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Abstract

Prefix normal words are binary words with the property that no factor has more 1s
than the prefix of the same length. Finite prefix normal words were introduced in [Fici and
Lipták, DLT 2011]. In this paper, we study infinite prefix normal words and explore their
relationship to some known classes of infinite binary words. In particular, we establish a
connection between prefix normal words and Sturmian words, between prefix normal words
and abelian complexity, and between prefix normality and lexicographic order.1

Keywords — combinatorics on words, prefix normal words, infinite words, Sturmian words,
abelian complexity, paperfolding word, Thue-Morse sequence, lexicographic order

1 Introduction

Prefix normal words are binary words where no factor has more 1s than the prefix of the same
length. As an example, the word 11100110101 is prefix normal, while 11100110110 is not, since
it has a factor of length 5 with four 1s, while the prefix of length 5 has only three 1s. Finite
prefix normal words were introduced in [18] and further studied in [10, 11, 31, 14, 3, 19, 9].

One motivation for studying prefix normal words comes from the problem of Indexed Binary
Jumbled Pattern Matching [7, 8, 25, 21, 2, 20, 13, 16, 1]: Given a finite word s of length n,
construct an index in such a way that the following type of queries can be answered efficiently:
for two integers x, y ≥ 0, does s have a factor with x 1s and y 0s? As shown in [18, 11], prefix
normal words can be used for constructing such an index, via so-called prefix normal forms.

Prefix normal words have also been shown to form bubble languages [29, 30, 10], a family
of binary languages with efficiently generable combinatorial Gray codes; the language of prefix
normal words has connections to the Binary Reflected Gray Code [31]; and, recently, prefix
normal words also appeared in a graph theoretic context [6]. Indeed, three sequences related to
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prefix normal words are present in the On-Line Encyclopedia of Integer Sequences (OEIS [33]):
A194850 (the number of prefix normal words of length n), A238109 (a list of prefix normal words
over the alphabet {1, 2}), and A238110 (maximal equivalence class sizes of words with the same
prefix normal form).

In [14], we introduced infinite prefix normal words and analyzed a particular procedure that,
given a finite prefix normal word, extends it while preserving the prefix normality property. We
showed that the resulting infinite word is ultimately periodic. In this paper, we present a more
comprehensive study of infinite prefix normal words, covering several classes of known and well
studied infinite words. We will now give a quick tour of the paper (for precise definitions, see
Section 2).

1.1 Our results

One way of obtaining infinite prefix normal words is by extending finite prefix normal words. We
specify two such operations which, in the limit, produce prefix normal words that are extremal
with respect to density (Theorem 1).

There exist periodic, ultimately periodic, and aperiodic infinite prefix normal words: for exam-
ple, the periodic words 0ω, 1ω, and (10)ω are prefix normal; the ultimately periodic word 1(10)ω

is prefix normal; and so is the aperiodic word 10100100010000 · · · = limn→∞ 10102 · · · 10n. The
best studied class of aperiodic words are Sturmian words. We show that a Sturmian word w is
prefix normal if and only if w = 1cα for some α, where cα is the characteristic word of slope α
(Theorem 2).

We show further that every Sturmian word w can be turned into a prefix normal word by
prepending a fixed number of 1s, which only depends on the slope of w. This follows from a
more general result regarding c-balanced words (Lemma 5). For example, the Fibonacci word

f = 0100101001001010010100100101001001 · · ·

is not prefix normal, but the word 1f is. Two other well-studied aperiodic words are the Thue-
Morse word and the Champernowne word. The Thue-Morse word

t = 01101001100101101001011001101001 · · ·

is not prefix normal but it can be turned into a prefix normal word by prepending two 1s: 11t is
prefix normal. On the other hand, the binary Champernowne word

c = 0110111001011101111000100110101011 · · ·

which is constructed by concatenating the binary expansions of the integers in ascending order, is
not prefix normal and cannot be turned into a prefix normal word by prepending a finite number
of 1s.

We also show that the notion of prefix normal forms from [18, 11] can be extended to infinite
words. These can be used, similarly to the finite case, to encode the abelian complexity of
the original word. The study of abelian complexity of infinite words was initiated in [27], and
continued e.g. in [24, 4, 34, 12, 22]. We establish a close relationship between the abelian
complexity and the prefix normal forms of w (Theorem 3). We demonstrate how this close
connection can be used to derive results about the prefix normal forms of a word w. In some
cases, such as for Sturmian words and words which are morphic images under the Thue-Morse
morphism, we are able to explicitly give the prefix normal forms of the word (Corollary 3 and
Theorem 5). Conversely, knowing its prefix normal forms allows us to derive results about the
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abelian complexity of a word. We also show how to compute the prefix normal forms of words
that are binary uniform morphisms, based on an algorithm from [5] for computing their abelian
complexity.

Another class of well-known binary words are Lyndon words. Notice that the prefix normal
condition is different from the Lyndon condition2: for finite words, there are words which are
both Lyndon and prefix normal (e.g. 110010), words which are Lyndon but not prefix normal
(11100110110), words which are prefix normal but not Lyndon (110101), and words which are
neither (101100). We study infinite prefix normal words and their prefix normal forms in the
context of lexicographic orderings, and compare them to infinite Lyndon words [32] and the max-
and min-words of [26] (Corollary 5).

Finally, we give conditions for periodicity and ultimate periodicity of prefix normal words in
terms of their minimum density, a parameter introduced in [14] (Theorem 8).

1.2 Overview of paper

The paper is organized as follows. In Section 2, we introduce our terminology and give some
simple facts about prefix normal words. In Section 3, we compare different operations that
generate infinite prefix normal words by extending finite prefix normal words. In Section 4, we
study the relationship between Sturmian words and prefix normal words. Section 5 deals with
the connection between prefix normality and abelian complexity, and Section 6 focuses on the
relationship with lexicographic order. Finally, in Section 7, we analyze the relationship between
periodicity and minimum density of prefix normal words.

2 Basics

In our definitions and notations, we follow mostly [23]. A finite (resp. infinite) binary word w
is a finite (resp. infinite) sequence of elements from {0, 1}. Thus an infinite word is a mapping
w : N → {0, 1}, where N denotes the set of positive integers. We denote the ith character of w
by wi. Note that we index words starting from 1. If w is finite, then its length is denoted by |w|.
The empty word, denoted ε, is the unique word of length 0. The set of binary words of length n
is denoted by {0, 1}n, the set of all finite words by {0, 1}∗ = ∪n≥0{0, 1}n, and the set of infinite
binary words by {0, 1}ω. For a finite word u = u1 · · ·un, we write urev = un · · ·u1 for the reverse
of u, and for a finite or infinite word u, u = u1u2 · · · for the complement of u, where a = 1− a
for a ∈ {0, 1}.

For two words u, v, where u is finite and v is finite or infinite, we write uv for their concate-
nation. If w = uxv, then u is called a prefix, x a factor (or substring), and v a suffix of w. We
denote the set of factors of w by Fct(w) and its prefix of length i by prefw(i), where prefw(0) = ε.
For a finite word u, we write |u|1 for the number of 1s, and |u|0 for the number of 0s in u, and
refer to |u|1 as the weight of u. The Parikh vector of u is pv(u) = (|u|0, |u|1). A word w is called
balanced if for all u, v ∈ Fct(w), |u| = |v| implies ||u|1 − |v|1| ≤ 1, and c-balanced if |u| = |v|
implies ||u|1 − |v|1| ≤ c.

