silva, J.D.L., Soubeiga, E.: Multi-objective hyper-heuristic approaches for space allocation and timetabling. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers. ORCS, vol. 32, pp. 129–158. Springer, Boston (2005). https://doi.org/10.1007/0-387-25383-1_6

    Chapter  Google Scholar 

  15. Burke, E.K., Bykov, Y.: A late acceptance strategy in hill-climbing for exam timetabling problems. In: PATAT 2008 Conference, Montreal, Canada (2008)

    Google Scholar 

  16. Yuan, B., Zhang, C., Shao, X.: A late acceptance hill-climbing algorithm for balancing two-sided assembly lines with multiple constraints. J. Intell. Manuf. 26(1), 159–168 (2015)

    Article  Google Scholar 

  17. Abuhamdah, A.: Experimental result of late acceptance randomized descent algorithm for solving course timetabling problems. Int. J. Comput. Sci. Netw. Secur. 10(1), 192–200 (2010)

    Google Scholar 

  18. Verstichel, J., Berghe, G.V.: A late acceptance algorithm for the lock scheduling problem. In: Voß, S., Pahl, J., Schwarze, S. (eds.) Logistik Management, pp. 457–478. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Tierney, K.: Late acceptance hill climbing for the liner shippingfleet repositioning problem. In: Proceedings of the 14th EU/MEWorkshop, pp. 21–27 (2013)

    Google Scholar 

  20. Goerler, A., Schulte, F., Voß, S.: An application of late acceptance hill-climbing to the traveling purchaser problem. In: Pacino, D., Voß, S., Jensen, R.M. (eds.) ICCL 2013. LNCS, vol. 8197, pp. 173–183. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41019-2_13

    Chapter  Google Scholar 

  21. Bolaji, A.L., Bamigbola, A.F., Shola, P.B.: Late acceptance hill climbing algorithm for solving patient admission scheduling problem. Knowl.-Based Syst. 145, 197–206 (2018)

    Article  Google Scholar 

  22. Alzaqebah, M., Abdullah, S.: An adaptive artificial bee colony and late-acceptance hill-climbing algorithm for examination timetabling. J. Sched. 17(3), 249–262 (2014)

    Article  MathSciNet  Google Scholar 

  23. Özcan, E., Bykov, Y., Birben, M., Burke, E.K.: Examination timetabling using late acceptance hyper-heuristics. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 997–1004. IEEE (2009)

    Google Scholar 

  24. Jackson, W.G., Ozcan, E., Drake, J.H.: Late acceptance-based selection hyper-heuristics for cross-domain heuristic search. In: 2013 13th UK Workshop on Computational Intelligence, UKCI, pp. 228–235. IEEE (2013)

    Google Scholar 

  25. Landa-Silva, D., Burke, E.K.: Asynchronous cooperative local search for the office-space-allocation problem. INFORMS J. Comput. 19(4), 575–587 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaju La’aro Bolaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bolaji, A.L., Michael, I., Shola, P.B. (2019). Adaptation of Late Acceptance Hill Climbing Algorithm for Optimizing the Office-Space Allocation Problem. In: Blesa Aguilera, M., Blum, C., Gambini Santos, H., Pinacho-Davidson, P., Godoy del Campo, J. (eds) Hybrid Metaheuristics. HM 2019. Lecture Notes in Computer Science(), vol 11299. Springer, Cham. https://doi.org/10.1007/978-3-030-05983-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05983-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05982-8

  • Online ISBN: 978-3-030-05983-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics