
SiL: An Approach for Adjusting Applications
to Heterogeneous Systems

Under Perturbations

Ali Mohammed and Florina M. Ciorba
Department of Mathematics and Computer Science

University of Basel, Switzerland

May 28, 2022

1

ar
X

iv
:1

80
7.

03
57

7v
2 

 [
cs

.D
C

] 
 1

3 
Ju

l 2
01

8



Contents

1 Introduction 4

2 Background and Related Work 6

3 Simulator in the Loop (SiL) 8

4 Evaluation and Analysis 10

5 Conclusion and Future Work 15

2



Abstract

Scientific applications consist of large and computationally-
intensive loops. Dynamic loop scheduling (DLS) techniques are used
to load balance the execution of such applications. Load imbalance
can be caused by variations in loop iteration execution times due to
problem, algorithmic, or systemic characteristics (also, perturbations).
The following question motivates this work: “Given an application,
a high-performance computing (HPC) system, and both their char-
acteristics and interplay, which DLS technique will achieve improved
performance under unpredictable perturbations?” Existing work only
considers perturbations caused by variations in the HPC system de-
livered computational speeds. However, perturbations in available
network bandwidth or latency are inevitable on production HPC sys-
tems. Simulator in the loop (SiL) is introduced, herein, as a new
control-theoretic inspired approach to dynamically select DLS tech-
niques that improve the performance of applications on heterogeneous
HPC systems under perturbations. The present work examines the
performance of six applications on a heterogeneous system under all
above system perturbations. The SiL proof of concept is evaluated
using simulation. The performance results confirm the initial hypoth-
esis that no single DLS technique can deliver best performance in all
scenarios, while the SiL-based DLS selection delivered improved ap-
plication performance in most experiments.

Keywords. Performance Load balancing Loop scheduling Hetero-
geneous computing systems Perturbations Simulation

3



1 Introduction

Scientific applications are often characterized by large and computationally-
intensive parallel loops. The performance of these applications on high-
performance computing (HPC) systems may degrade due to load imbal-
ance caused by problem, algorithmic, or systemic characteristics. Appli-
cation (problem or algorithmic) characteristics include the irregularity of the
number of computations per loop iterations due to conditional statements,
where systemic characteristics include variations in delivered computational
speed of processing elements (PEs), available network bandwidth or latency.
Such variations are referred to as perturbations, and can also be caused
by other applications or processes that share the same resources, or a tem-
porary system fault or malfunction. Dynamic loop scheduling (DLS) is a
widely-used approach for improving the execution of parallel applications
using self-scheduling, that is dynamic assignment of the loop iterations to
free and requesting processing elements. A wide range of DLS techniques
exists, and can be divided into nonadaptive and adaptive techniques. The
nonadaptive DLS techniques account for the variability in loop iterations
execution times due to application characteristics. They do not account for
irregular system characteristics that are known only during execution. The
nonadaptive DLS techniques include self-scheduling (SS), fixed size chunk-
ing (FSC) [14], guided self-scheduling (GSS) [20], factoring (FAC) [12], and
weighted factoring (WF) [11]. The adaptive DLS techniques account for
irregular system characteristics by adapting the amount of assigned work
per PE request (chunk size) according to the application performance mea-
sured during execution. Adaptive DLS techniques include adaptive weighted
factoring (AWF) [3], its variants batch (AWF-B), chunk (AWF-C), batch-
like (AWF-D), chunk-like (AWF-E) [7], and adaptive factoring (AF) [2].

An a priori selection of the most appropriate DLS technique for a given
application and system is challenging, given the various sources of load imbal-
ance and the different load balancing properties of the DLS techniques. This
observation raises the following question and motivates the present work:
“Given an application, an HPC system, and both their characteristics and
interplay, which DLS technique will achieve improved performance under un-
predictable perturbations?” Earlier work studied the flexibility of DLS (ro-
bustness to reduced delivered computational speed) [22] and the selection
of robust DLS using machine learning [23] with the SimGrid (SG) [8] simu-
lation toolkit. The selection of DLS techniques for synthetic time-stepping

4



scientific applications using reinforcement learning [4] was also studied using
SG. The aforementioned existing work focuses on one source of perturba-
tions (variation in delivered computing speed) in time-stepping applications
to learn from previous steps. That approach may not be applicable to ap-
plications without time-steps, nor would it be feasible in a highly variable
execution environment. Scheduling solutions using static optimizations, e.g.,
using evolutionary and genetic algorithms, can not dynamically adapt to the
perturbations encountered during execution. Modern HPC systems are often
heterogeneous production systems typically shared by many users. There-
fore, perturbations in the available network bandwidth and latency in such
systems are unavoidable.

In the present work, in an effort to select the most appropriate DLS
for a given application and system, the performance of a scientific appli-
cation (PSIA [10]) and five synthetic applications using nonadaptive and
adaptive DLS techniques is studied on a heterogeneous HPC system, in the
presence of perturbations in computing speed, network bandwidth, and net-
work latency. The amount of operations in each loop iteration of the five
synthetic applications is assumed to follow five different probability distri-
butions, namely: constant, uniform, normal, exponential, and gamma prob-
ability distributions. The present work makes the following contributions:
(1) Proposes a novel simulator in the loop (SiL) approach for dynamically
selecting a DLS technique during execution, based on the application char-
acteristics and the present (monitored or predicted) state of the computing
system; (2) Provides insights on the resilience of the DLS techniques to per-
turbations; and (3) Confirms the initial hypothesis that no single DLS ensures
the best performance in all execution scenarios considered; The SiL perfor-
mance is evaluated for the selected applications in simulation using SG.

This work is structured as follows. Section 2 contains a brief review of the
selected DLS techniques, the SG simulation toolkit, as well as of the work
related to the performance of scheduling scientific applications with DLS in
the presence of perturbations. The proposed SiL approach for selecting a
DLS technique in the presence of perturbations is discussed in Section 3.
The experimental design and setup, and the performance of the proposed
approach are described and discussed in Section 4. The work concludes and
outlines potential future work in Section 5.

5



2 Background and Related Work

Loop scheduling. The aim of loop scheduling is to achieve a balanced load
execution among the parallel PEs with minimum scheduling overhead. Loop
scheduling can be divided into static and dynamic. In static loop scheduling,
the loop iterations are divided and assigned to PEs before execution; both
division and assignment remain fixed during execution. This work considers
static (block) scheduling, denoted STATIC, each PE being assigned a chunk
size equal to the number of iterations N divided by the number of PEs P .
STATIC incurs minimum scheduling overhead, compared to dynamic loop
scheduling, and may lead to load imbalance for non-uniformly distributed
tasks and/or on perturbed systems.

In dynamic loop scheduling (DLS), free and requesting PEs are assigned,
via self-scheduling, loop iterations during execution. The DLS techniques
can be categorized into nonadaptive and adaptive techniques. The nonadap-
tive DLS techniques considered in this work are: SS [19], FSC [14], GSS [20],
FAC [12], and WF [11]. While STATIC represents one scheduling extreme, SS
represents the other scheduling extreme. In SS, the size of each chunk is one
loop iteration. This yields a high load balance with potentially very large
scheduling overhead. FSC assigns loop iterations in chunks of fixed sizes,
where the chunk size depends on the standard deviation of loop iteration ex-
ecution times σ as an indication of its variation and the incurred scheduling
overhead h. GSS assigns loop iterations in chunks of decreasing sizes, where
the size of a chunk is equal to the number of remaining unscheduled loop
iterations R divided by the number of PEs N . FAC employs a probabilistic
modeling of loop characteristics (standard deviation of iterations execution
time σ and their mean µ) to calculate batch sizes that maximize the proba-
bility of achieving a load balanced execution. A PE’s chunk size is equal to
the batch size divided by N . When this information (σ and µ) is unavailable,
FAC is practically implemented to assign half of the remaining loop iterations
R in a batch. WF divides a batch into unequally-sized chunks, proportional
to the relative PE speeds (weights). The PEs weights need to be determined
prior to the execution and do not change afterward. This work considers
the practical implementations of FAC and WF. All nonadaptive DLS tech-
niques account for variations in iteration execution times due to application
characteristics.

The adaptive DLS techniques measure the performance of the applica-
tion during execution and adapt the chunk calculation accordingly. Adaptive

6



DLS techniques include AWF [3], its variants [7]: AWF-B, AWF-C, AWF-D,
AWF-E, and AF [2]. AWF is designed for time-stepping applications. It
improves WF by changing the relative weights of PEs during execution by
measuring their performance in each time step and updating their weights
accordingly. AWF-B relieves the time stepping requirement in AWF, and
measures the performance after each batch to update the PE weights. AWF-
C is similar to AWF-B, where weight updates are performed upon the com-
pletion of each chunk, instead of a batch. AWF-D is similar to AWF-B,
and considers the total chunk time (equal to the chunk iteration execution
times plus the associated overhead of a PE to acquire the chunk) and all the
bookkeeping operations to calculate and update the PE weights. AWF-B
and AWF-C only consider the chunk iterations execution times. AWF-E is
similar to AWF-C by updating the PE weights on every chunk. Yet AWF-E
is also similar to AWF-D by also considering the total chunk time also. Un-
like FAC, AF dynamically estimates the values of σ and µ during execution
and updates them based on the measured performance of the PEs.

Loop scheduling in simulation. SimGrid [8] (SG) is a versatile event-
based simulation toolkit designed for the study of the behavior of large-scale
distributed systems. It provides ready to use application programming inter-
faces (API) to represent applications and computing systems through differ-
ent interfaces: MSG (SG-MSG), SimDag (SG-SD), and SMPI (SG-SMPI).
SG uses a simple, fast CPU computation model and verified network mod-
els [24] which render it well suited for the study of computationally-intensive
distributed scientific applications.

Various studies have used SG to study the performance of applications
with DLS techniques in different scenarios [4, 22, 23]. To attain high trust-
worthiness in the performance results obtained with SG, the implementation
of the nonadaptive DLS techniques in SG-SD has been verified [18] by re-
producing the results presented in the work that introduced factoring [12].
Also, the accuracy of simulative performance experiments against native ex-
periments has recently been quantified [16]. This work employs the SG-SD
interface to study the performance of scientific applications on a heteroge-
neous platform under perturbations.

Related work. Robustness denotes the maintenance of certain desired
system characteristics despite fluctuations in the behavior of its components
or its environment [1], whereas, flexibility [22] denotes the robustness of DLS
to variations in the delivered computational speeds. The performance of sci-

7



entific applications under perturbations in the delivered computational speed
is studied with nonadaptive DLS techniques [13, 25]. The robust schedul-
ing of tasks with uncertain communication time was also considered using a
multi-objective evolutionary algorithm [6] and to evaluate the flexibility of
DLS [22]. The selection of the best performing DLS during execution was
studied for OpenMP multi-threaded applications [26], and for time-stepping
applications using reinforced learning [4]. Also, machine learning was used
to create a portfolio of DLS robustness to variations in the delivered compu-
tational speed on a homogeneous system [23].

Scheduling solutions based on optimization techniques, e.g., genetic and
evolutionary algorithms, can not adapt to perturbations during execution.
None of the aforementioned efforts considered perturbations in network band-
width and latency. This work complements the previous efforts by studying
the performance of scientific applications using nonadaptive and adaptive
DLS techniques under different perturbations (variations in delivered com-
putational speed, network bandwidth, network latency) on a heterogeneous
computing system. A new approach, namely simulator in the loop (SiL) is
introduced, to dynamically select DLS techniques that improve the perfor-
mance of applications on heterogeneous system under multiple sources of
perturbations.

3 Simulator in the Loop (SiL)

The SiL is inspired by control theory, where a controller (scheduler) is used
to achieve and maintain a desired state (load balance) of the system (parallel
loop execution), as illustrated in Figure 1. The SiL concept is motivated by
the well-known control strategy model predictive control (MPC) [21]. The
MPC controller predicts the performance of the system with different control
signals to optimize system performance. As shown in Figure 1(b), a call to the
SiL simulator is inserted inside a typical scheduling loop. SiL leverages state-
of-the-art simulation toolkits to estimate the performance of an application
in a given execution scenario. The system monitor and estimator components
read the system state during the execution and update the computing system
representation accordingly. The above steps may be repeated several times
during the execution of the loop, and this frequency can be aligned with the
perturbations frequency or intensity.

The advantage of SiL is that it leverages the use of already developed

8



Predicted 
response

Simulated 
control signal

Set 
point Controller Target 

system

System 
model

State 
estimator

System
Monitor

Control
 signal

Sensor 
measurements

Output

(a) A generic control system.

Scheduler Chunk of tasks 
execution

State 
estimator

System
Monitor

Chunk size

Perturbations measurements

Predicted 
performance

Last scheduled
iteration index

HPC system representation

Loop representation
Loop scheduling portfolio

Scheduling 
simulator

(b) Proposed SiL approach for loop scheduling.

Figure 1: The proposed simulator in the loop (SiL) approach for loop scheduling
(b) is analogous to a typical control system (a). The components highlighted in
mint color in (b) represent the SiL additions to a typical loop scheduling system.

state-of-the-art simulators to predict the performance dynamically during
execution. The accuracy of the simulator and its prediction is strongly in-
fluenced by the representation of both applications and the systems in sim-
ulation as well as by the available subsystems models in the simulator [16].
For instance, the percent error between native and simulative executions for
a given application (PSIA [10]) using the SG-SD interface was found to be
between 0.95% and 2.99% [16]. It is expected that the accuracy and the
speed of the simulators employed by SiL will improve as they are continu-
ously being developed and refined. The cost of frequent calls to SiL can be
amortized by launching parallel SiL instances to concurrently derive predic-
tions for various DLS. Alternatively, this cost can be entirely mitigated by
asynchronously calling SiL, concurrently to the application execution. Upon
completion, SiL returns the recommended best suited DLS technique to the
calling application, which can then directly use the recommended DLS to
improve the application performance.

The system monitor and estimator components can be implemented with
a number of system monitoring tools [9], such as collectl. Such tools can
periodically be instantiated to measure PE and network loads and to update
the system representation in the simulator. The measured chunk execution
times can also be used to estimate the current PE computational speeds.
The PE loads can be estimated and predicted using autoregressive integrated
moving average [15].

9



4 Evaluation and Analysis

Experimental Design and Setup. The factorial design of experiments
is presented in the following (cf. Table 1), together with the applications
performance and a discussion thereof.

Table 1: Design of factorial experiments

Factors Values Properties

Applications

Problem size N = 400,000 iterations
PSIA
Constant
Uniform
Normal
Exponential
Gamma

[5.9 · 107, 6.6 · 107] FLOP per iteration
2.3 · 108 FLOP per iteration
[103, 7 · 108] FLOP per iteration
µ = 9.5 · 108 FLOP, σ = 7 · 107 FLOP, [6 · 108, 1.3 · 109] FLOP per iteration
λ = 1/3 · 108 FLOP, [948, 4.5 · 109] FLOP per iteration
k = 2, θ = 108 FLOP, [4.1 · 106, 2.7 · 109] FLOP per iteration

Loop scheduling
STATIC
SS, FSC, GSS, FAC, WF
AWF-B, -C, -D, -E, AF

Static
Nonadaptive dynamic
Adaptive dynamic

Computing system
miniHPC
(heterogeneous HPC cluster)

22 Intel Broadwell nodes (22 · 20 cores), relative core weight = 1.398
4 Intel Xeon Phi KNL nodes (4 · 64 cores), relative core weight = 0.316
P = 224 heterogeneous (112 Broadwell + 112 KNL) cores
P = 696 heterogeneous (440 Broadwell + 256 KNL) cores

Perturbations

Nominal conditions no perturbations (np)

PE availability

constant mild (pea-cm)
constant severe (pea-cs)
exponential mild (pea-em)
exponential severe (pea-es)

Bandwidth

constant mild (bw-cm)
constant severe (bw-cs)
exponential mild (bw-em)
exponential severe (bw-es)

Latency

constant mild (lat-cm)
constant severe (lat-cs)
exponential mild (lat-em)
exponential severe (lat-es)

All

constant mild (all-cm)
constant severe (all-cs)
exponential mild (all-em)
exponential severe (all-es)

Experimentation
Nativea PSIA on 224 cores under no perturbations (onlineb)

Simulative
All applications on 224 cores under all perturbations (onlineb)
All applications on 696 cores under all perturbations

a Direct experiments on real HPC systems.
b Included in this arxiv.org submission, please download all data

Applications. This work considers a real-world application and five syn-
thetic applications. The parallel spin-image algorithm [10] (PSIA), is an
application from computer vision. The PSIA is algorithmically load imbal-
anced and the computational effort of a loop iteration depends on the input
data. The performance of PSIA has been studied in prior work [10] and
enhanced for a heterogeneous cluster by using nonadaptive DLS techniques.
The total number of PSIA loop iterations is 400,000. To represent the PSIA
in simulation, the number of floating point operations (FLOP) of each loop

10



iteration is counted using PAPI [5] counters. In SG-SD, each loop itera-
tion is represented as a task [16, 17]. Each of the five synthetic applications
contains 400,000 parallel loop iterations, similar to the PSIA. The FLOP
count in each loop iteration is assumed to follow five different probability
distributions, namely: constant, uniform, normal, exponential, and gamma
probability distributions. The probability distribution parameters used to
generate these FLOP counts are given in Table 1.

Loop scheduling. Eleven loop scheduling techniques are used to assess
the performance of the above six applications under test. These techniques
represent a wide range of loop scheduling approaches, namely, static and
dynamic. The dynamic loop scheduling (DLS) approach can further be dis-
tinguished into adaptive and nonadaptive. The DLS techniques can be im-
plemented using centralized or decentralized execution and control approach.
The decentralized control approach was found to scale better by eliminating
a centralized master, and hence, the master-level contention [18]. The DLS
implemented using the decentralized control approach is considered in this
work.

Computing system. miniHPC 1 consists of 26 compute nodes: 22 nodes
each with one dual socket Intel Xeon E5-2640 v4 (20 cores) configuration
and 4 nodes each with one Intel Xeon Phi Knights Landing 7210 proces-
sor (64 cores). The total number of heterogeneous cores is 22 nodes × 20 cores
per node + 4 nodes × 64 cores per node = 696 cores. All nodes are inter-
connected with Intel Omni-Path fabrics in a nonblocking two-level fat-tree
topology.

Simulation. A computing system is represented in SG via an XML file
denoted as platform file. SG registers each processor core from their rep-
resentation as a host in the platform file. The computational speed of a
processor core is estimated by measuring a loop execution time and dividing
it by the total number of floating point operations included in the loop [16].
A Xeon core was found to be four times faster than a Xeon Phi core as in-
dicated by the relative core weights (cf. Table 1). The network bandwidth
and latency represented in the platform file are calibrated with the SG
calibration procedure2.

Perturbations. Three different categories of perturbations are considered

1miniHPC is a fully controlled non-production HPC cluster at the Department of Math-
ematics and Computer Science at the University of Basel, Switzerland.

2http://simgrid.gforge.inria.fr/contrib/smpi-calibration-doc/

11



in this work, namely delivered computational speed, available network band-
width, and available network latency. Two intensities are considered, mild
and severe, for each category. Two scenarios are considered for each intensity,
where the value of the delivered computational speed is either constant or
exponentially distributed. All perturbations (cf. Table 1) are considered to
occur periodically, with a period of 100 seconds where the perturbations affect
the system only during 50% of the perturbation period. The network (band-
width and latency) perturbations commence with the application execution,
while the delivered computational speed perturbations begin 50 seconds af-
ter the start of the application. The PE availability to compute changes to
75% and 25% for the mild and severe intensities, respectively. The available
network bandwidth and network latency change to 0.001% and 0.00001% for
the mild and severe intensities, respectively. Another perturbation scenario is
created by combining all perturbations from the other individual categories.
All perturbations are enacted in SG during simulation via the availability,
bandwidth, latency, and platform files.

Performance of Scientific Applications under Perturbations. The
performance of the six applications of interest is shown in Figure 2. One can
see that STATIC, FSC, GSS, and FAC perform poorly on heterogeneous sys-
tems. WF is well suited for scheduling on heterogeneous systems. However,
it can not adapt to accommodate the variability in the system due to pertur-
bations, especially perturbations in the delivered computational speed. SS is
resilient to perturbations in the delivered computational speed of the PEs.
However, it is significantly influenced by the network latency variations, as
can be seen in Figure 2a “lat-cs” and “lat-es”. Perturbations in the network
bandwidth show a very small influence on performance, as the PEs only
communicate loop iterations indices to calculate the start index of the next
chunk. Therefore, the communicated messages are small.

The adaptive techniques perform comparably, with a slight advantage
for AWF-C as can be seen in Figure 2e “all-cs” and in Figure 2a “pea-cs”
and “all-es”. However, in certain cases, other techniques outperform AWF-
C. Specifically, WF outperforms AWF-C in Figure 2a “lat-cs” and “all-cs”.
These results suggest that no single DLS outperforms all other techniques in
all execution scenarios. Therefore, the best strategy is to dynamically select
a DLS based on the current application and system states.

In this work, SiL is called every 50 seconds to select the best performing
DLS. A closer analysis of the SiL-based results reveals that it resulted in the

12



n
p

p
e
a
-c

m
p
e
a
-c

s
p
e
a
-e

m
p
e
a
-e

s
b
w

-c
m

b
w

-c
s

b
w

-e
m

b
w

-e
s

la
t-

cm
la

t-
cs

la
t-

e
m

la
t-

e
s

a
ll-

cm
a
ll-

cs
a
ll-

e
m

a
ll-

e
s0

50

100

150

200

250

300

350

P
a
ra

lle
l 
lo

o
p
 e

x
e
cu

ti
o
n
 t

im
e
 (

s)

PE 
availability Bandwidth Latency All

Parallel loop execution time [PSIA]

STATIC

SS

FSC

GSS

FAC

WF

AWF-B

AWF-C

AWF-D

AWF-E

AF

SiL

(a) PSIA on 696 cores

n
p

p
e
a
-c

m
p
e
a
-c

s
p
e
a
-e

m
p
e
a
-e

s
b
w

-c
m

b
w

-c
s

b
w

-e
m

b
w

-e
s

la
t-

cm
la

t-
cs

la
t-

e
m

la
t-

e
s

a
ll-

cm
a
ll-

cs
a
ll-

e
m

a
ll-

e
s0

500

1000

1500

2000

P
a
ra

lle
l 
lo

o
p
 e

x
e
cu

ti
o
n
 t

im
e
 (

s)

PE 
availability Bandwidth Latency All

Parallel loop execution time [constant]

STATIC

SS

FSC

GSS

FAC

WF

AWF-B

AWF-C

AWF-D

AWF-E

AF

SiL

(b) Constant distribution on 696 cores

n
p

p
e
a
-c

m
p
e
a
-c

s
p
e
a
-e

m
p
e
a
-e

s
b
w

-c
m

b
w

-c
s

b
w

-e
m

b
w

-e
s

la
t-

cm
la

t-
cs

la
t-

e
m

la
t-

e
s

a
ll-

cm
a
ll-

cs
a
ll-

e
m

a
ll-

e
s0

500

1000

1500

2000

P
a
ra

lle
l 
lo

o
p
 e

x
e
cu

ti
o
n
 t

im
e
 (

s)

PE 
availability Bandwidth Latency All

Parallel loop execution time [uniform]

STATIC

SS

FSC

GSS

FAC

WF

AWF-B

AWF-C

AWF-D

AWF-E

AF

SiL

(c) Uniform distribution on 696 cores

n
p

p
e
a
-c

m
p
e
a
-c

s
p
e
a
-e

m
p
e
a
-e

s
b
w

-c
m

b
w

-c
s

b
w

-e
m

b
w

-e
s

la
t-

cm
la

t-
cs

la
t-

e
m

la
t-

e
s

a
ll-

cm
a
ll-

cs
a
ll-

e
m

a
ll-

e
s0

1000

2000

3000

4000

5000

6000

P
a
ra

lle
l 
lo

o
p
 e

x
e
cu

ti
o
n
 t

im
e
 (

s)

PE 
availability Bandwidth Latency All

Parallel loop execution time [normal]

STATIC

SS

FSC

GSS

FAC

WF

AWF-B

AWF-C

AWF-D

AWF-E

AF

SiL

(d) Normal distribution on 696 cores

n
p

p
e
a
-c

m
p
e
a
-c

s
p
e
a
-e

m
p
e
a
-e

s
b
w

-c
m

b
w

-c
s

b
w

-e
m

b
w

-e
s

la
t-

cm
la

t-
cs

la
t-

e
m

la
t-

e
s

a
ll-

cm
a
ll-

cs
a
ll-

e
m

a
ll-

e
s0

500

1000

1500

2000

P
a
ra

lle
l 
lo

o
p
 e

x
e
cu

ti
o
n
 t

im
e
 (

s)

PE 
availability Bandwidth Latency All

Parallel loop execution time [exponential]

STATIC

SS

FSC

GSS

FAC

WF

AWF-B

AWF-C

AWF-D

AWF-E

AF

SiL

(e) Exponential distribution on 696 cores

n
p

p
e
a
-c

m
p
e
a
-c

s
p
e
a
-e

m
p
e
a
-e

s
b
w

-c
m

b
w

-c
s

b
w

-e
m

b
w

-e
s

la
t-

cm
la

t-
cs

la
t-

e
m

la
t-

e
s

a
ll-

cm
a
ll-

cs
a
ll-

e
m

a
ll-

e
s0

500

1000

1500

2000

P
a
ra

lle
l 
lo

o
p
 e

x
e
cu

ti
o
n
 t

im
e
 (

s)

PE 
availability Bandwidth Latency All

Parallel loop execution time [gamma]

STATIC

SS

FSC

GSS

FAC

WF

AWF-B

AWF-C

AWF-D

AWF-E

AF

SiL

(f) Gamma distribution on 696 cores

n
p

p
e
a
-c

m
p
e
a
-c

s
p
e
a
-e

m
p
e
a
-e

s
b
w

-c
m

b
w

-c
s

b
w

-e
m

b
w

-e
s

la
t-

cm
la

t-
cs

la
t-

e
m

la
t-

e
s

a
ll-

cm
a
ll-

cs
a
ll-

e
m

a
ll-

e
s0

50

100

150

200

250

300

350

P
a
ra

lle
l 
lo

o
p
 e

x
e
cu

ti
o
n
 t

im
e
 (

s)

PE 
availability Bandwidth Latency All

Parallel loop execution time [PSIA]

SiL

STATIC

SS

FSC

GSS

FAC

WF

AWF-B

AWF-C

AWF-D

AWF-E

AF

Figure 2: Performance results of the six applications of interest without (np)
and with (the rest) perturbations using SiL and eleven loop scheduling techniques
on 696 heterogeneous cores. The mint color shaded regions denote the upper and
lower bounds of the performance with SiL if only one DLS technique were selected
during execution in the particular execution scenario.

13



n
p

p
e
a
-c

m
p
e
a
-c

s
p
e
a
-e

m
p
e
a
-e

s
b
w

-c
m

b
w

-c
s

b
w

-e
m

b
w

-e
s

la
t-

cm
la

t-
cs

la
t-

e
m

la
t-

e
s

a
ll-

cm
a
ll-

cs
a
ll-

e
m

a
ll-

e
s0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f 
se

le
ct

io
n
 (

%
)

PE 
availability Bandwidth Latency All

Percentage of DLS selection [PSIA]
SS

FSC

GSS

FAC

WF

AWF-B

AWF-C

AWF-D

AWF-E

AF

Figure 3: DLS selection results for the PSIA application. DLS techniques, such
as FSC, GSS, and FAC are not selected due to their poor predicted performance
with SiL.

smallest execution time in most execution scenarios, especially for PSIA, as
shown in Figure 2a. The PSIA execution with SiL in the “all-es” scenario
outperformed all other techniques, as the best DLS technique was changed
during the execution according to the execution scenario. In other cases,
the application performance with SiL was slightly slower than the minimum
execution time achieved by other DLS. This is due to the fact that loop
scheduling is, by definition, non-preemptive and the execution of already
scheduled loop iterations can not be preempted to be resumed with the newly
selected DLS.