For an integer k ≥ 1 and u ∈ {0, 1}n, uk denotes the kn-length word uuu · · ·u (k-fold
concatenation of u) and uω the infinite word uuu · · · . An infinite word w is called periodic if
w = uω for some non-empty word u, and ultimately periodic if it can be written as w = vuω

for some v and non-empty u. A word that is neither periodic nor ultimately periodic is called

2For ease of presentation, we are using Lyndon to mean lexicographically greatest among its conjugates; this
is equivalent to the usual definition up to renaming characters.
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aperiodic. We set 0 < 1 and denote by ≤lex the lexicographic order between words, i.e. u ≤lex v
if u is a prefix of v or there is an index i ≥ 1 s.t. prefu(i− 1) = prefv(i− 1) and ui < vi.

For an operation op : {0, 1}∗ → {0, 1}∗, we denote by op(i) the ith iteration of op. Further,
let op∗(w) = {op(i)(w) | i ≥ 1} and opω(w) = limi→∞ op(i)(w), if it exists.

A binary morphism µ is a function µ : {0, 1}∗ → {0, 1}∗ such that for all u, v ∈ {0, 1}∗,
µ(uv) = µ(u)µ(v). A binary morphism µ is called uniform if |µ(0)| = |µ(1)|. A fix point of a
morphism µ is an infinite word v such that v = µω(a) for some a ∈ {0, 1}.

Definition 1 Let w be a (finite or infinite) binary word. We define the following functions:

• Pw(i) = |prefw(i)|1, the weight of the prefix of length i,

• Dw(i) = Pw(i)/i, the density of the prefix of length i,

• F 1
w(i) = max{|u|1 : u ∈ Fct(w), |u| = i} the maximum number of 1s in a factor of length i,

• f1
w(i) = min{|u|1 : u ∈ Fct(w), |u| = i}, the minimum number of 1s in a factor of length i,

• F 0
w(i) = max{|u|0 : u ∈ Fct(w), |u| = i}, the maximum number of 0s in a factor of length
i,

• f0
w(i) = min{|u|0 : u ∈ Fct(w), |u| = i}, the minimum number of 0s in a factor of length i.

Note that in the context of succinct indexing, the function Pw(i) is often called rank1(w, i).
We are now ready to define prefix normal words.

Definition 2 (Prefix normal words) A (infinite or finite) binary word w is called 1-prefix
normal, or simply prefix normal, if Pw(i) = F 1

w(i) for all i ≥ 1 (for all 1 ≤ i ≤ |w| if w is finite).
It is called 0-prefix normal if i − Pw(i) = F 0

w(i) for all i ≥ 1 (for all 1 ≤ i ≤ |w| if w is finite).
We denote the set of all finite 1-prefix normal words by Lfin, the set of all infinite 1-prefix normal
words by Linf , and L = Lfin ∪ Linf .

In other words, a word is prefix normal if no factor has more 1s than the prefix of the same
length. Given a binary word w, we say that a factor u of w satisfies the prefix normal condition
if |u|1 ≤ Pw(|u|).

Example 1 The word 110100110110 is not prefix normal since the factor 11011 has four 1s,
which is more than in the prefix 11010 of length 5. The word 110100110010, on the other hand,
is prefix normal. The infinite word (11001)ω is not prefix normal, because it has 111 as a factor,
which has more 1s than the prefix of length 3, but the word (11010)ω is.

The following facts about infinite prefix normal words are immediate.

Lemma 1 1. For all u ∈ Lfin, the word w = u0ω ∈ Linf .

2. Let w ∈ {0, 1}ω. Then w ∈ L if and only if for all i ≥ 1, prefw(i) ∈ L.

Definition 3 (Minimum density, minimum-density prefix, slope) Let w ∈ {0, 1}∗∪{0, 1}ω.
Define the minimum density of w as δ(w) = inf{Dw(i) | 1 ≤ i}. If this infimum is attained some-
where, then we also define ι(w) = min{j ≥ 1 | ∀i : Dw(j) ≤ Dw(i)} and κ(w) = Pw(ι(w)). We
refer to prefw(ι(w)) as the minimum-density prefix, the shortest prefix with density δ(w). For
an infinite word w, we define the slope of w as limi→∞Dw(i), if this limit exists.
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Remark 1 Note that ι(w) is always defined for finite words, while for infinite words, a prefix
which attains the infimum may or may not exist. We note further that density and slope of infinite
binary words do not necessarily coincide. In particular, while δ(w) exists for every w, the limit
limi→∞Dw(i) may not exist, i.e., w may or may not have a slope. As an example, consider

the word w = v0v1v2 · · · , where for each i, vi = 12i

02i

. Then, δ(w) = 1/2 and limi→∞Dw(i)
does not exist, since Dw(i) has an infinite subsequence which is constant 1/2, and another which
tends to 2/3.

Moreover, even for words w for which the slope is defined, this can be different from the
minimum density. If w has slope α, then α = δ(w) if and only if for all i, Dw(i) ≥ α. For
instance, the infinite word 01ω has slope 1 but its minimum density is 0. On the other hand, the
infinite word 1(10)ω has both slope and minimum density 1/2.

3 Operations generating infinite prefix normal words

In [14], we introduced an operation which takes a finite prefix normal word w ending in 1 and
extends it by a run of 0s followed by a new 1, in such a way that this new 1 is placed in the first
possible position without violating prefix normality. This operation, called flipext, leaves the
minimum density invariant. Moreover, by repeatedly applying the flipext operation, an infinite
prefix normal word is produced which is the densest among all prefix normal words with given
prefix w.

Here we extend the definition of flipext to all prefix normal words containing at least one 1
and show that the same properties hold, even if the original word w does not end in 1.

Definition 4 (Operation flipext) Let w ∈ Lfin \ {0}∗. Define flipext(w) as the finite word
w0k1, where k = min{j | w0j1 ∈ L}. We further define the infinite word v = flipextω(w).

The next proposition is a slightly more general form of Lemma 13 from [14]:

Proposition 1 Let w ∈ Lfin \{0}∗ and v ∈ flipext∗(w)∪{flipextω(w)}. Then δ(v) = δ(w), and,
as a consequence, ι(v) = ι(w) and κ(v) = κ(w). Moreover, Dv(j · ι(w)) = δ(w) for all j ≥ 1.

Proof. Let w ∈ L. If the last character of w is a 1, then the claim holds by Lemma 13 of [14].
Else w ends in a run of 0s. Let ` be the length of this run, and w′ be such that w = w′0`.

Let w′′ = flipext(w′) = w′0k1, i.e. by definition of flipext, k is minimal s.t. w′0k1 ∈ L. If ` ≤ k,
then flipext(w) = flipext(w′) = w′′. Since w′ is a prefix of w, and w is a prefix of w′′, we have
δ(w′) ≥ δ(w) ≥ δ(w′′). Since w′ ends in a 1, δ(w′′) = δ(w′), and thus δ(w′′) = δ(w).

Otherwise ` > k, therefore flipext(w′) = w′0`
′
1 ∈ Lfin for some `′ < `, hence w′0`1 ∈ Lfin.

The latter implies flipext(w) = w1 and δ(flipext(w)) = δ(w).

Further iterations flipext(i)(w) fulfil the claim due to the fact that flipext(w) ends in a 1.
We now show the second statement: Dv(j·ι(w)) = δ(w) for all j ≥ 1. We show it by induction.

It is clearly true for j = 1, moreover for each j > 1 assuming Dv((j−1) · ι(w)) = δ(w) and letting
w′ = prefv((j − 1) · ι(w)) and w′′ be the substring of size ι(w) such that w′w′′ = prefv(j · ι(w)),
we have

δ(w) = δ(v) ≤ Dv(j · ι(w)) =
|w′|1 + |w′′|1
j · ι(w)

≤ Pw(ι(w))(j − 1) + Pw(ι(w))

j · ι(w)
=
Pw(ι(w))

ι(w)
= δ(w),
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where in the second inequality we are using |w′|1 = Pw(ι(w))(j−1)ι(w) (induction hypothesis)
and |w′′|1 ≤ Pw(ι(w)) (since v is prefix normal). 2

The next proposition states that the infinite word which is generated by repeatedly applying
the flipext operation is the densest among all prefix normal words with prefix w.

Proposition 2 Let w ∈ Lfin \ 0∗, v = flipextω(w), and let z ∈ Linf such that prefz(|w|) = w.
Then for every i = 1, 2, . . . we have Pv(i) ≥ Pz(i).

Proof. We argue by contradiction. Let i be the smallest integer such that Pv(i) < Pz(i). Clearly
i > |w| and, by the minimality assumption we must have Pv(i−1) = Pz(i−1) and vi = 0, zi = 1.
By definition of flipext there must exist j < i such that |vj+1 . . . vi−11|1 > Pv(i− j) ≥ Pz(i− j),
for otherwise we would have vi = 1. Since v is prefix normal, it also follows that we have
|vj+1 . . . vi−1vi|1 = Pv(i− j) ≥ Pz(i− j).

From this, since by the minimality of i it holds that Pz(j) ≤ Pv(j), we have that |zj+1 . . . zi−1zi|1 =
Pz(i)− Pz(j) > Pv(i)− Pv(j) = Pv(i− j) ≥ Pz(i− j), violating the prefix normality of z. 2

We now define a different operation, called lazy-flipext, which, given a prefix normal word w,
extends it by adding 0s as long as the minimum density of the resulting word is not smaller than
δ(w), and only then adding a 1. We show that this operation preserves the prefix normality of
the resulting word.

Definition 5 (Operation lazy-flipext) Let α ∈ (0, 1] and let w ∈ Lfin with δ(w) ≥ α. We
define lazy-flipext(w,α) as the finite word w0k1 where k = max{j | δ(w0j) ≥ α}. We further
define the infinite word v = lazy-flipextω(w,α).

Example 2 Let w = 111 and let α =
√

2 − 1. Then lazy-flipext(w,α) = 11100001, since

δ(1110000) = 3/7 ≥ α and δ(11100000) = 3/8 < α. Further, lazy-flipext(2)(w,α) = 1110000101,
since δ(111000010) = 4/9 ≥ α and δ(1110000100) = 2/5 < α.

Lemma 2 Let α ∈ (0, 1]. For every w ∈ Lfin with δ(w) ≥ α, the word v = lazy-flipext(w,α) is
also prefix normal, with δ(v) ≥ α.

Proof. First note that δ(v) ≥ α by definition. Now write v = w0k1, and let u = flipext(w) =
w0`1. Recall that ` = min{j | w0j1 ∈ L}. If k < `, this implies δ(u) < α, in contradiction to
Proposition 1, since δ(u) = δ(w) ≥ α. Thus k ≥ `, from which follows v ∈ L. 2

Corollary 1 Let α ∈ (0, 1] and w ∈ Lfin with δ(w) ≥ α. Then v = lazy-flipextω(w,α) is an
infinite prefix normal word and δ(v) = α.

Proof. That v is prefix normal follows from Lemma 1 and from Lemma 2, which also implies
that δ(v) ≥ α. However, if δ(v) > α was true, then for a suitably long prefix i, we would get a
contradition to the definition of the lazy-flipext operation. 2

Fix w ∈ Lfin. The next proposition states that the lazy-flipext operation with α = δ(w),
applied to w, generates a prefix normal word that has the minimum number of 1s among all
prefix normal words with prefix w and minimum density δ(w).

Proposition 3 Let w ∈ Lfin, α = δ(w), v = lazy-flipextω(w,α), and z ∈ Linf such that
prefz(|w|) = w and δ(z) ≥ δ(w). Then for all i = 1, 2, . . . , we have Pv(i) ≤ Pz(i).
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Proof. We argue by contradiction. Let i be the smallest integer such that Pv(i) < Pz(i). Clearly
i > |w| and, by the minimality assumption, we have Pv(i− 1) = Pz(i− 1) and vi = 0, zi = 1. Let
u = prefv(i − 1). Since i > |w| and vi = 1, therefore u1 = lazy-flipext(u′, α) for some u′, and
thus, by definition of lazy-flipext, Pu0(i)/i < α. But u0 = prefi(z), so we have

δ(z) ≤ Dz(i) =
Pz(i)

i
=
Pu0(i)

i
< δ(w),

in contradiction to the density of z. 2

Theorem 1 Let w ∈ Lfin with α = δ(w) ∈ (0, 1], and let z ∈ Linf such that prefz(|w|) = w and
δ(z) ≥ α. Let u = flipextω(w) and v = lazy-flipextω(w,α). Then v ≤lex z ≤lex u.

Proof. Follows from Prop. 2 and Prop. 3. 2

Note that if prefz(|w|) = w, then δ(z) ≥ δ(w) implies that, in fact, δ(z) = δ(w) holds, since z
is an extension of w. Theorem 1 states then that all prefix normal extensions of w with the same
minimum density as w lie lexicographically between the lazy-flipext- and the flipext-extensions
of w. However, not all extensions of w between these two words are prefix normal, as we can see
in the next example.

Example 3 Let w = 1101101100100010000001, with α = δ(w) = 8/21, then

v = lazy-flipext(8)(w,α) = w01001010010010100100,

u = flipext(8)(w) = w101101100100010000001.

Let p = w100111010100000100001 and q = w101101010100001000001, we have that for all
1 ≤ i ≤ 42, Pv(i) ≤ Pp(i), Pq(i) ≤ Pu(i) and v ≤lex p, q ≤lex u. Note that p is not prefix normal,
while q is prefix normal.

Figure 1: Given w = 1101101100100010000001 the plot represents the last characters of
flipext(8)(w) (solid) and the lazy-flipext(8)(w,α) (dashed). See Example 3. A 1 corresponds
to a diagonal segment in direction NE, while a 0 to one in direction SE. On the x-axis we have
the length of the prefix, and on the y-axis, the number of 1s minus the number of 0s in the prefix.
The shaded area contains all prefix normal words with w as prefix and minimum density equal
to δ(w). Note, however, that not all words in that area are prefix normal.

4 Sturmian words and prefix normal words

In the previous section, we presented operations that construct infinite prefix normal words by
extending finite prefix normal words. In particular, the lazy-flipext operation extends a finite
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binary word with as few 1s as possible while preserving its minimum density. This is reminiscent
of the characterization of Sturmian words in terms of mechanical words and the slope. Led by
this analogy, in this section we provide a complete characterization of Sturmian words which are
prefix normal. We refer the interested reader to [23, Chapter 2], for a comprehensive treatment
of Sturmian words. Here we briefly recall some facts which we will need later.

Definition 6 (Sturmian words) Let w ∈ {0, 1}ω. Then w is called Sturmian if it is balanced
and aperiodic.

An equivalent definition of Sturmian words is that they are irrational mechanical, a definition
we recall next.

Definition 7 (Mechanical words) Given two real numbers 0 ≤ α ≤ 1 and 0 ≤ τ < 1,
the lower mechanical word sα,τ = sα,τ (1) sα,τ (2) · · · and the upper mechanical word s′α,τ =
s′α,τ (1) s′α,τ (2) · · · are given by

sα,τ (n) = bαn+ τc − bα(n− 1) + τc
s′α,τ (n) = dαn+ τe − dα(n− 1) + τe

(n ≥ 1).

Then α is called the slope and τ the intercept of sα,τ , s
′
α,τ . A word w is called mechanical if

w = sα,τ or w = s′α,τ for some α, τ . It is called rational mechanical (resp. irrational mechanical)
if α is rational (resp. irrational).

Fact 1 (Some facts about Sturmian words [23]) 1. An infinite binary word is Sturmian
if and only if it is irrational mechanical.

2. For τ = 0 and irrational α, there exists a word cα, called the characteristic word with slope
α, s.t. sα,0 = 0cα and s′α,0 = 1cα. This word cα is a Sturmian word itself, with both slope
and intercept α.

3. For two Sturmian words w and v with the same slope, Fct(w) = Fct(v).

We now show that the word lazy-flipextω(1, α) coincides with the upper mechanical word
s′α,0. This also implies that s′α,0 is prefix normal, as noted in the subsequent corollary.

Lemma 3 Fix α ∈ (0, 1] and let v = lazy-flipextω(1, α). Let s = s′α,0 be the upper mechanical
word of slope α and intercept 0. Then v = s.

Proof. Let si and vi denote the ith character of s and v respectively. We argue by induction on i
that vi = si. The claim is true for i = 1 since, directly from the definitions we have v1 = 1 = s1.
Let n > 1 and assume that for each i < n we have vi = si. For the induction step we argue
according to the character sn.

(i) If sn = 1, by definition dnαe−d(n−1)αe = 1. Thus, d(n−1)αe < nα. Using this inequality
and the induction hypothesis together with the definition of s′α,0 we have that |v1 · · · vn−1|1 =
|s1 · · · sn−1|1 = d(n − 1)αe < αn. Therefore |v1 · · · vn−10|1 = |v1 · · · vn−1|1 < αn, which means
that δ(v1 · · · vn−10) < α, hence by definition lazy-flipext(v1 · · · vn−1, α) = v1 · · · vn−11, i.e., vn =
1 = sn.

(ii) If sn = 0, by definition dnαe−d(n−1)αe = 0. Thus, d(n−1)αe ≥ nα. Using this inequality
and the induction hypothesis together with the definition of s′α,0 we have that |v1 · · · vn−1|1 =
|s1 · · · sn−1|1 = d(n − 1)αe ≥ αn. Therefore |v1 · · · vn−10|1 = |v1 · · · vn−1|1 ≥ αn which means
that δ(v1 · · · vn−10) ≥ α, hence by definition lazy-flipext(v1 · · · vn−1, α) = v1 · · · vn−10 · · · 01, i.e.,
vn = 0 = sn. 2
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Corollary 2 Let α ∈ (0, 1]. Then s′α,0 is an infinite prefix normal word and δ(s′α,0) = α.

The following theorem fully characterizes those Sturmian words which are prefix normal.

Theorem 2 A Sturmian word s of slope α is prefix normal if and only if s = 1cα, where cα is
the characteristic Sturmian word with slope α.

Proof. By definition, α is irrational. Let s = s′α,0. Then s is Sturmian and prefix normal by
Corollary 2. Let t be a Sturmian word with the same slope α which is also prefix normal. By
Fact 1, s and t have the same factors.

Assume, by contradiction, that s 6= t, hence there exists i ≥ 1 such that |s1 · · · si|1 6=
|t1 · · · ti|1. Assume, without loss of generality (since we can, if necessary, swap s and t in the
following argument), that |s1 · · · si|1 > |t1 · · · ti|1. Then, since s1 · · · si is also a factor of t, there
is a j ≥ 1 such that tj+1 · · · tj+i = s1 · · · si, hence |tj+1 · · · tj+i|1 > |t1 · · · ti|1 contradicting the
assumption that t is prefix normal. 2

5 Prefix normal words, prefix normal forms, and abelian
complexity

Given an infinite word w, the abelian complexity function of w, denoted ψw, is given by ψw(n) =
|{pv(u) | u ∈ Fct(w), |u| = n}|, the number of Parikh vectors of n-length factors of w. A word
w is said to have bounded abelian complexity if there exists a c s.t. for all n, ψw(n) ≤ c. Note
that a binary word is c-balanced if and only if its abelian complexity is bounded by c + 1. We
denote the set of Parikh vectors of factors of a word w by Π(w) = {pv(u) | u ∈ Fct(w)}. Thus,
ψw(n) = |Π(w) ∩ {(x, y) | x + y = n}|. In this section, we study the connection between prefix
normal words and abelian complexity.

5.1 Balanced and c-balanced words.

Based on the examples in the introduction, one could conclude that any word with bounded
abelian complexity can be turned into a prefix normal word by prepending a fixed number of 1s.
However, consider the word w = 01ω, which is balanced, i.e. its abelian complexity function is
bounded by 2. It is easy to see that 1kw 6∈ L for every k ∈ N.

Sturmian words are precisely the words which are aperiodic and whose abelian complexity is
constant 2 [27]. For Sturmian words, it is always possible to prepend a finite number of 1s to
get a prefix normal word, as we will see next. Recall that for a Sturmian word w, at least one of
0w and 1w is Sturmian, with both being Sturmian if and only if w is characteristic [23].

Lemma 4 Let w be a Sturmian word with slope α. Then

1. 1w ∈ L if and only if 0w is Sturmian,

2. if 0w is not Sturmian, then 1nw ∈ L for n = d1/(1− α)e.

Proof. 1. Let 0w be Sturmian and let u be some factor of 1w. If u is a prefix of 1w, there is
nothing to show, therefore let u ∈ Fct(w), with |u| = n and |u|1 = k. Since 0w is Sturmian, we
have that the prefix of 0w of length n has at least k − 1 1s, thus P1w(n) ≥ k = |u|1, as desired.
Conversely, if 0w is not Sturmian, this means that it is not balanced, therefore there exists a
factor u of w s.t. ||u|1 − |0w1 · · ·wn−1|1| ≥ 2, where |u| = n. Since w is Sturmian, we have that
||w1 · · ·wn−1|1−|u1 · · ·un−1|1| ≤ 1 and ||w1 · · ·wn−1|1−|u2 · · ·un|1| ≤ 1. Let |w1 · · ·wn−1|1 = k,
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then this implies, by a case-by-case consideration, that |u1 · · ·un−1|1 = |u2 · · ·un|1 = k + 1, and
thus |1w1 · · ·wn−1|1 = k + 1 < k + 2 = |u|1, showing that 1w is not prefix normal.

2. First note that a Sturmian word of slope α cannot have a run of 1s of length d1/(1−α)e. To
see this, it is enough to consider the upper mechanical word of slope α and intercept 0 (since all
the other words with the same slope have the same set of factors). Let us write s = sα,0 = s1s2 · · ·

Now s has a run of n 1s if and only if there exists an i ≥ 0 such that si+1 = si+2 = · · · =
si+n = 1. By the definition of mechanical words, we have that the last condition is equivalent to

dα(i+ n)e − dαie = n.

On the other hand, if n ≥ 1
1−α , i.e., α ≤ n−1

n we have that the sum of the character
∑n
j=1 si+j

satisfies

n∑
j=1

si+j = dα(i+ n)e − dαie ≤ dαie+ dαne − dαie

= dαne < αn+ 1 ≤ n− 1

n
× n+ 1 = n.

i.e., strictly smaller than n, i.e., we have a contradiction si+1 · · · si+n 6= 1n.
Now fix n = d1/(1−α)e and let w′ = 1nw. Let u ∈ Fct(w). Since, as shown above, 1n is not

a factor, if |u| ≤ n, there is nothing to show. So let |u| = n+m. Then |u1 · · ·un|1 ≤ n− 1, and
since w is balanced, we have that |w1 · · ·wm|1 ≥ |un+1 · · ·un+m|1−1, yielding that Pw′(n+m) ≥
n+ |un+1 · · ·un+m|1 − 1 ≥ |u|1. 2

Lemma 5 Let w be a c-balanced word. If there exists a positive integer n s.t. 1n 6∈ Fct(w), then
the word z = 1ncw is prefix normal.

Proof. We are going to show that every factor u of z satisfies the prefix normal condition |u|1 ≤
Pz(|u|). It is not hard to see that we can limit ourselves to only considering factors u such that
u does not overlap with the prefix of z of the same length.

If |u| ≤ nc then |u|1 ≤ |u| = Pz(|u|). Assume now that u = u′u′′ with |u′| = nc and |u′′| > 0.
Since u′ is a factor of w of size nc the condition that w does not contain a factor 1n implies
that u′ contains at least c 0s, i.e., |u′|1 ≤ |u′| − c. Moreover, since w is c-balanced, we have that
|u′′|1 ≤ Pw(|u′′|) + c. Therefore, observing that prefz(|u|) = prefz(|u′| + |u′′|) = 1nc prefw(|u′′|)
we have that Pz(|u|) = nc+ Pw(|u′′|) ≥ |u′|1 + |u′′|1 = |u|1. 2

In particular, Lemma 5 implies that any c-balanced word with infinitely many 0s can be
turned into a prefix normal word by prepending a finite number of 1s, since such a word cannot
have arbitrarily long runs of 1s. Note, however, that the number of 1s to prepend from Lemma 5
is not tight, as can be seen e.g. from the Thue-Morse word t: the longest run of 1s in t is 2 and
t is 2-balanced, but 11t is prefix normal, as will be shown in the next section (Lemma 8).

5.2 Prefix normal forms and abelian complexity.

Recall that for a word w, F aw(i) is the maximum number of a’s in a factor of w of length i, for
a ∈ {0, 1}.

Definition 8 (Prefix normal forms) Let w ∈ {0, 1}ω. Define the words w′ and w′′ by setting,
for n ≥ 1, w′n = F 1

w(n)− F 1
w(n− 1) and w′′n = F 0

w(n)− F 0
w(n− 1). We refer to w′ as the prefix

normal form of w w.r.t. 1 and to w′′ as the prefix normal form of w w.r.t. 0, denoted PNF1(w)
resp. PNF0(w).

10



Figure 2: The Fibonacci word (dashed) and its prefix normal forms (solid).

In other words, PNF1(w) is the sequence of first differences of the maximum-1s function F 1
w

of w. Similarly, PNF0(w) can be obtained by complementing the sequence of first differences of
the maximum-0s function F 0

w of w. Note that for all n and a ∈ {0, 1}, either F aw(n+ 1) = F aw(n)
or F aw(n + 1) = F aw(n) + 1, and therefore w′ and w′′ are words over the alphabet {0, 1}. In
particular, by construction, the two prefix normal words allow us to recover the maximum-1s
and minimum-1s functions of w:

Observation 1 Let w be an infinite binary word and w′ = PNF1(w), w′′ = PNF0(w). Then
Pw′(n) = F 1

w(n) and Pw′′(n) = n− F 0
w(n) = f1

w(n).

Lemma 6 Let w ∈ {0, 1}ω. Then PNF1(w) is the unique 1-prefix normal word w′ s.t. for all
i ∈ N, F 1

w′(i) = F 1
w(i). Similarly, PNF0(w) is the unique 0-prefix normal word w′′ s.t. for all

i ∈ N, F 0
w′′(i) = F 0

w(i).

Proof. Let w′ = PNF1(w) and w′′ = PNF0(w). First note that, by construction, for all i ∈ N,
F 1
w′(i) = F 1

w(i) and F 0
w′′(i) = F 0

w(i). It is easy to see that w′ is 1-prefix normal and w′′ is
0-prefix normal. For uniqueness, note that for a ∈ {0, 1} and an a-prefix normal word v, we have
PNFa(v) = v. 2

Example 4 The two prefix normal forms and the maximum-1s and maximum-0s functions of
the Fibonacci word f = 01001010010010100101 · · · are given in Table 1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F 0

f (n) 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10 10 11 12 12 13

F 1

f (n) 1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 7 7 7 8 8

PNF0(f) 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0
PNF1(f) 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0

Table 1: The maximum number of 0s and 1s (F 0
f (n) and F 1

f (n) resp.) for all n = 1, . . . , 20 of

the Fibonacci word f, and the prefix normal forms of f.

Now we can connect the prefix normal forms of w to the abelian complexity of w in the
following way. Given w′ = PNF1(w) and w′′ = PNF0(w), the number of Parikh vectors of k-
length factors is precisely 1 more than the difference in 1s in the prefix of length k of w′ and of
w′′. For example, Fig. 2 shows the prefix normal forms of the Fibonacci word. The vertical line
at 5 cuts through points (5,−1) and (5,−3): the first component stands for the length of the
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Figure 3: The Champernowne word (dashed) and its prefix normal forms (solid).

string, the second for the difference between the number of 0s and the number of 1s, therefore
indicating Parikh vectors (2, 3) and (1, 4).

The Fibonacci word, being a Sturmian word, has constant abelian complexity 2. An example
of a word with unbounded abelian complexity is the Champernowne word, whose prefix normal
forms are 1ω resp. 0ω. (Fig. 3).

Theorem 3 Let w, v ∈ {0, 1}ω.

1. ψw(n) = Pw′(n)− Pw′′(n) + 1, where w′ = PNF1(w) and w′′ = PNF0(w).

2. Π(w) = Π(v) if and only if PNF0(w) = PNF0(v) and PNF1(w) = PNF1(v).

Proof. 1. Fix an integer n ≥ 1. By definition, we have that for every factor u of w of length n
we have n− F 0

w(n) ≤ |u|1 ≤ F 1
w(n). Therefore ψw(n) ≤ F 1

w(n)− (n− F 0
w(n)) + 1.

Conversely, since w contains a factor u′ of length n with F 1
w(n) many 1s and a factor u′′ of

length n with n− F 0
w(n) many 1s, if we scan w between an occurrence of u′ and an occurrence

of u′′, for each x ∈ {|u′′|1, . . . , |u′|1} there must be a factor u′′′ of size n such that |u′′′|1 = x.
Therefore ψw(n) ≥ F 1

w(n) − (n − F 0
w(n)) + 1. We can conclude that ψw(n) = F 1

w(n) − (n −
F 0
w(n))+1. The desired result then follows by observing that n−F 0

w(n) = n−| prefPNF0(w)(n)|0 =

PPNF0(w)(n) and F 1
w(n) = PPNF1(w)(n).

