

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/116365

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/116365
mailto:wrap@warwick.ac.uk

Selecting Effective Blockchain Solutions

Carsten Maple1 and Jack Jackson2�
jack.jackson@linace.ox.ac.uk

1 University of Warwick, Coventry CV4 7AL, UK
2 Everledger, London, WC2H 9JQ, UK

Abstract. Distributed ledger technologies (DLT) are becoming increas-
ingly popular and seen as a panacea for a wide range of applications.
However, it is clear that many organisations, and even engineers, are
selecting DLT solutions without fully understanding their power or limi-
tations. Those that make the assessment that blockchain is the best solu-
tion are provided little guidance on the vast array of types of blockchain;
whether permissioned, permissionless or federated; which consensus al-
gorithm to use; and a range of other considerations. This paper aims to
addresses this gap.

Keywords: Distributed ledger technology, blockchain anatomy, blockchain se-
lection, consensus determination protocol

1 Introduction

A distributed ledger is a form of database which is stored across a number of com-
puting devices within a network. Each node independently maintains an identical
copy of the shared ledger. The distribution is typically unique, as records are
independently constructed and held by each participant; as opposed to informa-
tion sourcing from a central authority. Each participant in the network places
a vote reflecting their calculated output, allowing the group to come to a con-
sensus regarding the true data output. Once consensus has been reached, the
distributed ledger can then be updated by all parties. Distributed ledger tech-
nology (DLT), affords a level of dexterity which is currently not facilitated by
centralized systems. A popular form of distributed ledger technology is known as
blockchain. Blockchain technologies are distinguishable from DLT by the nature
in which they store information. Data on a blockchain is grouped together and
organised into a series of cryptographically interconnected blocks. A blockchain
is an append-only structure, meaning that it only permits further data contri-
bution to the ledger. Once a block of data is committed to the blockchain, it is
impossible to alter or delete the information contained within. The immutable
nature of blockchain means that the technology is well suited for: records man-
agement, transaction processing and auditing. Because of this, we are seeing
the widespread adoption of this technology across a number of high risk supply

II

chains, where fraudsters have long taken advantage of opaqueness in the prod-
uct life-cycle; typically with expensive ramifications. The nature of communica-
tions in such systems can help to eliminate intermediaries, allowing individuals
and organisations to interact freely with one another. Considering that many
industry infrastructures consist of such middlemen (such as distributors in sup-
ply chain networks), this could vastly decrease the operational costs associated
with running a business; consequently, providing a more open, transparent and
competitive marketplace. The implementation of blockchain technology is also
valuable within industries that are continuously subjected to rigorous regulation,
as the meeting of such requirements can be both time consuming and expensive
for an organisation.

The first notable implementation of DLT came in the form of the Bitcoin
whitepaper [1], written by Satoshi Nakamoto. Since then DLT such as blockchain
have become a panacea for a wide range of applications. They are often perceived
as the cornerstone of technological innovation across industries. As such, many
organisations show interest in implementing the technology within their industry.
Companies wishing to adopt such mechanisms are faced with the challenge of
selecting an appropriate configuration for their functional requirements. As the
solutions landscape continues to grow, it becomes increasingly important that
engineers and decision-makers within an organisation fully understand the power
and limitations of the various technologies on offer [13, 14, 7, 8].

In this paper we present an anatomy of blockchain solutions, analysing their
key technological features. This paper begins by considering existing work within
the field, before proposing and analysing a generic anatomy. This is followed by
a brief discussion of a number of developed platforms, before concluding and
proposing areas for future work.

2 Existing Work

Since the rise in popularity of DLT, a number of papers have been published
analysing various areas within the field, such as: consensus, scalability, min-
ing difficulty and architecture. Radael Pass et al [2] conducted an analysis on
the original blockchain consensus mechanism [1], proving strength of consis-
tency within an asynchronous network environment. Their paper provided proof
that Nakamoto’s protocol satisfied their definitions for chain quality, growth,
consistency (and the upper-bound on chain growth). More generally, Florian
Glaser [6] provided a framework for blockchain-enabled systems which was heav-
ily grounded in hard use cases. Zibin Zheng et al [5] extend upon this, educating
readers on the key features of a blockchain product, with respects to both ar-
chitecture and consensus. Their focus was directed towards the benefits of using
blockchain technology, referencing a number of widely adopted consensus mech-
anisms. This paper builds upon such work, educating readers on the selection
process, in respects to which anatomical structures are most appropriate given
their functional (business) requirements. Similarly, Marko Vukolić [3] draws con-
trast between traditional proof-of-work (PoW) blockchains and those grounded

III

in byzantine-fault-tolerance (BFT) schemes. Notable emphasis is place upon the
computational expense associated with each of the discussed mechanisms. The
scalability constraints placed upon each approach are critically analysed, ad-
dressing a long-term problem within the DLT community.

In a more critical sense, Daniel Kraft [4] focuses on analysing the compu-
tation inefficiencies within existing blockchain technologies. In his paper, Kraft
identified inefficiencies within the mining processes of both Bitcoin and Name-
coin. He proposes a mechanism which is designed to work ”perfectly” across
both constant and exponentially growing hash rates. Comparisons between his
mechanism and more traditional methods are drawn from three core metrics:
mining difficulty, average block-time and name expiration. The majority of aca-
demic work within the field of DLT has been focused on analysing one core
metric of the technology. Very little work has been directed at educating readers
in the identification process for the appropriate solution for their requirements.
This paper builds upon a number of previous works, allowing us to address this
knowledge gap.

3 An Anatomy of Blockchain Solutions

We now consider some of the key features of a blockchain network. The feature
list contained within this section does not fully encompass the topology of all
blockchain solutions. Instead, they are a select subset of features used by us
to create a generalized anatomy of a blockchain solution. Each block within a
blockchain network contains a series of transactions, accompanied by the sig-
nature of the sending network participant. Participation within a network is
controlled by the permission-determination protocol adopted by the network.
Network participants are often offered incentives to maintain the ledger. Within
public networks this can be achieved through mining. Consensus mechanisms
are used within blockchain networks to ensure that the ledger is maintained in
a valid and correct state, reflecting the true series of transactions taking place.

3.1 Blocks

Each block within a blockchain network contains both a header and a body.
The block header typically consists of information equivalent to metadata. The
header is usually used to support the identification and verification of blocks and
their body contents. The block body usually contains information surrounding
the transactions within the block. However, the format of data and information
contained within both the header and body, varies between implementation.

For example, within the Bitcoin [1] network, the header contains informa-
tion pertaining to the block version, which is an indication as to which set of
validation rules it follows. The header also contains: a hash of all transactions
within the block, a universal timestamp, a target threshold of a valid block hash,
a 4-byte field and a 256-bit hash from its parent block. Each block has only one

IV

parent. The block body contains a series of transactions accompanied by a trans-
action counter. The maximum number of transactions contained within a block is
dependent upon the size of both the block and the transaction contained within.

In contrast, the Ethereum [14, 15] network block contains vastly different
content. The block head within an Ethereum block (based on the yellow paper
[15]) contains the: parent hash, ommers hash, beneficiary, state root, transactions
root, receipts root, logs bloom, difficulty, number, gas limit, gas used, timestamp,
extra data, mix hash and nonce. Whilst the body contains a list of transactions
and an ommers list.

3.2 Smart Contracts

In essence, smart contracts [18] are a protocol which allow for the contribution,
verification and implementation of actions within a contract. Smart contracts
can be implemented to ensure the effectuation of embedded regulation, contrac-
tual terms, business rules and other codifiable instructions. This allows for the
enforcement of obligations along with the auditable tracking of that enforcement
on the blockchain, in addition to transparency and third party integration. This
creates a unique value proposition for users, as well a proven platform on which
to further integrate partners systems and processes.

In the event that manual checks are required, smart contracts are capable of
triggering an event which notifies relevant parties that action is necessary. This
also extends to situations in which a combination of document submission and
manual checking is required. When critically analysing these processes, it would
be a waste of time to have a human perform an analysis if other supporting
documents are either not present or invalid. A smart contract is capable of
managing such scenarios, by first ensuring all supporting documents are present
and valid, before prompting the human interaction with the process. Essentially,
enabling effective time-management across an organisation.

While many blockchain platforms use smart contracts, such as: Ethereum
[14, 15], Corda [13] and Hyperledger Fabric [12], not all do; with Monero [7]
being a prime example of this.

Monero is a platform which claims to offer superior security and privacy to its
competitors, through the implementation of mechanisms such as ring signatures.
Implementing smart contracts into a platform increases the attack surface of the
network. All of which is counter-intuitive for a privacy-focused platform such as
Monero.

3.3 Transaction Signing

Transaction signing is used within networks to provide assurance surrounding
the validity of transactions. Networks build their transaction signing mecha-
nisms upon a wide range of cryptographic mechanisms. One such example, is
elliptic curve (EC) cryptography. Elliptic curves can be applied within asym-
metric cryptography, to allow network participants to maintain ownership of

V

their own public and private keys. Parties use their private keys to sign transac-
tions using the the elliptic curve digital signature algorithm (ECDSA). Signed
transactions are then broadcast across the network for peer verification. Digital
signature algorithms (DSA) such as ECDSA are used to ensure the authenticity
of both the source and integrity of data. A great example of elliptic curves being
implemented for transaction signing can be seen in the secp256k1 elliptic curve,
which is implemented within: Bitcoin [1], Ethereum [14, 15] and Zcash [8]. Nu-
merous different types of elliptic curves are used by blockchain networks in the
signing process, including the Ed25519 curve used within Monero [7].

3.4 Permissions

Permissions control access parameters around participation within a network,
and can either encourage open contribution from the general population, or
restrict admittance to pre-trusted entities. This is extremely useful from an
engineering perspective as it provides flexibility, adaptive to the specification
requirements of the proposed solution. Blockchain has three core permission-
determination protocols: permissionless, permissioned and federated.

Permissionless blockchain networks [20] allow for external parties to partic-
ipate within an open network, without the need for traditional registration mech-
anisms (permissionless access). This creates openness without imposing strong
self-identification restraints on actors within the network. Since anyone can par-
ticipate in the network freely, there is a requirement to offer a financial incentive
for peer validation and system maintenance tasks. Incentives help to promote
peer participation in the network, which in turn has a positive impact on the
overall security provided by the system. For example, within the PoW consensus
mechanism, a 51% network majority is required to enforce change.

Permissioned blockchains [20] are not controlled or manipulated by a single
entity, but by a consortia of entities, which provide selected parties with autho-
rization to participate within the network. This affords the consortia the power
to vet participants to a degree. Since permissioned networks operate under the
supervision of a trusted consortium of validators, the cost of verifying transac-
tions is significantly reduced. The infrastructure also supports the updating of
protocols with relative ease. As all nodes are well known and regulated, there is
negligible risk of network performance degradation or outage.

Federated blockchains also restrict access to the network. However, there
is a subtle difference in functionality from permissoned networks. For example,
imagine that a network consisted of 15 nodes. Within a permissioned network
each node would be required to sign transactions. However, within a federated
network, only a subsection of the overall consensus contributing nodes are re-
quired to sign blocks. Flexibility is also afforded when assigning read permissions
to the ledger. Conducting consensus in this nature reduces the computational
cost associated with transaction signing and data redundancies even further.

VI

3.5 Consensus

Consensus is the mechanism by which individuals within a network come to
an agreement regarding a particular decision or view. Ideally, consensus mech-
anisms are capable of mitigating the actions of dishonest individuals or groups;
whilst offering a level of redundancy in the event that a subset of parties are
unable to respond. Within blockchain technology, consensus is used to provide a
degree of consistency across transactions within a ledger. Each consensus mecha-
nism has varying degrees of tolerance around the level of redundancy, resilience,
speed and security involved in the performance of their functionality. Common
consensus determination algorithms used within blockchain platforms include:
PoW [1, 3, 19], proof-of-stake (PoS) [19], delegated proof-of-stake (DPoS), proof-
of-authority (PoA), proof-of-elapsed-time (PoET) [16], byzantine fault tolerance
(BFT) [3, 9, 11].

Proof-of-Work [1, 3] is a piece of data that is both time consuming and
costly to produce, but easily verifiable by peers. Producing a PoW is essentially
a random process with a low probability of success; thus, it is down to trial and
error. Perhaps the most notable implementation of PoW can be seen within the
Bitcoin network [1]. Within Bitcoin, block references are obtained through the
double hashing of the blocks header content, using the SHA-256 hash function.
Hashing, mining difficulty and threshold functions for PoW schemes are outlined
within [19]. Due to the nature of PoW, an adversarial party would require 51%
of the networks hash-rate (or computing power) to compromise the system.

Although PoW is a decentralized protocol, within networks such as Bitcoin,
PoW is executed by an ever increasing centralized system of miners. Practically
speaking, most people do not have the computational resources to participate
in the mining process. As a result, to guarantee stable returns for participation,
most miners pool their resources. This has effectively created a centralized mech-
anism, revolving around so called pool managers. Currently, the Bitcoin network,
the five biggest mining pools control over 3

4 of all hashing power.
Proof-of-Stake [19] derives its consensus from the holdings of the cryp-

tocurrency itself. For instance, if Bitcoin were to adopt PoS, users who hold
the largest amount of Bitcoin would have the authority to make change across
the network. Majority owners would also be able to mine an equivalent portion
of their funds regardless of computing power. For an explanation of how the
PoS algorithm works; including how it adjusts difficulty and provides proof of
address ownership, read [19]. There is a known flaw within the PoW scheme in
which newcomers to a network, without prior knowledge of the chain, can be
tricked into validating an invalid chain, based on its larger length. PoS combats
this by implementing a rule-set which disallows forking from a branching point
more than N blocks in the past. Therefore, new participants in the network are
provided with all information of prior block content. However, it must be noted
that this requires a trade-off in the form of a centralization, trusted source. For
a PoS mechanism to work effectively, there needs to be a way to select forg-
ers (a transaction validator) from a user group. Simply selecting forgers based
on their account balance would result in a system which is heavily skewed in

VII

favour of richer participants, who decide to stake more of their currency. To
counter this problem a number of selection mechanisms have been created, such
as randomized block and coin age based selection.

It is worth noting that a semi-centralized PoS algorithm known as delegated
proof-of-stake also exists. Within DPoS, blocks are created by a select set of
users within the system known as delegates. Stake within DPoS is used slightly
differently than within PoS. For example, delegates may be elected based on
their stake in proportion to the network. Additionally, delegates may receive
votes from network participants. The voting power of participants is also reliant
on their stake relative to the entire network. Delegates are rewarded for per-
forming their role and punished for misbehaviour. There are two core functions
performed by delegates: block building and signing. Each delegate is capable of
individually generating blocks; however typically speaking, multiple delegates
are required to sign a block. Signing is performed by a select subset of delegates.
One notable exception to this rule is Tendermint [10], in which any user in the
system canprovide a signature.

In essence, PoS systems are more computationally efficient than their PoW
counterpart. A greater number of people are encouraged to run nodes and partic-
ipate in the network as the cost of participation is affordable. As a result, they
system becomes increasingly decentralized. Additional protection comes from
the expense associated with executing an attack and the reduced incentive for
attackers. An attacker would require a near majority of all network currency to
manipulate the network. This is typically referred to as the monopoly problem.
Byzantine Fault Tolerance is commonly thought of in regard to the byzantine
generals problem [9]. With respect to the byzantine generals problem, byzantine
fault tolerance is achieved when loyal generals come to a majority agreement on
their strategy. Typically byzantine faults are the most challenging to deal with,
as no restrictions or assumptions are made around the behaviour a node can
exhibit. The most successful approach to date is known as practical byzantine
fault tolerance (PBFT) [11].

PBFT is the core for many algorithms used for tasks, such as: terminating re-
liable broadcast, group membership, view synchronous b-cast and state machine
replication. PBFT processes can be categorised into three core types: clients,
primary n replicas and backup n replicas. Any client within the system can be
faulty. In accordance with the 1/3rd corruption tolerance of BFT, the number
of replicas present is calculated as follows; n = 3f + 1, where f is upper bound
of faulty parties.