Discussion. The advantage of the SiL approach is to dynamically select
the DLS that is predicted to achieve the best performance. A combination
of two or more DLS techniques throughout the application execution may
result in a shorter execution time than that achievable by any single DLS
technique alone as can be seen in Figure 2a “all-es”. The SiL selected WF
for the first 50 seconds in “all-es”, as can be seen in Figure 3. After 50 sec-
onds, the network was no longer perturbed, and SiL selects the SS technique
to balance the load and achieve a better performance than any single DLS
technique. The simulative performance results of the PSIA on 224 heteroge-
neous cores (112 Broadwell cores and 112 KNL cores) have been verified by
native experimentation under the no perturbation execution scenario. The

14



raw results and details of the DLS selection for all the applications can be
found online3. The native experimentation of application performance in
other execution scenarios is planned as immediate future work. In certain
cases, such as “all-em” in the application with normally distributed tasks, the
SiL-based execution did not yield the best performance, due to the fact that
DLS is non-preemptive. The DLS techniques selected via SiL can be used as
guidelines for a given application, computing system, and perturbation sce-
nario. The SiL approach can proactively select the best suited DLS before
any perturbations act on the system, when perturbations can be predicted
in advance. The study and prediction of perturbations on HPC systems
need further examination, as perturbations in HPC shared resources are in-
evitable. The cost of the SiL simulation depends on the problem size and
the system size. Specifically, simulating the execution of 20,000 iterations
on 9 PEs with SG-SD executing on an Intel Broadwell E5 processor, with
CentOS 7.2 operating system, required 0.34 seconds on average, whereas, it
required 3.48 seconds for simulating the execution of 200,000 iterations on
the same number of PEs. These costs can be amortized or entirely mitigated
by calling the simulator asynchronously to the parallel loop execution.

5 Conclusion and Future Work

A new control-theoretic inspired approach, namely simulator in the loop
(SiL), was introduced to dynamically select a DLS that achieves the best
performance, in an effort to answer the question of which DLS technique
will achieve improved performance under unpredictable perturbations. The
performance of six applications is studied under perturbations and insights
on the resilience of the DLS techniques to perturbations are provided. The
performance results confirm the hypothesis that no single DLS technique
can achieve the best performance in all the considered execution scenarios.
Using the SiL approach improved the performance of applications in most
considered experiments. SiL leverages state-of-the-art simulators to select
the DLS predicted to result in the best performance of an application under
perturbations. The SiL can be asynchronously launched concurrently to the
application execution. The results show that in the case of a system per-
turbed via multiple sources, a combination of two or more DLS techniques
may result in improved performance than that achievable by any single DLS

3Included in this arxiv.org submission, please download all data

15



alone, such as the performance of the PSIA in “all-es” execution scenario.
However, due to applications being non-preemptively scheduled, changing
the used DLS during the execution may not result in the best performance.
Further work is planned to realize and evaluate the performance of the SiL
approach using native experimentation. Furthermore, experiments to inves-
tigate and enhance the performance of SiL, in terms of improving the DLS
selection strategy and the period between SiL calls also planned as future
work.

References

[1] Ali, S., Maciejewski, A.A., Siegel, H.J., Kim, J.K.: Measuring the Robust-
ness of a Resource Allocation. IEEE Transactions on Parallel and Distributed
Systems 15(7), 630–641 (2004)

[2] Banicescu, I., Liu, Z.: Adaptive Factoring: A Dynamic Scheduling Method
Tuned to the Rate of Weight Changes. In: Proceedings of the High Perfor-
mance Computing Symposium. pp. 122–129 (2000)

[3] Banicescu, I., Velusamy, V., Devaprasad, J.: On the Scalability of Dynamic
Scheduling Scientific Applications With Adaptive Weighted Factoring. Clus-
ter Computing 6(3), 215–226 (2003)

[4] Boulmier, A., Banicescu, I., Ciorba, F.M., Abdennadher, N.: An Autonomic
Approach for the Selection of Robust Dynamic Loop Scheduling Techniques.
In: Proceedings of 16th International Symposium on Parallel and Distributed
Computing. pp. 9–17 (2017)

[5] Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A Portable Program-
ming Interface for Performance Evaluation on Modern Processors. Interna-
tional Journal of High Performance Computing Applications 14(3), 189–204
(2000)

[6] Canon, L.C., Jeannot, E.: Evaluation and Optimization of the Robustness
of DAG Schedules in Heterogeneous Environments. IEEE Transactions on
Parallel and Distributed Systems 21(4), 532–546 (2010)

[7] Cariño, R.L., Banicescu, I.: Dynamic Load Balancing With Adaptive Fac-
toring Methods in Scientific Applications. Journal of Supercomputing 44(1),
41–63 (2008)

16



[8] Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile,
Scalable, and Accurate Simulation of Distributed Applications and Platforms.
Journal of Parallel and Distributed Computing 74(10), 2899–2917 (2014)