2. Follows directly from Observation 1. 2

Theorem 3 implies that if we know the prefix normal forms of a word, then we can compute
its abelian complexity. Conversely, the abelian complexity is the width of the area enclosed by
the two words PNF1(w) and PNF0(w). In general, this fact alone does not give us the PNFs;
but if we know more about the word itself, then we may be able to compute the prefix normal
forms, as we will see in the case of the paperfolding word.

We will now give two examples of the close connection between abelian complexity and prefix
normal forms, using some recent results about the abelian complexity of infinite words.

12



Figure 4: The paperfolding word (dashed) and its prefix normal forms (solid).

5.2.1 The paperfolding word

The first few characters of the ordinary paperfolding word are given by

p = 0010011000110110001001110011011 · · ·

The paperfolding word was originally introduced in [17]. One definition is given by: pn = 0 if
n′ ≡ 1 mod 4 and pn = 1 if n′ ≡ 3 mod 4, where n′ is the unique odd integer such that n = n′2k

for some k [24]. The abelian complexity function of the paperfolding word was fully determined
in [24], giving the following initial values for ψp(n), for n ≥ 1: 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 5, 4, 3, 4, 5, 6, 5,
and a recursive formula for the computation of all values. The authors note that for the paper-
folding word, it holds that if u ∈ Fct(p), then also urev ∈ Fct(p). This implies

F 1
p(n) = F 0

p(n) for all n, and thus PNF0(p) = PNF1(p).

Moreover, from Thm. 3 we get that F 1
p(n) = PPNF1(p)(n) = (ψp(n) + n− 1)/2, and thus we

can determine the prefix normal forms of p, see Fig. 4.
This same argument holds in general as long as the word has the symmetric property similar

to the paperfolding word. Therefore, we have proved the following lemma.

Lemma 7 Let w ∈ {0, 1}ω. If for all u ∈ Fct(w), it holds that u ∈ Fct(w) or urev ∈ Fct(w),
then F 1

w(n) = F 0
w(n) for all n,PNF0(w) = PNF1(w), and F 1

w(n) = (ψw(n) + n− 1)/2.

5.2.2 Morphic images under the Thue-Morse morphism

The Thue-Morse word beginning with 0, which we denote by t, is one of the two fix points of the
Thue-Morse morphism µTM, where µTM(0) = 01 and µTM(1) = 10:

t = µωTM(0) = 01101001100101101001011001101001 · · ·

The word t has abelian complexity function ψt(n) = 2 for n odd and ψt(n) = 3 for n > 1
even [27]. Since t fulfils the condition that u ∈ Fct(t) implies u ∈ Fct(t), we can apply Lemma 7,
and compute the prefix normal forms of t as PNF1(t) = 1(10)ω and PNF0(t) = 0(01)ω, see Fig. 5.

For the proof of the abelian complexity of t in [27], the Parikh vectors were computed for
each length, so we do not really need Lemma 7 but could have obtained the prefix normal forms
directly. Moreover, a much more general result was given in [27]:
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Figure 5: The Thue-Morse word (dashed) and its prefix normal forms (solid).

Theorem 4 ([27]) Let w be an aperiodic infinite binary word. Then ψw = ψt if and only if
w = µTM(w′), w = 0µTM(w′), or w = 1µTM(w′), for some word w′.

The abelian complexity function does not in general determine the prefix normal forms, as
can be seen on the example of Sturmian words, which all have the same abelian complexity
function but different prefix normal forms. However, ψt does, due to its values ψt(n) = 2 for
n odd and ψt(n) = 3 for n even, and to the fact that both F 1

t and F 0
t have difference function

with values from {0, 1}: notice that the only pair of such functions with width 2 resp. 3 are the
PNFs of t. Therefore, we can deduce the following from Theorem 4:

Corollary 3 For an aperiodic infinite binary word w, PNF1(w) = 1(10)ω and PNF0 = 0(01)ω

if and only if w = µTM(w′), w = 0µTM(w′), or w = 1µTM(w′), for some word w′.

To conclude this section, we return to the question of how many 1s need to be prepended to
make the Thue-Morse word prefix normal.

Lemma 8 We have 11t ∈ L. Moreover, this is minimal since 1t is not prefix normal.

Proof. We will show that for every prefix, the number of 1s in the prefix of 11t is greater than
or equal to the the number of 1s in the prefix of PNF1(t) of the same length. Let v = PNF1(t)
and u = 11t. It is easy to see that Pv(n) = bn2 c+ 1 and

Pu(n) =


n
2 + 1 if n is even

bn2 c+ 2 if n is odd and un = 1

bn2 c+ 1 if n is odd and un = 0

Thus for all n ≥ 1 it holds that Pu(n) ≥ Pv(n), implying that 11t ∈ L.
For minimality, note that 1t is not prefix normal, since 11 is a factor of t. 2

5.3 Prefix normal forms of Sturmian words.

Let w be a Sturmian word. As we saw in Sec. 4, the only 1-prefix normal word in the class of
Sturmian words with the same slope α is the upper mechanical word s′α,0 = 1cα.

Theorem 5 Let w be an irrational mechanical word with slope α, i.e. a Sturmian word. Then
PNF1(w) = 1cα and PNF0(w) = 0cα, where cα is the characteristic word of slope α.
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Proof. Since the characteristic word cα has the same slope as w, we have Fct(w) = Fct(cα) by
Fact 1. The abelian complexity of w is constant 2 [27], thus a factor of length k can have either
F 1
w(k) or F 1

w(k) − 1 1s. Let us call a factor u of w heavy if |u|1 = F 1
w(k), and light otherwise.

We have to show that every prefix of 1cα is heavy; this will imply that 1cα is the prefix normal
form of w. It is known [23] that the prefixes of the characteristic word are precisely the reverses
of its right special factors, where a factor u is called right special if both u0 and u1 are factors.
Thus, every prefix v of 1cα has the form v = 1urev, where both u1 and u0 are factors of w,
implying that |v|1 = |1urev|1 = |u1|1 = F 1

w(|u| + 1), therefore v = 1urev is heavy. The fact that
PNF0(w) = 0cα follows analogously. 2

5.4 Prefix normal forms of binary uniform morphisms

In [5] the authors provide an algorithm which computes the abelian complexity of a morphic word
that is the fix point of a binary uniform morphism, i.e., a morphism µ satisfying |µ(0)| = |µ(1)|.
We refer the reader to [5] for the details on this algorithm. In particular, the following theorem
is proved in [5]:

Theorem 6 ([5]) Let w be the fix point of a binary uniform morphism µ. Then, for each n the
values ψw(1), ψw(2), . . . , ψw(n), can be computed in O(n) time.

As an intermediate step in the computation of each ψw(i), the algorithm in [5] provides the
minimum number of 0s (equivalently, the maximum number of 1s) in every i-length factor of w.
Obviously the same procedure can be used to obtain the minimum number of 1s (equivalently,
the maximum number of 0s) in every i-length factor of w. Therefore, we have the following
corollary to the result of [5]:

Corollary 4 Let w be the fix point of a binary uniform morphism µ. For each n, the prefix of
length n of PNF1(w) and of PNF0(w) can be computed in O(n) time.

6 Prefix normal words and lexicographic order

In this section, we study the relationship between lexicographic order and prefix normality. Note
that for coherence with the rest of the paper, in the definition of Lyndon words, necklaces, and
prenecklaces, we use lexicographically greater rather than smaller. Clearly, this is equivalent to
the usual definitions up to renaming of characters.

