Skip to main content

Multi-stranded String Assembling Systems

  • Conference paper
  • First Online:
SOFSEM 2019: Theory and Practice of Computer Science (SOFSEM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11376))

Abstract

Classical string assembling systems form computational models that generate strings from copies out of a finite set of assembly units. The underlying mechanism is based on piecewise assembly of a double-stranded sequence of symbols, where the upper and lower strand have to match. The generative power of such systems is driven by the power of the matching of the two strands. Here we generalize this approach to multi-stranded systems. The generative capacities and the relative power are our main interest. In particular, we consider briefly one-stranded systems and obtain that they describe a subregular language family. Then we explore the relations with one-way multi-head finite automata and show an infinite, dense, and strict strand hierarchy. Moreover, we consider the relations with the linguistic language families of the Chomsky Hierarchy and consider the unary variants of k-stranded string assembling systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Bennett, C.H., Landauer, R.: The fundamental physical limits of computation. Sci. Am. 253, 48–56 (1985)

    Article  Google Scholar 

  3. Bordihn, H., Kutrib, M., Wendlandt, M.: Nonterminal controlled string assembling systems. J. Autom. Lang. Comb. 19, 33–44 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Freund, R., Păun, G., Rozenberg, G., Salomaa, A.: Bidirectional sticker systems. In: Pacific Symposium on Biocomputing (PSB 1998), pp. 535–546. World Scientific, Singapore (1998)

    Google Scholar 

  5. Hartmanis, J.: On non-determinancy in simple computing devices. Acta Inform. 1, 336–344 (1972)

    Article  MathSciNet  Google Scholar 

  6. Hartmanis, J.: On the weight of computations. Bull. EATCS 55, 136–138 (1995)

    MATH  Google Scholar 

  7. Kari, L., Păun, G., Rozenberg, G., Salomaa, A., Yu, S.: DNA computing, sticker systems, and universality. Acta Inform. 35, 401–420 (1998)

    Article  MathSciNet  Google Scholar 

  8. Kutrib, M., Malcher, A., Wendlandt, M.: Set automata. Int. J. Found. Comput. Sci. 27, 187–214 (2016)

    Article  MathSciNet  Google Scholar 

  9. Kutrib, M., Wendlandt, M.: String assembling systems. RAIRO Inform. Théor. 46, 593–613 (2012)

    Article  MathSciNet  Google Scholar 

  10. Kutrib, M., Wendlandt, M.: Bidirectional string assembling systems. RAIRO Inform. Théor. 48, 39–59 (2014)

    Article  MathSciNet  Google Scholar 

  11. Kutrib, M., Wendlandt, M.: Parametrizing string assembling systems. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS, vol. 10977, pp. 236–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94812-6_20

    Chapter  Google Scholar 

  12. McNaughton, R.: Algebraic decision procedures for local testability. Math. Syst. Theory 8, 60–76 (1974)

    Article  MathSciNet  Google Scholar 

  13. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)

    MATH  Google Scholar 

  14. Păun, G., Rozenberg, G.: Sticker systems. Theor. Comput. Sci. 204, 183–203 (1998)

    Article  MathSciNet  Google Scholar 

  15. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Texts in Theoretical Computer Science. Springer, Heidelberg (1998)

    Book  Google Scholar 

  16. Rosenberg, A.L.: On multi-head finite automata. IBM J. Res. Dev. 10, 388–394 (1966)

    Article  MathSciNet  Google Scholar 

  17. Yao, A.C., Rivest, R.L.: \(k+1\) heads are better than \(k\). J. ACM 25, 337–340 (1978)

    Article  MathSciNet  Google Scholar 

  18. Zalcstein, Y.: Locally testable languages. J. Comput. System Sci. 6, 151–167 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kutrib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kutrib, M., Wendlandt, M. (2019). Multi-stranded String Assembling Systems. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds) SOFSEM 2019: Theory and Practice of Computer Science. SOFSEM 2019. Lecture Notes in Computer Science(), vol 11376. Springer, Cham. https://doi.org/10.1007/978-3-030-10801-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10801-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10800-7

  • Online ISBN: 978-3-030-10801-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics