
Minimizing the Cost of Team Exploration∗

Dorota Osula†

February 20, 2019

Abstract

A group of mobile agents is given a task to explore an edge-weighted graph

G, i.e., every vertex of G has to be visited by at least one agent. There is no

centralized unit to coordinate their actions, but they can freely communicate

with each other. The goal is to construct a deterministic strategy which allows

agents to complete their task optimally. In this paper we are interested in

a cost-optimal strategy, where the cost is understood as the total distance

traversed by agents coupled with the cost of invoking them. Two graph classes

are analyzed, rings and trees, in the off-line and on-line setting, i.e., when

a structure of a graph is known and not known to agents in advance. We

present algorithms that compute the optimal solutions for a given ring and

tree of order n, in O(n) time units. For rings in the on-line setting, we give the

2-competitive algorithm and prove the lower bound of 3/2 for the competitive

ratio for any on-line strategy. For every strategy for trees in the on-line setting,

we prove the competitive ratio to be no less than 2, which can be achieved by

the DFS algorithm.

keywords: graph exploration, distributed searching, cost minimization, mobile

agents, on-line searching.

1 Introduction

A group of mobile agents is given a task to explore the edge-weighted graph G,

i.e., every vertex of G has to be visited by at least one agent. Initially agents

†Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology,

Gdańsk, Poland
∗Research partially supported by National Science Centre (Poland) grant number

2015/17/B/ST6/01887.

ar
X

iv
:1

70
5.

10
82

6v
2

 [
cs

.D
M

]
 1

9
Fe

b
20

19

are placed on one vertex, called homebase∗, they are distinguishable (each entity

has its unique id) and they can communicate freely during the whole exploration

process. The goal is to find a deterministic strategy (protocol or algorithm), which

is a sequence of steps, where each step consists of parallel moves. Each move is

one of the two following types: (1) traversing an edge by an agent or (2) invoking

a new agent in the homebase. The strategy should be optimal in specified sense;

in the literature we discuss the following approaches: exploration time, number of

entities, energy and total distance optimization. Exploration time is the number of

time units required to complete the exploration, with the assumption that a walk

along an edge e takes w(e) time units (where w(e) is the weight of the edge e).

As one agent is sufficient to explore the whole graph, in the problem of minimizing

the number of entities additional restrictions of the size of the battery of searchers

(i.e., the maximum distance each agent can travel) or the maximum exploration

time are added. Energy is understood as the maximum value taken over all agents

traversed distances. Lastly, the total distance is the sum of distances traversed by

all agents. In this work we introduce a new approach: we are looking for the cost-

optimal strategy, where cost is the sum of the distances traversed by agents and

a cost of invoking them. We consider the problem in the off-line setting, where a

graph is known in advance for searchers and the on-line one, where agents have no

a priori knowledge about the graph. We assume, for simplicity, that in one step

only one agent can perform a move.† As the measure for an on-line algorithm the

competitive ratio is used (formally defined later), which is the maximum taken over

all networks of the results of the on-line strategy divided by the optimal one in the

off-line setting.

Related Work For exploration in the off-line setting (referred often as searching)

many different models were extensively studied and numerous deep results have

been obtained. Interestingly, there is a strong connection between graph exploration

and many different graph parameters, e.g., pathwidth, treewidth, vertex separation

number; see e.g., [10] for a survey and further references. In [4] edge-weighted trees

in the off-line setting were studied, where a group of k mobile agents has a goal to

explore the tree minimizing the total distance. Agents (as in the model presented

in this paper) do not have to return to the homebase after the exploration. Thus,

for k big enough, it is a special case of our model, for which the invoking cost

is equal to zero. For k greater or equal to the number of leaves authors present

the O(n) time algorithm solving the problem. In the on-line setting, the most

results were established in minimizing the time of the exploration. Algorithms and

bounds of competitive ratio were investigated, mostly for trees [9,11,13] in different

∗After finishing the exploration, agents do not have to come back to the homebase.
†One may notice, that in order to reduce the number of time units of the algorithm, agents

moves, when possible, should be perform simultaneously.

2

communication settings. As for the edge-exploration of general graphs (where apart

from vertices also every edge has to be explored) see [3,11]. The competitive ratio of

exploration arbitrary graphs for teams of size bigger than
√
n was studied in [6, 7].

As for different graph classes, grids [15] and rings [13] were investigated. Several

studies have been also undertaken minimizing the energy [8, 9] and the number of

agents [5] for trees. As one can observe trees are very important graph class and in

this paper we give the algorithms in off-line and on-line setting and prove the upper

bound for the competitive ratio. We note that our results may be of particular

interest not only by providing theoretical insight into searching dynamics in agent

computations, but may also find applications in the field of robotics. This model

describes well the real life problems, where every traveled unit costs (e.g., used fuel

or energy) and entities costs itself (e.g., equipping new machines or software license

cost). It can be viewed also as a special case of traveling salesmen, vehicle routing

or pickup and delivery problem. Many deep results were established in these fields,

see e.g., [1, 2, 12,14,16] for the further references.

This work is constructed as follows: in the next Section we introduce the nec-

essary notation and formally define the problem. The further two Sections present

results for rings. In Section 3 the cost-optimal algorithm for the off-line setting is

presented, whereas in Section 4 the 2-competitive algorithm in the on-line setting is

described. It is also proved, that for a positive invoking cost and any on-line strategy

there exist a ring, which force the strategy to produce at least 3/2 times higher cost

than the optimal, off-line one. Section 5 contains the algorithm and its analysis for

trees in the off-line setting, while Section 6 provides the proof that no algorithm

can perform better on trees in the on-line setting than DFS. In other words, the

competitive ratio for every on-line algorithm is no less than 2. We finish this work

with the summary and a future outlook, and suggest areas of further research.

2 Notation

Let G be a class of undirected, edge-weighted graphs. For everyG = (V (G), E(G), w) ∈
G we denote the sets of vertices and edges of G as V = V (G) and E = E(G), re-

spectively, n = |V | and an edge-weight function w : E → R+. The sum of all

weights of a subgraph H of G is denoted by w(H) =
∑

e∈E(H)w(e). For any graph

G ∈ G we denote as W (u, v) a walk that starts in u ∈ V and finishes in v ∈ V (if

u = v then either walk is a single vertex or a closed walk). A path is understood as

an open walk with no repeated vertices. The distance between two vertices is the

sum of weights of all edges in a shortest path connecting them. For any graph G

and v, u ∈ V (G) we denote the distance between v and u by dG(v, u) and omit the

bottom index, when G is clear from the context.

3

For every tree T and the pair of vertices v, u ∈ V (T) we denote a path between

them as PT (v, u) and omit the bottom index, when a graph is clear from the context.

For any tree T and vertex v ∈ V (T) we define branch as a subtree rooted in a child

c of v enlarged by the vertex v and edge (v, c).

We define a strategy S as a sequence of moves of the following two types: (1)

traversing an edge by an agent and (2) invoking a new agent in the homebase.

We say that a strategy explores a vertex, when it is reached for the first time.

Let k ∈ N+ be the number of agents used by S (notice that k is not fixed) and

di ∈ R+ ∪ {0} the distance that i-th agent traversed, i = 1, 2, . . . , k. The invoking

cost q ∈ R+ ∪ {0} is the cost connected to the agents: every time the strategy uses

a new agent it has to ‘pay’ for it q. In other words, before exploring any vertex, the

strategy needs to decide what is more profitable: invoke a new agent (and pay for it

q) or use an agent already present in the graph. The number of agents, that can be

invoked, is unbounded. The cost c is understood as the sum of invoking costs and

the total distance traversed by entities, i.e., c = kq +
∑k

i=1 di. The goal is to find a

cost-optimal strategy, which explores every graph G ∈ G.

Let S be an on-line strategy and Sopt be the cost-optimal, off-line strategy for

every graph in G. We denote as S(G) and Sopt(G) the cost of proceeding the strategy

S and Sopt, respectively, on G ∈ G. As a measure for an on-line algorithm S the

competitive ratio is used, which is the maximum taken over all networks of the results

of the on-line strategy divided by the optimal one in the off-line setting, i.e.

r(S) = max
G∈G

S(G)

Sopt(G)
.

In the on-line setting it is assumed that an agent, which occupies the vertex v,

knows the length of edges incident to v and the status of vertices adjacent to v, i.e.,

if they have been already explored. We assume that agents can freely communicate

with each other.

3 Rings in the Off-line Setting

Let C ⊂ G be a class of undirected, edge-weighted rings. For every C = (V,E,w) ∈ C
of order n, we denote the vertices as V = {vi, i ∈ {0, . . . , n − 1}} and edges as

E = {ei = (vi, vi+1), i ∈ {0, . . . , n − 2}} ∪ en−1 = (vn−1, v0). Without loss of

generality, let a homebase of C be in v0. We define the problem in the off-line

setting as follows:

Off-line Ring Problem Statement

Given the ring C, the invoking cost q and the homebase h, find a strategy of

the minimum cost.

4

In the cost-optimal solution exactly one of the edges does not have to be tra-

versed. Procedure RingOffline finds in O(n) steps, which edge is optimal to omit.

If this edge is incident to the homebase, then only one agent is used, which simply

traverses the whole ring without it (lines 8-9 and 18-19). Otherwise, depending on

the cost q, there might be one or two agents in use. Let e be an omitted edge and

let C ′ = C\e, i.e., C ′ is a tree rooted in v0 with two leaves. We denote as vmin

and vmax the closer and further, respectively, leaf in C ′. If the invoking cost q is

lower than dC′(v0, v
min), then it is more efficient to invoke two agents, which tra-

verse two paths PC′(v0, v
min) and PC′(v0, v

max) (lines 11-14). On the other hand, if

q ≥ dC′(v0, v
min), then only one agent is used, which traverses the path PC′(v0, v

min)

twice (lines 15-17).

We give a formal statement of the procedure RingOffline and make an obser-

vation about its cost-optimality.

Procedure RingOffline

Input: Ring C, homebase v0, invoking cost q

Result: Strategy S
1: Ci ← C\ei, i ∈ {0, . . . , n− 1}
2: vmini ← a vertex v ∈ {vi, vi+1} for which dCi

(v0, v) is minimum, i ∈ {1, . . . , n−2}
3: vmaxi ← a vertex v ∈ {vi, vi+1} for which dCi

(v0, v) is maximum, i ∈ {1, . . . , n−2}
4: ci ← q + w(Ci), i = 0, n− 1

5: ci ← min{2q + w(Ci), q + dCi
(v0, v

min
i) + w(Ci)}, i ∈ {1, . . . , n− 2}

6: Let imin be the index of the minimum element of {ci, i ∈ {0, . . . , n− 1}}
7: Add a move to S: invoke an agent a1 in v0

8: if imin == 0 then

9: Add a sequence of moves to S: traverse by a1 path PCimin
(v0, v1)

10: else if imin > 0 and imin < n− 1 then

11: if 2q + w(Ci) < q + dCi
(v0, v

min
imin

) + w(Ci) then

12: Add a sequence of moves to S: traverse by a1 path PCimin
(v0, v

min
imin

)

13: Add a move to S: invoke an agent a2 in v0

14: Add a sequence of moves to S: traverse by a2 path PCimin
(v0, v

max
imin

)

15: else

16: Add a sequence of moves to S: traverse by a1 path PCimin
(v0, v

min
imin

)

17: Add a sequence of moves to S: traverse by a1 path PCimin
(vminimin

, vmaximin
)

18: else

19: Add a sequence of moves to S: traverse by a1 path PCimin
(v0, vn−1)

20: return S

Observation 3.1. For any invoking cost q and ring C, the strategy S, returned by

the procedure RingOffline is cost-optimal.

5

Proof. Let C be any ring, q any invoking cost and S the strategy returned by the

procedure RingOffline for C and q. Because every vertex has to be explored,

exactly one edge does not have to be traversed. Our procedure computes for every

edge e ∈ E(C), the optimal cost c of exploring C ′ = C\e. If e is incident to the

homebase, then C ′ is a path with a homebase in one of its ends. Thus, the cost-

optimal strategy uses one agent and c = q + w(C ′). If e is not incident to the

homebase, then C ′ is a path with a homebase in one of its internal vertices. Thus,

the cost-optimal strategy uses one or two agents. In the first case, an agent has to

traverse to the closer end of C ′ and then along the whole path. In the second case,

each of the agents traverses from the homebase to one of the end vertices. Thus,

c = min{q+ d′+w(C ′), 2q+w(C ′)}, where d′ is the distance between the homebase

and the closer end vertex in C ′. At the end RingOffline chooses an edge, which

deleting leads to the lowest cost and sets the corresponding strategy.

4 Rings in the On-line Setting

In this section we present the procedure RingOnline, which produces in O(n) steps

an 2-competitive strategy, which explores any unknown ring C. We also prove the

lower bound of 3/2 for the competitive ratio for any q > 0. We define the problem

in the on-line setting as follows:

On-line Ring Problem Statement

Given the invoking cost q and the homebase h, find a strategy of the minimum

cost for any ring C.

We start by giving the informal description of the procedure RingOnline. Let S
be the on-line strategy returned by the procedure RingOnline for a given homebase

v0 and invoking cost q. Firstly S invokes an agent a1 in v0 and denotes as e1 and

e−1 edges incident to v0, with the lower and higher weight respectively (lines 4-5).

Searcher a1 traverses first e1 and then continues the exploration process as long

as it is profitable, i.e., the cost of traversing the next edge is less or equal to the

invoking cost plus w(e−1) (lines 7-10). If at some point a new agent is invoked,

then it traverses the edge e−1 (lines 11-16). We notice here that the lines 11-16

are executed at most once, as these are initial steps for the second agent. Later,

the greedy approach is performed: an edge with lesser weight is traversed either

by a1 (lines 7-10) or by a2 (lines 17-21). Below we give a formal statement of the

procedure RingOnline.

The next lemma says that for any invoking cost and any ring procedure RingOnline

returns the solution at most twice worse than the optimum, which is tight.

Lemma 4.1. The strategy returned by RingOnline is 2-competitive.

6

Procedure RingOnline

Input: Homebase v0, invoking cost q

Result: Strategy S
1: ir ← 1

2: il ← −1

3: s← 1

4: Add a move to S: invoke an agent a1 in v0

5: Denote as e1 and e−1 edges adjacent to v0, with the lower and higher weight

respectively

6: while Graph is not explored do

7: while (w(eil) + q · s) ≥ w(eir) and graph is not explored do

8: Add a move to S: traverse eir by a1

9: Denote the unexplored edge incident to the vertex occupied by a1 as eir+1

10: ir ← ir + 1

11: if s == 1 and (w(e−1) + q) < w(eir) then

12: Add a move to S: invoke an agent a2 in v0

13: Add a move to S: traverse e−1 by a2

14: Denote the unexplored edge incident to the vertex occupied by a2 as e−2

15: il ← −2

16: s← 0

17: if s == 0 then

18: while w(eil) < w(eir) and graph is not explored do

19: Add move to S: traverse eil by a2

20: Denote the unexplored edge incident to the vertex occupied by a2 as

eil−1

21: il ← il − 1

22: return S

7

Proof. Let C ∈ C be any ring for which the cost-optimal, off-line strategy Sopt uses

two agents or omits an edge incident to the homebase. We notice that procedure

RingOnline computes the cost-optimal strategy for C. However, the situation is

different otherwise.

Let now C ∈ C be any ring with the homebase in v0 for which the cost-optimal

strategy uses one agent and omits the edge not incident to the homebase. Let q

be any invoking cost and S be a strategy returned by the procedure RingOnline.

Denote as emax the edge of C of the maximum weight and as e′ the edge incident

to v0 of the bigger weight. Let e be an omitted edge in the cost-optimal off-line

strategy and vmin be the closer leaf in the tree C\e rooted in v0. The cost-optimal

strategy Sopt uses one agent, that traverses firstly to the vmin, then returns to the

homebase and explores the rest of the ring apart from the edge e. Thus, its cost can

be lower bounded by:

Sopt(C) = q + w(C\e) + dC\e(v0, v
min) > q + w(C\e). (1)

If q + w(e′) < w(emax), then S uses two searchers and omits emax, i.e.,

S(C) = 2q + w(C\emax). (2)

On the other hand, if q + w(e′) ≥ w(emax), then S invokes one searcher, which

traverses the whole ring apart from e′, i.e,

S(C) = q + w(C\e′) = q + w(C\emax) + w(emax)− w(e′) ≤ 2q + w(C\emax). (3)

This leads to the following upper bound for the competitive ratio

r(S) ≤ 2q + w(C\emax)
q + w(C\e)

≤ 2q + w(C\e)
q + w(C\e)

≤ 2. (4)

The bound of 2 can be reached for the three vertices ring C ′ ∈ C, where w(e0) =

w(e2) = 1 and w(e1) = q for q large enough. Indeed, we notice that although

both strategies, S and Sopt, invoke only one searcher, in the cost-optimal solution

it traverses the edge e0 twice instead of traversing the edge e1, i.e., Sopt(C ′) = q+ 3

and S(C ′) = 2q + 1, which finishes the proof.

The theorem below shows that for any positive invoking cost and any on-line

strategy there exist a ring for which the strategy achieves at least 3/2 times higher

cost than the optimal one.

Theorem 4.1. For any invoking cost q > 0, every on-line strategy S is at least
3
2
-competitive.

8

Proof. Let ε be a small positive number, such that ε � q and q mod ε = 0. Let

C1, C2 ⊂ C be two classes of rings constructed as follows. For every i ∈ {3, 4, . . .} we

add to the class C1 a ring Ci
1 of order i with a homebase in v0 and set the weights

of all edges as ε. For every positive integer i and j ∈ {i+ 2, i+ 3, . . .} we add to the

class C2 a ring C
(i,j)
2 of order j with homebase in v0. We set the weights of all edges,

apart from (vi, vi+1) with the weight 2q, as ε. Let C ′ = C1 ∪ C2.

We are going to show that for any on-line strategy S, there exist a ring C ∈ C ′

and a strategy S ′, such that S(C) ≥ 3
2
S ′(C).

Let Gi, i ∈ N, be an explored part of the graph in the i-th step of the algorithm,

starting from G0 = v0. Firstly, any strategy S invokes in v0 one agent a1 and

explores some part of a ring. Let j1 ∈ N be a step in which the second agent a2 is

invoked by S (we set j1 as infinity, if S uses only one searcher). For every i < j1,

if during the i-th step a1 explores a new edge (v, v′) of the weight ε, a new vertex

u and edge (v′, u) are added. The weight of (v′, u) is set as ε, if w(PGi
(v0, v

′)) < q,

and 2q, if w(PGi
(v0, v

′)) = q. We consider two cases. In the first one, when the new

agent is invoked only edges of the length ε are visible. In the second case, a1 reaches

a vertex incident to the edge of the weight 2q before the second agent is invoked or

a1 explores the graph on its own.

Case A: in the step j1 only edges of the length ε are visible. We can treat Gj1 as

a tree rooted in v0, where v0 has two branches. Denote the number of vertices in

them as 1 ≤ h1 < q and 0 ≤ h2 ≤ h1 (where by h2 = 0, we understand that Gj1 is

a path of the length ε · h1 starting in v0). We omit the case when a2 is invoked in

the second step (i.e., h1 = h2 = 0), as then competitive ratio of at least 2 can be

easily obtained (e.g., for a triangle with edges of the weight ε). We choose a ring

C = Ch1+h2+2
1 from the class C1. See Figure 1a for the illustration.

We notice that |V (C)| = h1 + h2 + 2 and |V (Gj1)| = h1 + h2 + 1. In order to

explore Gj1 , a1 traversed at least twice the path PGj1
(v0, vh1+2) (possible empty if

h2 = 0) and once PGj1
(v0, vh1). Then, in the j1-th step the second agent is invoked,

which generates the extra cost q. In order to explore the whole C, at least one extra

move of cost ε has to be done (e.g., a1 can traverse from vh1 to vh1+1). Thus, the

total cost of exploring C by S can be lower bounded by

S(C) ≥ 2q + ε(2h2 + h1 + 1). (5)

Let S ′ be a strategy, which explores C by visiting all vertices exactly once with

one agent. This leads to the following upper bound of the cost-optimal solution

Sopt(C) ≤ S ′(C) = q + ε(h1 + h2 + 1). (6)

As εh1 < q and h2 ≥ 0, we obtain the following lower bound of the competitive

9

ratio

r(S) = lim
ε→0

S(C)

Sopt(C)
≥ lim

ε→0

2q + ε(h1 + 2h2 + 1)

q + ε(h1 + h2 + 1)
≥ lim

ε→0

2q + q + 2 · 0 + ε

q + q + 0 + ε
= (7)

= lim
ε→0

3q + ε

2q + ε
=

3

2
. (8)

Case B: a1 reaches a vertex incident to the edge of the weight 2q before the second

agent is invoked or a1 explores the graph on its own. Let j2 be the step in which

a1 explores the vertex incident to the edge of the weight 2q. We can treat Gj2 as

a tree rooted in v0, where v0 has two branches. Denote the number of vertices in

them as h1 = q/ε and 0 ≤ h2 < h1. We choose a ring C = C
(h1+h2+2,h1)
2 from the

class C2. See Figure 1b for the illustration. Let S ′ be a strategy, which uses one

agent, which firstly explores vertices v0, vh1+h2+1, vh1+h2 , . . . , vh1+1, then returns to

v0 and explores the rest of C omitting the edge of the weight 2q. This leads to the

following upper bound of the cost-optimal solution

Sopt(C) ≤ S ′(C) = q + 2ε(h2 + 1) + εh1 = 2q + 2ε(h2 + 1). (9)

In the j2-th step only one vertex of C is not explored by S: vh1+1, which is

incident to the edges of the weights ε and 2q, and agent a1 occupies the vertex vh1 .

The remaining vertex can be either explored by a1 or by a newly invoked searcher

a2.

Subcase B1: a1 explores the vertex vh1+1. In the cheapest solution searcher a1

returns to v0 and traverses the path v0, vh1+h2+1, vh1+h2 , . . . , vh1+1 of the length ε(h2+

1). Thus, the total cost of exploring C by S can be lower bounded by

S(C) ≥ q + ε(2h2 + 2h1 + h2 + 1) = 3q + ε(3h2 + 1), (10)

which leads to the following competitive ratio

r(S) = lim
ε→0

S(C)

Sopt(C)
≥ lim

ε→0

3q + 3εh2 + ε

2q + 2εh2 + 2ε
=

3

2
. (11)

Subcase B2: a newly invoked agent a2 explores the vertex vh1+1. The total cost

of exploring C by S can be lower bounded by

S(C) ≥ (q + 2εh2 + εh1) + (q + εh2 + 1) = 3q + 3εh2 + ε, (12)

giving the same bound of 3
2

and finishing the proof.

At the end we observe, that for q = 0 the strategy returned by the procedure

RingOnline is cost-optimal for every ring.

10

v0

v1

v2

1

vh1

1

1

11

vh1+1

vh1+2

1 vh1+h2

vh1+h2+1

0 < h1 < q 0 ≤ h2 ≤ h1

(a) Ring Ch1+h2+2
1 ∈ C1.

v0

v1

v2

1

vh1

1

1

12q

vh1+1

vh1+2

1 vh1+h2

vh1+h2+1

h1 = q h2 < q

(b) Ring C
(h1+h2+2,h1)
2 ∈ C2.

Figure 1: Illustration of rings from the classes C1 and C2; black dotes and solid lines

denote already explored part of the graph, whereas circles and dashed lines stand

for the unvisited part of the rings.

5 Trees in the Off-line Setting

Let T = (V,E,w) ∈ G be a tree rooted in a homebase r and L(T) be the set of all

leaves in T . For every v ∈ V we denote by Tv a subtree of T rooted in v, c(v) list of

its children and p(v) its parent vertex.

Vertex v ∈ V is called a decision vertex if |c(v)| ≥ 2 and an internal vertex if

|c(v)| = 1 and v is different from the root. We say that an agent terminates in

v ∈ V , if v is its last visited vertex. We state the problem in the off-line setting

formally:

Off-line Tree Problem Statement

Given the tree T , the invoking cost q and the homebase in the root of T , find

a strategy of the minimum cost.

5.1 The Algorithm

In order to simplify our algorithm, a compressing operation on a tree T is proceeded.

Let v ∈ V (T) be a decision vertex and u ∈ V (T) be a decision vertex, a leaf or the

root. The new tree T ′ is obtained by substituting every path PT (v, u), which apart

from u and v consists only internal vertices, with a single edge e = (v, u). The

weight of e is set as the weight of the whole path, i.e., w(e) = w(PT (v, u)). See

Figure 2 for an example of the compressing operation.

Observation 5.1. In every cost-optimal strategy if an agent enters a subtree Tv, it

has to explore at least one leaf in it.

Proof. Let T be any tree, v ∈ V and a be an agent, which at some point occupies

v. If a returns to p(v) or terminates before exploring at least one leaf in Tv, then

its moves inside Tv can be omitted. Indeed, in this situation a has reached vertices

11

r
1

1

1

1

1
1

1
2

2

2

2

2

2
3

3 3

3
3

3
4

(a) The original tree T .

6
r

3
1 3

24
5

5 4
2

5
1

(b) Tree T after the compressing opera-

tion.

Figure 2: The compressing operation on an exemplary tree T . The new tree T ′ has

no internal vertices.

either (1) already explored, or (2) one lying on the path between v and an unexplored

leaf, which will be visited later anyway (by a or any other agent).

Observation 5.2. In every cost-optimal strategy once an agent leaves any subtree,

it never comes back to it.

Proof. Let T be any tree rooted in r and v ∈ V different than r. By contradiction,

let S be the cost-optimal strategy for T , in which an agent a after leaving Tv returns

to it. Denote as la the leaf in which a terminates (not necessarily la ∈ L(Tv)). We

split the walk W (r, la) traversed by a into parts. We define:

• W 1(r, p(v)) as a walk that a traverses until it reaches v, excluding v;

• W 2(v, v) as a walk that a traverses inside Tv before it leaves it;

• W 3(p(v), v) as a walk that a traverses after leaving Tv and before reaching v;

• W 4(v, la) as a walk that a traverses after W 3(p(v), v).

In other words

W (r, la) = W 1(r, p(v)) ◦ (p(v), v) ◦W 2(v, v)◦ (13)

◦ (v, p(v)) ◦W 3(p(v), v) ◦W 4(v, la). (14)

The total weight is then the following sum:

w(W (r, la)) = w(W 1(r, p(v))) + w((p(v), v)) + w(W 2(v, v))+ (15)

+ w((v, p(v))) +W 3(p(v), v) + w(W 4(v, la)). (16)

Let S ′ be a strategy in which a traverses: (1) W 1(r, p(v)), (2) W 3(p(v), v), (3)

W 2(v, v) and (4) W 4(v, la). Then

w(W (r, la)) = w(W 1(r, p(v))) +W 3(p(v), v) + w(W 2(v, v)) + w(W 4(v, la)) (17)

and S ′(T) < S(T), which is a contradiction that S is cost-optimal.

12

Remark 5.1. Let v be any internal vertex. It is never optimal for an agent, which

occupies v, to return to the previously occupied vertex in its next move.

Proof. Let T be any tree and v ∈ V be any internal vertex. Assume that at some

step of the optimal strategy, agent a occupies v. If the last traversed edge of a

is (p(v), v), then it follows directly from Observation 5.1. On the other hand, the

remark is true otherwise from Observation 5.2.

In other words, it is always optimal for agents to continue movement along the

path once entered. Thus, if we find the optimal strategy for compressed tree T ′,

then we can easily obtain the optimal strategy for T . The only difference is that

instead of walking along one edge (v, u) in T ′, the agent has to traverse the whole

path PT (v, u) in T . From now on, till the end of this Section, whenever we talk

about trees, we refer to its compressed version.

For all vertices v ∈ V (T) we consider a labeling Λv, which is a triple (k, ul, uc),

where k stands for the minimum number of agents needed to explore the whole

subtree Tv by any cost-optimal strategy. The second one, ul, is the furthest leaf

from v in Tv (if there is more than one, then v is chosen arbitrary) and uc is the

child of v, such that ul ∈ Tuc . We will refer to this values using the dot notation,

e.g., the number of agents needed to explore tree rooted in v is denoted by Λv.k.

The set of labels for all vertices is denoted by Λ = {Λv, v ∈ V (T)}.

5.1.1 Procedures

The algorithm is built on the principle of dynamic programming: first the strat-

egy is set for leaves, then gradually for all subtrees and finally for the root. We

present three procedures: firstly, labeling Λ is calculated by SetLabeling, which is

the main core of our algorithm. Once labels for all the vertices are set, the proce-

dure SetStrategy builds a strategy based on them. The main procedure CostExpl

describes the whole algorithm.

Procedure SetLabeling for every subtree Tv, calculates and returns labeling Λv.

We give a formal statement of the procedure and its informal description followed

by an example. Firstly, for every leaf v label Λv = (1, v, null) is set, as one agent is

sufficient to explore v. Then, by recursion, labels for the ancestors are set until the

root r is reached. Let us describe now how the labeling for the vertex v is established

based on the labeling of its children (main loop, lines 9-16). Firstly, the number of

needed agents for v is increased by the number of needed agents for its child u (line

10). Then, if the distance between v and the furthest leaf in Tu (i.e., d(v,Λu.ul)) is

less or equal to the distance from the root r to v plus the invoking cost q, the number

of required agents is reduced by 1 (lines 12-13). Intuitively, it is more efficient to

13

reuse this agent, than to invoke a new one from r. As we show formally later at

most one agent can be returned, and it can happen only if Λu.k = 1. Meanwhile the

child of v, which is an ancestor of the furthest leaf in Tv is being set (lines 14-16).

See the formal statement of the procedure and an example on the Figure 3.

Procedure SetLabeling

Input: Tree T , vertex v, invoking cost q, labeling Λ

Result: Updated Λ

1: if v ∈ L(T) then

2: Λv ← (1, v, null)

3: return Λ

4: for each u ∈ c(v) do

5: Invoke Procedure SetLabeling for T, u, q and Λ

6: k, dmax ← 0

7: umaxc ← null

8: dr ← d(r, v) + q

9: for each u ∈ c(v) do

10: k ← k + Λu.k

11: d← d(v,Λu.ul)

12: if Λu.k == 1 and d ≤ dr then

13: k ← k − 1

14: if d > dmax then

15: dmax ← d

16: umaxc ← u

17: k ← max{1, k}
18: Λv ← (k,Λumax

c
.ul, u

max
c)

19: return Λ

Procedure SetStrategy builds a strategy for a given subtree Tv based on the

labeling Λ. If v ∈ V (T)\L(T), then for each of its child u, firstly, the required

number of agents is sent to u (line 7) and then the strategy is set for u (line 8).

Lastly, for all children u of v (apart from the one, which has to be visited as the

last one) if it is efficient for the searcher, which finished exploration of Tu in Λu.ul,

to come back to v, then the ‘return’ sequence of moves is added (lines 9-10). It is

crucial that for every v the subtree TΛv .uc is explored as the last one, but the order

of the remaining subtrees is not important (line 5). To summarize, we give a formal

statement of the procedure.

14

r
4

2 1

1

2
3

1

(1, u8, ·)

(1, u4, ·) (1, u5, ·)
(1, u6, ·)

u3

u9

u6

u1 u2

u4 u5

u8

3 1
u7

(1, u9, ·)

(1, u7, ·)

(a) Firstly, labels for leaves are set.

r
4

2 1

1

2
3

1

(1, u8, ·)

(1, u4, ·) (1, u5, ·)
(1, u6, ·)

u3

u9

u6

u1 u2

u4 u5

u8

3 1
u7

(1, u9, ·)

(1, u7, ·)

(1, u8, u8)

(2, u6, u6)

(b) Then, gradually labels are being

set for the ancestors, until the root is

reached.

r
4

2 1

1

2
3

1

(1, u8, ·)

(1, u4, ·) (1, u5, ·)
(1, u6, ·)

u3

u9

u6

u1 u2

u4 u5

u8

3 1
u7

(1, u9, ·)

(1, u7, ·)

(1, u8, u8)

(2, u6, u6)
(1, u8, u3)

(c)

r
4

2 1

1

2
3

1

(1, u8, ·)

(1, u4, ·) (1, u5, ·)
(1, u6, ·)

u3

u9

u6

u1 u2

u4 u5

u8

3 1
u7

(1, u9, ·)

(1, u7, ·)

(1, u8, u8)

(2, u6, u6)
(1, u8, u3)

(3, u8, u1)

(d) Three agents are required to explore

this tree in the cost-optimal way.

Figure 3: Example of the performing of the procedure SetLabeling for q = 0.

Procedure CostExpl consists of two procedures presented in the previous sub-

sections. Firstly, SetLabeling is being invoked for the whole tree T . And then the

strategy S is being calculated from the labeling Λ by the procedure SetStrategy.

We observe that CostExpl finds a strategy in O(n) time. To summarize, we give a

formal statement of the procedure.

5.2 Analysis of the Algorithm

In this Section, we analyze the algorithm by providing the necessary observations

and lemmas and give the lower and upper bounds. Firstly, let us make a simple

observation about the behavior of agents in the cost-optimal strategies.

Observation 5.3. In every cost-optimal strategy all agents terminates in leaves and

every leaf is visited exactly once.

Proof. Let T be any tree and S be the cost-optimal strategy for T in which an agent

a terminates in v ∈ V (T)\L(T). By Observation 5.1 agent a has explored at least

one leaf. Let u ∈ L(T) be the last explored leaf by a. Notice, that every vertex

visited by a after it leaves u lies on a path between root and some other leaf, which

means that either it has been already explored or will be later by some other agents.

Thus, these moves are unnecessary and S(T) is not minimal. The latter part of the

observation is obvious.

In our strategies, subtrees Tv of the maximum height d(r, v) + q are always

15

Procedure SetStrategy

Input: Tree T , vertex v, invoking cost q, labeling Λ, strategy S
Result: Strategy S

1: if v 6∈ L(T) then

2: if v == r then

3: Add a move to S: invoke Λr.k agents in r

4: dr ← d(r, v) + q

5: Let c1, . . . , cl be children of v, where cl = Λv.uc

6: for i ∈ {1, . . . , l} do

7: Add a sequence of moves to S: traverse (v, ci) by Λci .k agents

8: Invoke Procedure SetStrategy for T, ci, q,Λ and S
9: if d(v,Λci .ul) ≤ dr and ci 6= Λv.uc then

10: Add a sequence of moves to S: send an agent back from Λci .ul to v

Procedure CostExpl

Input: Tree T , invoking cost q

Result: Strategy S
Invoke Procedure SetLabeling for T, r, q and ∅; set Λ as an output

Invoke Procedure SetStrategy for T, r, q,Λ and ∅; set S as an output

Return S

explored by one agent. The next observation says that in the cost-optimal solution

this agent finishes in the furthest leaf of Tv.

Observation 5.4. If one agent is cost-optimal to search a tree T , then it terminates

in one of the furthest leaves.

Proof. Let T be any tree rooted in r. Let S be the cost-optimal strategy for T , in

which an agent a terminates in leaf l (Observation 5.3). Thanks to Observation 5.2

we notice that agent a simply performs DFS on T truncated by moves from l to

r. In other words, the total cost is equal to 2w(T) − d(r, l), thus l should be the

furthest leaf.

Let v ∈ V (T) different then root. Lemma 5.1 guarantees us that after the

exploration of Tv at most one agents returns to p(v). Lemma 5.2 and Theorem 5.1

present our main results.