[9] Ciorba, F.M.: The Importance and Need for System Monitoring and Anal-
ysis in HPC Operations and Research. In: Proceedings of the 3rd bwHPC-
Symposium: Heidelberg 2016. pp. 7–16. heiBOOKS (2017)

[10] Eleliemy, A., Mohammed, A., Ciorba, F.M.: Efficient Generation of Parallel
Spin-images Using Dynamic Loop Scheduling. In: Proceedings of the 19th
IEEE International Conference for High Performance Computing and Com-
munications Workshops. pp. 34–41 (2017)

[11] Flynn Hummel, S., Schmidt, J., Uma, R., Wein, J.: Load-sharing in Het-
erogeneous Systems via Weighted Factoring. In: Proceedings of the Annual
ACM Symposium on Parallel Algorithms and Architectures. pp. 318–328.
ACM (1996)

[12] Flynn Hummel, S., Schonberg, E., Flynn, L.E.: Factoring: A method for
scheduling parallel loops. Communications of the ACM 35(8), 90–101 (1992)

[13] Garćıa-González, L.A., Garćıa-Jacas, C.R., Acevedo-Mart́ınez, L., Trujillo-
Rasúa, R.A., Roose, D.: Self-Scheduling for a Heterogeneous Distributed
Platform. In: Proceedings of the International Conference on Parallel Com-
puting. pp. 232–241 (2017)

[14] Kruskal, C.P., Weiss, A.: Allocating Independent Subtasks on Parallel Pro-
cessors. IEEE Transactions on Software Engineering SE-11(10), 1001–1016
(1985)

[15] Mehrotra, R., Banicescu, I., Srivastava, S., Abdelwahed, S.: A Power-aware
Autonomic Approach for Performance Management of Scientific Applications
in a Data Center Environment. In: Handbook on Data Centers, pp. 163–189.
Springer (2015)

[16] Mohammed, A., Eleliemy, A., Ciorba, F.M., Kasielke, F., Banicescu, I.: Ex-
perimental Verification and Analysis of Dynamic Loop Scheduling in Scientific
Applications. In: Proceedings of the 17th International Symposium on Par-
allel and Distributed Computing. p. 8 (2018)

[17] Mohammed, A., Eleliemy, A., Ciorba, F.M.: A Methodology for Bridg-
ing the Native and Simulated Execution of Parallel Applications. Poster at
ACM/IEEE International Conference for High Performance Computing, Net-
working, Storage, and Analysis (2017)

17



[18] Mohammed, A., Eleliemy, A., Ciorba, F.M.: Performance Reproduction and
Prediction of Selected Dynamic Loop Scheduling Experiments. In: Proceed-
ings of the 2018 International Conference on High Performance Computing
and Simulation. p. 8 (2018)

[19] Peiyi, T., Pen-Chung, Y.: Processor Self-Scheduling for Multiple-Nested Par-
allel Loops. In: Proceedings of the International Conference on Parallel Pro-
cessing. pp. 528–535 (1986)

[20] Polychronopoulos, C.D., Kuck, D.J.: Guided Self-Scheduling: A Practical
Scheduling Scheme for Parallel Supercomputers. IEEE Transactions on Com-
puters 100(12), 1425–1439 (1987)

[21] Rawlings, J.B.: Tutorial: Overview of Model Predictive Control. IEEE Con-
trol Systems 20(3), 38–52 (2000)

[22] Sukhija, N., Banicescu, I., Srivastava, S., Ciorba, F.M.: Evaluating the Flexi-
bility of Dynamic Loop Scheduling on Heterogeneous Systems in the Presence
of Fluctuating Load Using SimGrid. In: Proceedings of the 27th IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops. pp.
1429–1438 (2013)

[23] Sukhija, N., Malone, B., Srivastava, S., Banicescu, I., Ciorba, F.M.: Portfolio-
based Selection of Robust Dynamic Loop Scheduling Algorithms Using Ma-
chine Learning. In: Proceedings of the 28th IEEE International Parallel and
Distributed Processing Symposium Workshops. pp. 1638–1647 (2014)

[24] Velho, P., Legrand, A.: Accuracy Study and Improvement of Network Sim-
ulation in the SimGrid Framework. In: Proceedings of the 2nd International
Conference on Simulation Tools and Techniques. p. 10 (2009)

[25] Yang, Y., Casanova, H.: Rumr: Robust Scheduling for Divisible Workloads.
In: Proceedings of the 12th IEEE International Symposium on High Perfor-
mance Distributed Computing. pp. 114–123 (2003)

[26] Zhang, Y., Voss, M., Rogers, E.: Runtime Empirical Selection of Loop Sched-
ulers on Hyperthreaded SMPs. In: Proceedings of the 19th International Par-
allel and Distributed Processing Symposium. p. 10 (2005)

18


	1 Introduction
	2 Background and Related Work
	3 Simulator in the Loop (SiL)
	4 Evaluation and Analysis
	5 Conclusion and Future Work