Thus a finite Lyndon word is one which is lexicographically strictly greater than all of its
conjugates: w is Lyndon if and only if for all non-empty u, v s.t. w = uv, we have w >lex vu. A
necklace is a word which is greater than or equal to all its conjugates, and a prenecklace is one
which can be extended to become a necklace, i.e. which is the prefix of some necklace [23, 28].
As we saw in the introduction, in the finite case, prefix normality and Lyndon property are
orthogonal concepts. However, the set of finite prefix normal words is included in the set of
prenecklaces [11].

An infinite word is Lyndon if an infinite number of its prefixes is Lyndon [32]. In the infinite
case, we have a similar situation as in the finite case. There are words which are both Lyndon
and prefix normal: 10ω, 110(10)ω; Lyndon but not prefix normal: 11100(110)ω; prefix normal
but not Lyndon: (10)ω; and neither of the two: (01)ω.

Next we show that a prefix normal word cannot be lexicographically smaller than any of its
suffixes. Let shift i(w) = wiwi+1wi+2 · · · denote the infinite word v s.t. w = w1 · · ·wi−1v, i.e. v
is the suffix of w starting at position i.
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Lemma 9 Let w ∈ Linf . Then w ≥lex shift i(w) for all i ≥ 1.

Proof. Assume that there exists a suffix v = shift i(w) of w s.t. v >lex w. Then there is an
index j with v1 · · · vj−1 = w1 · · ·wj−1 and vj > wj , implying vj = 1 and wj = 0. But then
|wi · · ·wi+j−1|1 = |v1 · · · vj |1 > |w1 · · ·wj |1, in contradiction to w ∈ Linf . 2

In the finite case, it is easy to see that a word w is a prenecklace if and only if w ≥lex v for
every suffix v of w. This motivates our definition of infinite prenecklaces. The situation is the
same as in the finite case: prefix normal words form a proper subset of prenecklaces.

Definition 9 Let w ∈ {0, 1}ω. Then w is an infinite prenecklace if for all i ≥ 1, w ≥lex

shift i(w). We denote by Pinf the set of infinite prenecklaces.

Proposition 4 Linf ( Pinf .

Proof. The inclusion follows from Lemma 9. An example of a word which is an infinite preneck-
lace but not prefix normal is 11100(110)ω. 2

There is another interesting relationship between lexicographic order and the prefix normal
forms of an infinite word. In [26], two words were associated to an infinite binary word w, called
max(w) (resp. min(w)), defined as the word whose prefix of length n is the lexicographically
greatest (resp. smallest) n-length factor of w. It is easy to see that these words always exist.
The following was shown in [26]:3

Theorem 7 ([26]) Let w be an infinite binary word. Then

1. w is (rational or irrational) mechanical with its intercept equal to its slope if and only if
0w ≤lex min(w) ≤lex max(w) ≤lex 1w, and

2. w is characteristic Sturmian if and only if min(w) = 0w and max(w) = 1w.

Lemma 10 Let w ∈ {0, 1}ω. Then PNF1(w) ≥lex max(w) and PNF0(w) ≤lex min(w).

Proof. Assume otherwise, and let w′ = PNF1(w), v = max(w). If w′ < v, then there is an index
j s.t. w′1 · · ·w′j−1 = v1 · · · vj−1 and w′j = 0 and vj = 1. This implies that v1 · · · vj has one more

1s than w′1 · · ·w′j . But |w′1 · · ·w′j |1 = F 1
w(j), a contradiction, since v1 · · · vj is a factor of w. The

second claim follows analogously. 2

Finally, from Theorems 5 and 7, we get the following corollary:

Corollary 5 Let w be an infinite binary word. Then w is characteristic Sturmian if and only if
0w = PNF0(w) = min(w) and 1w = PNF1(w) = max(w).

3The terminology in [26] differs from ours (we are following [23]). In order to help the reader, here we highlight
the differences: (i) a periodic Sturmian in [26] is a rational mechanical word, (ii) a proper Sturmian word in [26] is
an irrational mechanical word (i.e., a Sturmian word), and (iii) a standard Sturmian word in [26] is a mechanical
word with intercept τ = α (the slope), thus a proper standard Sturmian word is a characteristic Sturmian word
cα. Note that all mechanical words in [26] are defined for n ≥ 1, since the definition of mechanical word is: the
lower mechanical word is defined as sα,τ (n) = bα(n+ 1) + τc− bαn+ τc for n ≥ 1, and analogously for the upper
mechanical word. Therefore, an intercept τ = 0 in [26] is equivalent to an intercept of τ = α (the slope) in [23].
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7 On the periodicity and aperiodicity of prefix normal
words with respect to minimum density

In this section, we derive conditions for the periodicity and aperiodicity of prefix normal words
with respect to their minimum density. The following result shows that every ultimately periodic
infinite prefix normal word has rational minimum density.

Lemma 11 Let v be an infinite ultimately periodic binary word with minimum density δ(v) = α.
Then α ∈ Q.

Proof. Let us write v = uxω with x not a suffix of u.
For i = 0, 1, . . . , |x| − 1, let yi be the prefix of length |u| + i of v, i.e., yi = ux1x2 · · ·xi.

Trivially, if for some i we have that δ(yi) ≤ δ(v) the claim directly follows from yi being a finite
prefix of v.

Let us now assume that for each i = 0, 1, . . . |x| − 1 it holds that δ(v) < δ(yi) and let
i∗ = min{i | δ(yi) ≤ δ(yj) for each j 6= i}, hence δ(v) < δ(yi∗).

For every n ≥ |u| + |x| let in = |u| + ((n − |u|) mod |x|) and kn = b(n − |u|)/|x|c, i.e.,
|u| ≤ in ≤ |u|+ |x| − 1 and n = in + kn|x|.

Then, we have that

Dv(n) =
|yin |1 + kn|x|1
|yin |+ kn|x|

≥ min{δ(yin), δ(x)} ≥ min{δ(yi∗), δ(x)}. (1)

Moreover, we also have that

lim
k→∞

Dv(|u|+ i∗ + k|x|) = lim
k→∞

|yi∗ |1 + k|x|1
|yi∗ |+ k|x|

= δ(x). (2)

We cannot have δ(x) ≥ δ(yi∗), since by (1) δ(yi∗) is a rational lower bound on Dv(n) (for each
n ≥ 1) which is achieved by Dv(|u|+ i∗), contradicting the standing hypothesis δ(v) < δ(yi∗).

Therefore, we must have δ(x) < δ(yi∗), and from (1) we have Dv(n) ≥ δ(x) and from (2) we
also have that for each ε > 0 there exists k > 0 such that Dv(|u|+i∗+k|x|) < δ(x)+ε. Therefore,
δ(v) = inf{Dv(n) | n ≥ 1} = δ(x), which is a rational number, since x is a finite string. 2

We now show that, while periodicity is characterized by rational density, the converse is not
true. It turns out that for every α ∈ (0, 1), both rational and irrational, there exists an aperiodic
prefix normal word with minimum density α. For irrational α, this is an easy corollary from
Theorem 2: since the Sturmian word 1cα is prefix normal, and D(i) ≥ α for each i, therefore,
δ(1cα) = α. The next lemma shows how to construct an aperiodic prefix normal word with
minimum density α for both rational and irrational α.

Lemma 12 Fix α ∈ (0, 1), and let (an)n∈N be a strictly decreasing infinite sequence of rational
numbers from (0, 1) converging to α. For each i = 1, 2, . . . , let the binary word v(i) be defined by

v(i) =

{
1d10a1e010−d10a1e i = 1

prefflipextω(v(i−1))(ki|v(i−1)|)0`i i > 1

where `i defined by

`i =

{
10− d10a1e i = 1⌊
ki

(
|v(i−1)|1−ai|v(i−1)|

ai

)⌋
i > 1,

and ki is the smallest integer greater than one such that `i > `i−1.
Then v = limi→∞ v(i) is an aperiodic infinite prefix normal word such that δ(v) = α.

17



Before proving Lemma 12, in give an example of the words v(i).

Example 5 We show the first three steps for the construction of an infinite aperiodic word
with minimum density α = 1/3 (Lemma 12), using the infinite sequence of rational numbers
ai = i/(3i− 1), which tends to 1/3 for i→∞. Hence, for i = 1, we have a1 = 1/2, `1 = 5, and
vi = 1505 with minimum density δ(v1) = 1/2. At the next step, a2 = 2/5, and with the values
from the previous iteration we can compute k2 = 3 and `2 = 7, hence v2 = 15051505150507,
with δ(v2) = 15/37. At the third iteration, a3 = 3/8, k3 = 3, and `3 = 9, therefore v3 =
15051505150121505150515012150515051501209, and the minimum density is δ(v3) = 45/120.

Proof. (of Lemma 12)
We will first prove the following claim, giving a number of properties of the sequence of words

v(i), and then use these to prove that v is aperiodic and δ(v) = α.

Claim. The following properties hold:

1. δ(v(i)) ≥ ai for each i ≥ 1;

2. ι(v(i)) = |v(i)| for each i ≥ 1;

3. δ(v(i)) < δ(v(i−1)) for each i ≥ 2;

4. |v(i)|1 > |v(i−1)|1 for each i ≥ 2;

5. δ(v(i)) ≤ ai
(

ki|v(i−1)|1
ki|v(i−1)|1−ai

)
for each i ≥ 2.

Proof of the Claim. By direct inspection we have that properties 1 and 2 hold for v(1). We
now argue by induction. Fix i > 1 and let us assume that properties 1 and 2 hold for v(i−1).
Then, since ai < ai−1 we have

|v(i−1)|1
ai

>
|v(i−1)|1
ai−1

≥ |v(i−1)|,

where the last inequality follows from property 1 and 2. Therefore,
(
|v(i−1)|1−ai|v(i−1)|

ai

)
> 0,

hence there exists ki > 1 such that
⌊
ki

(
|v(i−1)|1−ai|v(i−1)|

ai

)⌋
> `i−1. In particular, `i is well

defined.
By property 2, we have ι(v(i−1)) = |v(i−1)| hence by Proposition 1, we haveDflipextω(v(i−1))(k|v(i−1)|) =

δ(v(i−1)) and also δ(prefflipextω(v(i−1))(ki|v(i−1)|)) = δ(v(i−1)).

Moreover, since `i > 0 it is not hard to see from the definition of v(i) that

δ(v(i)) = Dv(i)(|v(i)|) =
ki|v(i−1)|1

ki|v(i−1)|+ `i
< δ(v(i−1)), (3)

which shows that property 3 and property 2 hold for v(i). In addition, because of ki > 1 and (by
Proposition 1), |v(i)|1 = |prefflipextω(v(i−1))(ki|v(i−1)|)|1 = k1|v(i−1)|1, it follows that property 4

also holds for v(i).
The definition of `i, together with the well known property x− 1 < bxc ≤ x, imply that

ki
ai

(
|v(i−1)|1 − ai|v(i−1)|

)
− 1 < `i ≤ ki

(
|v(i−1)|1

ai
− |v(i−1)|

)
. (4)

18



Using the right inequality of (4) in (3), we have δ(v(i)) ≥ ai, showing that property 1 holds for
v(i).

In addition, using the left inequality of (4) in (3), we have

δ(v(i)) ≤ ai
(

ki|v(i−1)|1
ki|v(i−1)|1 − ai

)
showing that property 5 holds for v(i). The proof of the claim is complete.

In order to see that v is aperiodic, it is enough to observe that v 6= 0ω and for each i ≥ 1 it
contains a distinct run of `i 0s, with `i being a strictly increasing sequence.

To show that δ(v) = α, we will prove that limi→∞ δ(v(i)) = α. Since limi→∞ ai = α and for
each i ≥ 1, ki > 1 and |v(i)|1 > |v(i−1)|1, we have

lim
i→∞

ai
ki|v(i−1)|1

ki|v(i−1)|1 − ai
= lim
i→∞

ai = α.

Hence, from properties 4 and 5 of the Claim above, we have the desired result, limi→∞ δ(v(i)) =
limi→∞ ai = α.

This completes the proof of the lemma. 2

Summarizing, we have shown the following result.

Theorem 8 For every α ∈ (0, 1) (rational or irrational) there is an infinite aperiodic prefix
normal word of minimum density α. On the other hand, for every ultimately periodic infinite
prefix normal word w, the minimum density δ(w) is a rational number.

8 Conclusion

In this paper, we studied infinite prefix normal words. We gave several results of infinite ex-
tensions of finite prefix normal words, and we established connections between infinite prefix
normal words and other classes of infinite binary words, namely Sturmian words, Lyndon words
and max and min words. We provided a complete characterization of prefix normal Sturmian
words. Furthermore, we showed that, similar to the finite case, the classes of infinite prefix
normal words and Lyndon words are distinct, and that infinite prefix normal words are infinite
prenecklaces.

We explored some connections between prefix normal words, prefix normal forms, and abelian
complexity. In particular, we showed how to turn balanced and c-balanced words without ar-
bitrarily long runs of 1s into prefix normal words, by prepending a finite number of 1s. We
provided a method to compute the abelian complexity from the prefix normal form of a word,
and, for specific cases, we showed how to compute the prefix normal form of a word, given its
abelian complexity function. We further applied an existing algorithm to compute the prefix
normal form of binary uniform morphisms.

Finally, we gave conditions for the periodicity and the aperiodicity of infinite prefix normal
words, according to their minimum density.
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[16] Lúıs Felipe I. Cunha, Simone Dantas, Travis Gagie, Roland Wittler, Luis Antonio Brasil
Kowada, and Jens Stoye. Faster jumbled indexing for binary RLE strings. In 28th Annual
Symposium on Combinatorial Pattern Matching (CPM 2017), pages 19:1–19:9, 2017.

[17] C. Davis and D.E. Knuth. Number representations and dragon curves, I, II. J. Recr. Math.,
3:133–149 and 161–181, 1970.

[18] Gabriele Fici and Zsuzsanna Lipták. On prefix normal words. In Proc. of the 15th Intern.
Conf. on Developments in Language Theory (DLT 2011), volume 6795 of LNCS, pages
228–238. Springer, 2011.

[19] Pamela Fleischmann, Dirk Nowotka, Mitja Kulczynski, and Danny Bøgsted Poulsen. On
collapsing prefix normal words. In Proc. of the 14th International Conference Language and
Automata Theory and Applications (LATA 2020), volume 12038 of LNCS, pages 412–424.
Springer, 2020.

[20] Travis Gagie, Danny Hermelin, Gad M. Landau, and Oren Weimann. Binary jumbled
pattern matching on trees and tree-like structures. Algorithmica, 73(3):571–588, 2015.

[21] Emanuele Giaquinta and Szymon Grabowski. New algorithms for binary jumbled pattern
matching. Inf. Process. Lett., 113(14–16):538–542, 2013.
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