Practical Byzantine Fault Tolerant Consensus [11] is achieved through
a three-phase protocol, ensuring the validity and integrity of the agreement. The
first phase is known as pre-preparation. Within this phase an order of requests
within the same view is agreed upon. The preparation phase that follows again
agrees upon a request order within the same view, whilst also ensuring that
request execution is performed in the pre-prepared order across different views.
Garbage collection is also performed as part of the preparation phase. Finally
a commit phase is executed, which again ensures the order of request execu-

VIII

tion in accordance with the preparation phase, whilst handling further garbage
collection duties.

PBFT consumes less energy that both PoW and PoS mechanisms and also
offers a higher level of performance in respects to latency and network through-
put. Since it is a permissioned network protocol, its adversarial tolerance should
not be compared to that of PoW, or permissionless PoS schemes. However, due
to the nature of PBFT consensus, scalability becomes a significant issue. There-
fore, we recommend using PBFT within small to medium size networks. PBFT
is particularly effective within industries consisting of a strictly defined infras-
tructure.

Proof-of-Elapsed-Time (PoET) [16] is designed to achieve a distributed
consensus in a lottery-type function. It was originally designed with the aim of
creating a fair mechanism for distributing mining rights within permissioned
networks.

PoET abide by a four-stage process flow. Firstly, each validator requests
a randomly distributed wait-time period from a trusted enclave. Secondly, the
validator with the shortest wait time wins the election and is awarded leadership
for the transactional block in question. A function is used to create a timer for
the transaction block that is guaranteed to have been created by the enclave.
Another function is then used to verify the timer origin.

The enclave comes in the form of a secure CPU instruction-set, ensuring
fairness in the randomness of selection across all participants. This is achieved
through implementing in the low level, using Intel’s Software Guard Extensions
(SGX) [17]. This facilitates the PoET algorithm in providing random distribu-
tion of leadership across an entire population of participants, in a fair manner.
An attestation of execution provides verification of a participants claim to lead-
ership, providing a low cost for participation. This offers a strong incentive for
participation in the network, as the algorithm is perceived to be fair, just and
accessible (due to the low cost infrastructure). Perhaps the most notable imple-
mentation of PoET can be seen within the Hyperledger Sawtooth [16] network.

The following diagram provides a comparison between the aforementioned
consensus mechanisms (1).

4 Developed Platforms

Once an engineer has determined that a blockchain solution is required it is then
necessary for them to undertake the platform selection process. We discuss some
of the key platforms here.

Corda [13] is an open-source DLT, which is targeted towards the financial
industry. Corda is a permissioned private platform, offering a plugable consensus
mechanism on a transactional level. This affords great flexibility to an engineer
when developing an application built on Corda. The nature of consensus within
the system means that no global broadcasting of data occurs. This is an at-
tractive quality within heavily regulated industries, where information secrecy
is pivotal. Corda has recently been endorsed by the famous insurance consrtium

IX

Fig. 1. Consensus Protocol Comparison

b3i. Smart contracts within Corda are grounded in legal prose; allowing for the
self-execution and automation of event-driven, legally binding agreements be-
tween parties. This makes Corda ideal for financial records management and the
automation of financial agreements.

Ethereum [14, 15] is a decentralized platform which affords developers the
ability to execute smart contracts within custom built blockchain networks.
Ethereum allows for the creation of cryptocurrencies and storing of crypto-assets
within the Ethereum Wallet. The wallet also allows for the writing, deployment
and use of smart contracts. Perhaps the most interesting use case for Ethereum,
can be seen within digital identity management systems. One great example
of this is uPort, which aims to give users a more secure way to provide proof
of their identity, by only offering critical information required to perform the
desired function. For example, only providing an airport with the relevent in-
formation when boarding an aircraft. Ethereum is ideal for such a use-case as it
has an easy-to-use smart contract mechanism.

Hyperledger Fabric [12] is an open source, modular platform, currently
spearheaded by IBM (previously governed by the Linux Foundation). Fabric is a
private permissioned platform, which supports the use of one or more networks.
Each network manages the requirements of a different set of member nodes. Fab-
ric offers users the ability to perform queries and updates to the ledger, through
the use of a series of industry standard data store mechanisms, such as: key-
based lookups, composite key queries and range-based searches. Fabric utilizes
PBFT [11] and conducts consensus on a transactional level. Peers within Fabric
networks are required to endorse transactions in accordance with a number of
predefined policies. For a transaction within the network to be validated it must
pass all policy checks and receive the signature of all endorsing peers submitting
to the Fabric ordering service.