Lemma 5.1. In every cost-optimal strategy if an agent leaves any subtree, it has

explored it on its own.

Proof. Let T be any tree rooted in r and v ∈ V different then r. By contradiction,

let S be the cost-optimal strategy for T , in which Tv is explored by at least two

agents and at least one of them leaves Tv at some step.

16

Let A be a group of agents, which terminates in leaves of Tv and B a group of

agents, which visits at least one vertex of Tv, but terminates in leaves outside Tv.

From the assumption we have that |A∪B| ≥ 2 and B 6= ∅. For every a ∈ A∪B let ua

be the last visited leaf from Tv (which existence is guaranteed by Observation 5.1)

and let a terminates in la. Thanks to the Observation 5.2 we can split the walk

Wa(r, la) traversed by every agent a ∈ A ∪B into parts. We define:

• W 1
a (r, p(v)), a ∈ A ∪ B as a walk that a traverses until it reaches v for the

first time, excluding v;

• W 2
a (v, ua), a ∈ A∪B as a walk that a traverses inside Tv until it explores ua;

• W 3
a (p(v), la), a ∈ B as a walk that a traverses after leaving Tv, excluding v.

We obtain that,

w(Wa(r, la)) = w(Wa(r, ua)) = w(W 1
a (r, p(v))) (18)

+ w((p(v), v)) + w(W 2
a (v, ua)), (19)

for every a ∈ A, and

w(Wa(r, la)) = w(W 1
a (r, p(v)) + w((p(v), v)) + w(W 2

a (v, ua)) (20)

+ d(ua, p(v)) + w(W 3
a (p(v), la), (21)

for every a ∈ B. We consider two cases.

Case A: A 6= ∅. We choose and arbitrary agent a′ ∈ A and modify its walk, so

after W 1
a′(r, p(v)) it traverses all the walks W 2

a (v, ua), a ∈ B returning every time

to v. All of the agents a ∈ B traverses first W 1
a (r, p(v)) and then W 3

a (p(v), la), i.e.,

there is no agent that leaves Tv. Obtained in that way S ′ is a proper strategy, which

explores the whole tree T . Let now L and L′ be the total distances traversed by

agents from A ∪B in S and S ′, respectively. We get the following:

L =
∑
a∈A

(
w(W 1

a (r, p(v))) + w((p(v), v)) + w(W 2
a (v, ua))

)
+ (22)

+
∑
a∈B

(w(W 1
a (r, p(v))) + w((p(v), v)) + w(W 2

a (v, ua))+ (23)

+ d(ua, p(v)) + w(W 3
a (p(v), la)), (24)

L′ =
∑
a∈A

(
w(W 1

a (r, p(v))) + w((p(v), v)) + w(W 2
a (v, ua))

)
+ (25)

+
∑
a∈B

(
w(W 1

a (r, p(v)) + w(W 3
a (p(v), la))

)
+ (26)

+
∑
a∈B

(
w(W 2

a (v, ua)) + d(ua, v)
)
< L, (27)

17

which finishes the proof of first case.

Case B: A = ∅. We choose and arbitrary agent a′ ∈ B and modify its walk, so

after W 1
a′(r, p(v)) it traverses all the walks W 2

a (v, ua), a ∈ B returning every time to

v. All of the other agents a ∈ B traverses firstly W 1
a (r, p(v)) and then W 3

a (p(v), la),

i.e., only a′ leaves Tv. Obtained in that way S ′ is a proper strategy, which explores

the whole tree T . Similarly to the previous case one can show that S ′(T) < S(T),

i.e., we get the contradiction that S is cost-optimal.

Lemma 5.2. Let Λ be a labeling returned by the procedure SetLabeling for an

arbitrary tree T . Every cost-optimal strategy uses at least Λv.k agents to explore

Tv, v ∈ V (T). ‡

Proof. Let T be any tree of the height H rooted in r. By the induction on the height

of a tree h. Firstly, let h = H, i.e., we consider labeling of the set L(T), which is

the base case in our procedure. Any cost-optimal strategy uses one agent to explore

a leaf, thus Λu.k = 1 is correct.

We assume now, that all the labeling is correct for vertices at levels greater

than h and consider vertices on the level h. Notice, that invoking SetLabeling in

recursive way guarantees, that before the label on any vertex is computed, all of

its children’s labels are set. Let v be any vertex of T on level 0 ≤ h < H. The

algorithm sets

Λv.k = max

∑
u∈c(v)

(
Λu.k − 1(d(v,Λu.ul)≤d(r,v)+q)

)
, 1

 . (28)

Because once an agent leaves any subtree, it never comes back to it (Observation 5.2),

subtrees rooted in the children of v can be searched sequentially. Every Tu, u ∈ c(v)

needs Λu.k agents, which is minimal from the induction assumption. We notice,

that after exploring Tu at most one agent might return to v and be used to explore

Tv\Tu (Lemma 5.1). It can happen only if Λu.k = 1. Thus, this agent has to finish

in the furthest leaf of Tu (Observation 5.4). The strategy S reuses all agents (apart

from the possible one from the last visited subtree Tu) which finishes the exploration

of Tu in the leaf, which is not ‘too far’, i.e., d(v,Λu.ul) ≤ d(r, v) + q. Indeed, no

other agent can be reused, because if d(v,Λu.ul) > d(r, v) + q, then it is cheaper to

call a new agent from the root. Thus, Λv.k is minimal.

Theorem 5.1. Procedure CostExpl for every tree T returns a strategy, which ex-

plores T in the cost-optimal way.

‡There exist cost-optimal strategies that can use more than Λv.k agents. Indeed, if d(v,Λv.ul) =

d(r, v) + q reusing the agent and calling a new one generates equal cost.

18

Proof. Let T be any tree rooted in r, Λ be the labeling computed by SetLabeling

and S be a strategy for T returned by CostExpl. Constructing S for every Tv, v ∈
V (T) based on Λ is straightforward. Let u ∈ c(v)\{Λv.uc}. Firstly, traverse Λu.k

agents along (v, u). Then, set the strategy for Tu. After the exploration of Tu,

if d(v,Λu.ul) ≤ d(r, v) + q, return an agent from Λu.ul to v. Repeat for every

u ∈ c(v)\{Λv.uc} in the random order. For the last child u = Λv.uc after the

exploration of Tu do not return any agents.

By Lemma 5.2 we know that Λv.k is the minimum number of agents that has

to be send to v (or invoked, for v = r). The remaining thing to prove is that the

order of exploring subtrees does not matter as long as the one with the furthest leaf

is visited as the last one. Let

U1 = {u|u ∈ c(v), d(v,Λu.ul) ≤ d(r, v) + q}, (29)

U2 = c(v)\U1, (30)

Ti = {Tu|u ∈ Ui}, i ∈ {1, 2}, (31)

uc = Λv.uc, (32)

Tc = Tuc . (33)

If U1 = ∅, then Λv.k =
∑

u∈c(v) Λu.k and the order of exploration does not

matter. On the other hand, if U2 = ∅, then Λv.k = 1 and the agent has to finish in

the furthest leaf (Observation 5.4), i.e., Tc has to be explored as the last one. Let

then U1, U2 6= ∅, we notice that Tc ∈ T2. Our intuition may say that is better to

first explore trees from T1 and then from T2. But as long as the last tree to visit is

from T2, the order of the rest subtrees does not influence Λv.k or the cost. Let us

consider the strategy, which firstly explores all trees from T1. The total number of

required agents is

Λv.k = 1 +

 ∑
u∈U2\{uc}

Λu.k − 1

+ Λuc .k =
∑
u∈U2

Λu.k. (34)

This amount does not change for any order of the exploration. Indeed, after the

exploration of a tree from T1 an agent is reused to explore the next tree, decreasing

the same Λv.k by one. See, for example, the strategy in which first are explored

trees from T2\{Tc}. The total number of agents stays the same, i.e,

Λv.k =
∑
u∈U2

Λu.k + 1 + (Λuc .k − 1) =
∑
u∈U2

Λu.k. (35)

At the end we observe, that as trees are explored separately and Λv.k is the same

for any order of the exploration, the total cost is not influenced either.

Lower and Upper Bounds For any tree T the value of the optimal cost c is

bounded by q + w(T) ≤ c ≤ q + 2w(T) −H. A trivial lower bound is achieved on

19

the path graph, where one agent traverses the total distance of w(T). The upper

bound can be obtained by performing DFS algorithm by one entity, which set it

on q+ 2w(T). Let DFS ′ be the modified version of DFS, such that the agent does

not return to the homebase (i.e., terminates in one of the leaves). Then we get an

improved upper bound of q+ 2w(T)−H, where H is the height of T , which is tight

(e.g., for paths). It is worth to mention that although DFS ′ performs well on some

graphs, it can be twice worse than CostExpl. Let q ≥ 0 be any invoking cost and

K1,n be a star rooted in the internal vertex with edges of the weight l > q. While

DFS ′ produces the cost of c′ = q+ 2ln− l, the optimal solution is c = qn+ ln. The

ratio c′/c grows to 2 with the growth of l and n.

6 Trees in the On-line Setting

In this Section we take a closer look at the algorithms for trees in the on-line setting.

Because the height of tree T is not known, the upper bound of the cost, set by DFS ′,

is q + 2w(T) − ε, where ε is some small positive constant. This leads to the upper

bound of 2 for the competitive ratio. We are going to prove that it is impossible to

construct an algorithm that achieves better competitive ratio than 2. We state the

problem in the on-line setting formally:

On-line Tree Problem Statement

Given the invoking cost q and the homebase in the root of T , find a strategy

of the minimum cost for any tree T .

Denote as T ⊂ G an infinite class of rooted in v0 trees, where every edge has

weight equal to 1. For every integer l ∈ N+, i ∈ {1, . . . , l} and li ∈ {1, . . . , l}, we

add to the class T a tree constructed in the following way:

• construct l + 1 paths P (vi, vi+1), i ∈ {0, . . . , l} of the length l;

• for every i ∈ {1, . . . , l} construct a path P (u′i, ui) of the length li− 1 (if li = 1,

then ui = u′i) and add edge (vi, u
′
i).

In other words, every graph in T has a set of decision vertices {v1, . . . , vl} and

set of leaves {vl+1, u1, . . . , ul}. Every decision vertex has exactly two children, vi is

an ancestor of vj and d(vi, vi+1) = l for every 0 ≤ i < j ≤ l + 1. See Figure 4.

Theorem 6.1. Any on-line cost-optimal solution for trees is 2-competitive.

Proof. DFS ′ is an example of an algorithm at most twice worse than the best

solution, which sets the upper bound. We are going now to show that for any

invoking cost q ≥ 0 and strategy S there exists a tree T ∈ T and a strategy S ′, such

that S(T) ≥ 2S ′(T). Let l ∈ N+ be any integer. Values of li, i ∈ {1, . . . , l} are set

during the execution of S. For every vi, i ∈ {1, . . . , l} three cases can occur.

20

v0

v1

v2

u1

l1 ≤ l

l

u2 vl

ul

l2 ≤ l

ll ≤ l

2l

vl+1

l

Figure 4: Illustration of graphs from the class T , where l ∈ N+ and li ∈ {1, . . . , l},
i ∈ {1, . . . , l}.

Case A: More than one agent reaches vi before any child of vi is explored. The

value of li is set as 1.

Case B: One of the agents explores one of the branches of vi at the depth 0 ≤ h < l

and the second branch at the depth l, before any other agent reaches vi for the first

time. In this situation we choose a set of graphs from T for which the explored

vertex at the depth l is vi+1 and li = h + 1. The value of h might be 0, as it takes

place e.g., for DFS.

Case C: One of the agents explores two branches of vi at the depth 0 ≤ h1 <

l, 1 ≤ h2 < l, before any other agent reaches vi for the first time. Without loss

of generality, we assume that the branch explored to the level h2 is visited as the

last one. In this situation we choose a set of graphs from T for which vertex vi+1

belongs to the branch of vi explored till the level h2 and li = h1 + 1. Once again,

h1 = 0 means that the branch was not explored at all.

When S explores vl+1, all li are defined and the set of graphs is narrowed to

the exactly one graph, which we denote as T . We claim first that the distance d0

traversed along the path P (v1, vl+1) is at least 2l2 − l in any S. Let agent a1 be the

one, which explores vl+1 and let k ∈ {0, . . . , l} be the number of decision vertices

visited by more than one agent.

Case A’: k = 0, i.e., T is explored by one agent. In other words, for all vi holds the

Case B. We notice that, whenever a strategy S explores vi+1, i ∈ {1, . . . , l}, exactly

one vertex (i.e., leaf ui) on the path P (vi, ui) is unexplored. Thus, P (v1, vl+1) has

to be traversed at least twice and d0 ≥ 2l2.

21

Case B’: k = l. Path P (v1, vl) has to be obviously traversed at least twice and

P (vl, vl+1) once, i.e., d0 ≥ 2l(l − 1) + l = 2l2 − l.

Case C’: 0 < k < l. In other words, Tvk+1
is explored by one agent. Paths P (v1, vk)

and P (vk+1, vl+1) are traversed at least twice and P (vk, vk+1) at least once. Thus,

d0 ≥ 2l(k − 1) + 2l(l − k) + l = 2l2 − l.
Now, we have to analyze paths P (vi, ui), i ∈ {1, . . . , l}. We divide decision

vertices into the four groups based on the performance of S:

• V1 = {vi|li = 1, no agent terminates in ui, i ∈ {1, . . . , l}};

• V2 = {vi|li = 1, at least one agent terminates in ui, i ∈ {1, . . . , l}};

• V3 = {vi|li > 1, no agent terminates in any vertices of the path

P (vi, ui), i ∈ {1, . . . , l}};

• V4 = {vi|li > 1, at least one agent terminates in a vertex from the path

P (vi, ui), i ∈ {1, . . . , l}}.

Notice that V1, V2, V3 and V4 form a partition of decision vertices. Let us denote

as di the total distance traversed by all the agents along P (vi, ui) in S. For any

vi ∈ V1 we have di ≥ 2 and vi ∈ V2 we have di ≥ 1. From the way how T is

constructed follows, that if li > 1, then either holds Case B and h > 0 or Case C

and h1 > 0. In both situations path P (vi, p(ui)) is first traversed at least twice,

leaving ui unexplored. If now, no agent terminates in any vertex of P (vi, ui), then

P (vi, p(ui)) has to be traversed at least twice more. Thus,

di ≥ 4(li − 1) + 2 ≥ 4li − 2, vi ∈ V3. (36)

On the other hand, if at least one agent terminates in any vertex of P (vi, ui),

then P (vi, p(ui)) can be traversed only one extra time. Which leads to,

di ≥ 3(li − 1) + 1 ≥ 3li − 2, vi ∈ V4. (37)

Lastly, we have to consider the extra cost d′ generated by searchers. Every

invoked agent, which terminates on some path P (vi, ui) has to traverse the edge

(v0, v1), thus

d′ ≥ (q + l) (|V2|+ |V4|) ≥ |V2|+ l|V4|. (38)

The total cost of exploring T by S can be lower bounded by

S(T) ≥ 2l2 − l + 2|V1|+ |V2|+
∑
vi∈V3

(4li − 2) +
∑
vi∈V4

(3li − 2) + |V2|+ (39)

+ l|V4| ≥ 2l2 − l + 2|V1|+ 2|V2|+ 4
∑
vi∈V3

li − 2|V3|+ 4
∑
vi∈V4

li − 2|V4| = (40)

= 2l2 − l + 4
l∑

i=1

li − 2(|V1|+ |V2|+ |V3|+ |V4|) = 2l2 + 4
l∑

i=1

li − 3l. (41)

22

Consider now the following off-line strategy S ′, which explores the same graph T

by using one agent, which after reaching the decision vertex vi, i ∈ {1, . . . , l}, firstly

traverses the path P (vi, ui), then returns to vi and explores further the tree. The

agent finally terminates in vl+1. Thus, the path P (v0, vl+1) of the length (l + 1)l is

traversed only once and paths P (vi, ui), i ∈ {1, . . . , l} twice. The optimal strategy

can be then upper bounded by

Sopt(T) ≤ S ′(T) = q + l2 + 2
l∑

i=1

li + l. (42)

This leads to the following competitive ratio

r(S) = lim
l→∞

S(T)

Sopt(T)
≥ lim

l→∞

2l2 + 4
l∑

i=1

li − 3l

q + l2 + 2
l∑

i=1

li + l

= (43)

= 2− lim
l→∞

5l + 2q

q + l2 + 2
l∑

i=1

li + l

= 2, (44)

which finishes the proof.

7 Conclusion

In this work we propose a new cost of the team exploration, which is the sum of total

traversed distances by agents and the invoking cost which has to be paid for every

searcher. This model describes well the real life problems, where every traveled

unit costs (e.g., used fuel or energy) and entities costs itself (e.g., equipping new

machines or software license cost). The algorithms, which construct the cost-optimal

strategies for any given edge-weighted ring and tree in O(n) time are presented. As

for the on-line setting the 2-competitive algorithm for rings is given and the lower

bounds of 3/2 and 2 for the competitive ratio for rings and trees, respectively, are

proved. While there is very little done in this area, a lot of new questions have been

pondered. Firstly, it would be interesting to consider other classes of graphs, also

for the edge-exploration (where not only every vertex has to be visited, by also every

edge). Intuitively, for some of them, the problem would be easy and for some might

be NP-hard (e.g., cliques). Another direction is to look more into the problem in the

on-line setting, which is currently rapidly expanding due to its various application in

many areas. It would be highly interesting to close the gap between lower and upper

bounds of the competitive ratio for rings. Another idea is to bound communication

for agents, which will make this model truly distributed. One may notice, that a

simple solution of choosing one leader agent to pass messages between the other

23

entities might not be cost-optimal, as it significantly rises the traveling cost. Lastly,

different variation of this model might be proposed, e.g., the invoking cost might

increase/decrease with the number of agents in use or time might be taken under

consideration as the third minimization parameter.

References

[1] Mandell Bellmore and George L Nemhauser. The traveling salesman problem:

a survey. Operations Research, 16(3):538–558, 1968.

[2] Gerardo Berbeglia, Jean-François Cordeau, Irina Gribkovskaia, and Gilbert

Laporte. Static pickup and delivery problems: a classification scheme and

survey. Top, 15(1):1–31, 2007.

[3] Peter Brass, Ivo Vigan, and Ning Xu. Improved analysis of a multirobot graph

exploration strategy. In Control Automation Robotics & Vision (ICARCV),

2014 13th International Conference on, pages 1906–1910. IEEE, 2014.

[4] Jerzy Czyzowicz, Krzysztof Diks, Jean Moussi, and Wojciech Rytter. Energy-

optimal broadcast in a tree with mobile agents. In International Symposium

on Algorithms and Experiments for Sensor Systems, Wireless Networks and

Distributed Robotics, pages 98–113. Springer, 2017.

[5] Shantanu Das, Dariusz Dereniowski, and Christina Karousatou. Collabora-

tive exploration by energy-constrained mobile robots. In International Collo-

quium on Structural Information and Communication Complexity, pages 357–

369. Springer, 2015.

[6] D. Dereniowski, Y. Disser, A. Kosowski, D. Pajak, and P. Uznanski. Fast

collaborative graph exploration. Inf. Comput., 243:37–49, 2015.

[7] Yann Disser, Frank Mousset, Andreas Noever, Nemanja Škorić, and Angelika

Steger. A general lower bound for collaborative tree exploration. In Interna-

tional Colloquium on Structural Information and Communication Complexity,

pages 125–139. Springer, 2017.

[8] Miroslaw Dynia, Miroslaw Korzeniowski, and Christian Schindelhauer. Power-

aware collective tree exploration. In International Conference on Architecture

of Computing Systems, pages 341–351. Springer, 2006.

[9] Miroslaw Dynia, Jakub Lopuszański, and Christian Schindelhauer. Why robots

need maps. In International Colloquium on Structural Information and Com-

munication Complexity, pages 41–50. Springer, 2007.

24

[10] F.V. Fomin and D.M. Thilikos. An annotated bibliography on guaranteed graph

searching. Theor. Comput. Sci., 399(3):236–245, 2008.

[11] P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and A. Pelc. Collective tree ex-

ploration. Networks, 48(3):166–177, 2006.

[12] Bruce L Golden, Subramanian Raghavan, and Edward A Wasil. The vehi-

cle routing problem: latest advances and new challenges, volume 43. Springer

Science & Business Media, 2008.

[13] Y. Higashikawa, N. Katoh, S. Langerman, and S. Tanigawa. Online graph

exploration algorithms for cycles and trees by multiple searchers. J. Comb.

Optim., 28(2):480–495, 2014.

[14] Suresh Nanda Kumar and Ramasamy Panneerselvam. A survey on the ve-

hicle routing problem and its variants. Intelligent Information Management,

4(03):66, 2012.

[15] Christian Ortolf and Christian Schindelhauer. Online multi-robot exploration

of grid graphs with rectangular obstacles. In Proceedings of the twenty-fourth

annual ACM symposium on Parallelism in algorithms and architectures, pages

27–36. ACM, 2012.

[16] Pooja Vaishnav, Naveen Choudhary, and Kalpana Jain. Traveling salesman

problem using genetic algorithm: a survey. International Journal of Scien-

tific Research in Computer Science, Engineering and Information Technology,

2(3):105–108, 2017.

25