Fabric consists of channels, which contain the configuration block which de-
fines policies, access controls and other information important to the blockchains
function. Fabric channels allow for the derivation of cryptographic materials from
multiple sources. An example of a real world implementation of Fabric can be

X

seen within the Everledger organisation, in which Fabric is used to track and
trace diamonds across the supply chain network.

Hyperledger Sawtooth [16] is also part of the Hyperledger family. How-
ever, it differs vastly from its sister Fabric network. Where Fabric was built for
vast business networks, Sawtooth was developed as solution aimed at reducing
the computational resource consumption within large distributed validator popu-
lations. It achieves this through implemented the proof-of-elapsed-time (PoET)
consensus protocol. Since consensus is performed within the CPU, which are
contained within most consumer electronics, realistically speaking, almost any
device can participate within consensus. Considering that PoET consensus is
also exceptionally lightweight, this makes Sawtooth ideal for use cases in which
IoT devices (which typically contain limited computing power) are implemented.
Sawtooth is a great choice for supply-chain networks with IoT device tracking
during transit.

MultiChain [21] offers a platform for building both permissioned and per-
missionless blockchain networks. Multichain differentiates itself from most other
blockchain networks through its use of streams, which come in three core for-
mats: A NoSQL key-value database or document store, an ordered time series
database, or an identity-driven database with author-based entry classification.
If the purpose of the blockchain product is to store information as opposed to
function execution, MultiChain provides a fast and lightweight solution. For this
reason, MultiChain is particularly useful for document storage systems, in which
simple CRUD functionality is required. Development on the MultiChain plat-
form is also exceptionally easy. Streams can be created and added to the network
without the need to write code.

Quorum [22], similarly to Corda, is a financial service facing blockchain net-
work. However, unlike Corda, Quorum is actually a fork of an existing blockchain
platform, Ethereum. The core changes Quorum makes within its fork, is the ad-
dition of a different consensus protocol, encrypted storage and the change to
a permissioned access structure. Quorum still provides access to the standard
Ethereum features, such as a distributed ledger and smart contracts.Quorum
solves two major existing problems preventing permissioned network implemen-
tation upon the Ethereum platform. Firstly, within Ethereum anyone can con-
nect to the network due to its permissionless nature. Secondly, all data inside
of the smart contracts within Ethereum are visible to all participant nodes.
Quorum addresses these issues by taking an off-chain approach to data storage.
Quorum is particularly useful within use-cases in which privacy and security of
transactions are a core concern.

5 Conclusion

In this paper we propose a format for outlining a generic blockchain anatomy.
This anatomy ranges from permissions to consensus and can be referenced when
assessing blockchain solutions architecture; assist in the design and implemen-
tation of business logic within the technology. We draw comparisons between

XI

Fig. 2. Platform Comparison

existing technologies and protocols, providing solutions architects with a base-
line upon which to build their products. However, this paper is meant to be used
as a guideline, and is by no means a bible for building blockchain solutions. From
a practical perspective, within industry, it is necessary to consider a multitude
of factors outside that of the technological functionality; for example, cost.

In future work, we aim to address a number of other key topics for consider-
ation when building ontop of blockchain technologies, such as: off-chain storage
requirements, privacy preservation, integration with existing systems (particu-
larly legacy) and ease of use. This should provide engineers with further informa-
tion, upon which to effectively build their solutions. Platforms such as Monero
[7] which focus heavily on security would make for an interesting starting point
for such work.

References

1. Satoshi Nakamoto. ”Bitcoin: A Peer-to-Peer Electronic Cash System”.
https://bitcoin.org/bitcoin.pdf, 2008.

2. Rafael Pass, Lior Seeman, Abhi Shelat. ”Analysis of
the Blockchain Protocol in Asynchronous Networks”.
https://pdfs.semanticscholar.org/161c/24b98ce3af2c0f8a5e96d5055a367b81801e
.pdf, 2016.

3. Marko Vukolić. ”The Quest for Scalable Blockchain Fabric: Proof-of-Work vs.
BFT Replication”. https://allquantor.at/blockchainbib/pdf/vukolic2015quest.pdf,
2015.

4. Daniel Kraft. ”Difficulty Control for Blockchain-Based Consensus Systems”.
https://allquantor.at/blockchainbib/pdf/kraft2016difficulty.pdf, 2015.

5. Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin
Wang. ”An Overview of Blockchain Technology: Architecture, Consen-
sus, and Future Trends”. https://www.researchgate.net/profile/Hong-
Ning Dai/publication/318131748 An Overview of Blockchain Technology
Architecture Consensus and Future Trends/links/59d71faa458515db19c915a1/An-
Overview-of-Blockchain-Technology-Architecture-Consensus-and-Future-
Trends.pdf, 2017.

6. Florian Glaser. ”Pervasive Decentralisation of Digital Infrastructures:
A Framework for Blockchain enabled System and Use Case Analysis”.
https://scholarspace.manoa.hawaii.edu/bitstream/10125/41339/1/paper0190.pdf,
2017.

XII

7. Nicolas van Saberhagen. ”CryptoNote v 2.0”.
https://cryptonote.org/whitepaper.pdf, 2013.

8. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, Madars Virza. ”Zerocash: Decentralized Anonymous Payments from
Bitcoin (extended version)”. http://zerocash-project.org/media/pdf/zerocash-
extended-20140518.pdf, 2014.

9. Leslie Lamport, Rober Shostak, and Marshall Pease. ”The Byzantine Generals
Problem”. https://people.eecs.berkeley.edu/ luca/cs174/byzantine.pdf, 1982

10. Jae Kwon. ”Tendermint: Consensus without Mining”.
https://tendermint.com/static/docs/tendermint.pdf, 2014

11. Miguel Castro and Barbara Liskov. ”Practical Byzantine Fault Tolerance”.
http://pmg.csail.mit.edu/papers/osdi99.pdf, 1999

12. Christian Cachin. ”Architecture of the Hyperledger Blockchain Fabric”.
https://pdfs.semanticscholar.org/f852/c5f3fe649f8a17ded391df0796677a59927f.pdf,
2016

13. Mike Hearn. ”Corda: A distributed ledger”. https://docs.corda.net/ static/corda-
technical-whitepaper.pdf, 2016

14. Ethereum Contributors. ”White Paper”. https://github.com/ethereum/wiki/wiki/
White-Paper/3592dda1feca69cce8a9d9a624ea33b0999e1dcc, 2018

15. Ethereum Community. ”Ethereum Yellow Paper”.
https://github.com/ethereum/yellowpaper/blob/e653258d1f94c6a29ff1c2c5b43e1
91f535fba49/README.md, 2018

16. Intel Corporation, https://sawtooth.hyperledger.org/docs/core/releases/1.0/
architecture.html, 2015-2017

17. Victor Costan and Srinivas Devadas. ”Intel SGX Explained”.
https://eprint.iacr.org/2016/086.pdf, 2016

18. Clack, Bakshi, Braine. ”Smart Contract Templates: foundations, design landscape
and research directions”. http://arxiv.org/abs/1608.00771, 2016.

19. BitFury Group. ”Proof of Stake versus Proof of Work”.
https://bitfury.com/content/downloads/pos-vs-pow-1.0.2.pdf, 2015

20. Dylan Yaga, Peter Mell, Nik Roby, Karen Scarfone. ”Blockchain Technol-
ogy Overview”.http://img1.wsimg.com/blobby/go/60231649-12ce-4835-96f0-
945ea7f2116c/downloads/1cb8a20ea 182905.pdf, 2018

21. Dr Gideon Greenspan, Founder and CEO, Coin Sciences Ltd. ”MultiChain Private
Blockchain - White Paper”. https://www.multichain.com/download/MultiChain-
White-Paper.pdf, 2015.

22. J.P Morgan Chase. ”Quorum Overview”. https://github.com/jpmorganchase
/quorum/wiki/Quorum-Overview/0600693ce1453c7513c59154a2512c1efc2044eb,
2017.

