
Do Null-Type Mutation Operators
Help Prevent Null-Type Faults?

Ali Parsai1[0000−0001−8525−8198] and Serge Demeyer2[0000−0002−4463−2945]

1 University of Antwerp
ali.parsai@uantwerpen.be

2 University of Antwerp and Flanders Make
serge.demeyer@uantwerpen.be

Abstract. The null-type is a major source of faults in Java programs,
and its overuse has a severe impact on software maintenance. Unfor-
tunately traditional mutation testing operators do not cover null-type
faults by default, hence cannot be used as a preventive measure. We
address this problem by designing four new mutation operators which
model null-type faults explicitly. We show how these mutation operators
are capable of revealing the missing tests, and we demonstrate that these
mutation operators are useful in practice. For the latter, we analyze the
test suites of 15 open-source projects to describe the trade-offs related
to the adoption of these operators to strengthen the test suite.

Keywords: Software Maintenance, Software Testing, Mutation Testing,
Null-Type, Test Quality

1 Introduction

The null-type is a special type in Java that has no name, cannot be casted, and
practically equates to a literal that can be of any reference type [11]. The null-
type is commonly misused, and frequently reported and discussed as an issue
by developers [24]. The null-type is the source of the majority of faults in Java
programs [25], and its overuse has a severe impact on software maintenance [15].
On the one hand, this scenario should push developers to build test suites capable
of identifying null-type faults. On the other hand, developers without specific
test requirements may struggle to identify all code elements or properties that
the test must satisfy. To address this problem, we propose mutation testing as
a way for improving the test suite to handle potential null-type faults.

Mutation testing is a technique to measure the quality of a test suite by as-
sessing its fault detection capabilities [5]. Mutation testing is a two-step process.
First, a small syntactic change is introduced in the production code. This change
is obtained by applying a “mutation operator”, and the resulting changed code is
called a “mutant”. Then, the test suite is executed for that mutant; if any of the
tests fail, the mutant is “killed”, otherwise, the mutant has “survived”. Herein
lies the aspect of mutation testing that we want to exploit: the identification of
survived mutants that need to be killed.

ar
X

iv
:2

00
4.

04
21

1v
1 

 [
cs

.S
E

] 
 8

 A
pr

 2
02

0



2 Ali Parsai, Serge Demeyer

Mutation operators are modeled after the common developer mistakes [14].
Over the years, multiple sets of mutation operators have been created to fit
in different domains. By far the most commonly used mutation operators are
the ones introduced in Mothra by Offutt et al. [21]. They use 10 programs
written in Fortran to demonstrate that their reduced-set mutation operators
is enough to produce a mutation-adequate test suite that can kill almost all
of the mutants generated by the mutation operators of the complete-set. Later
on, several attempts have been made to extend Offutt’s mutation operators,
for instance, to cope with the specificities of object-oriented programming [19].
Yet, none of the proposed mutation operators explicitly model null-type faults.
As a result, mature general-purpose mutation testing tools currently used in
literature, such as PITest [4] and Javalanche [35], do not cope explicitly with
this type of faults by default. Therefore, the created mutants risk not being
adequate to derive test requirements that handle null-type faults. Whether this
risk is concrete or not depends on the ability of the available mutation operators
to account for these faults. Yet, no study has explored this aspect.

This paper investigates the usefulness of mutation operators able to model
null-type faults in order to strengthen the test suite against these faults. For this
reason, we introduce four new mutation operators related to null-type faults.
These mutation operators are modeled to cover the typical null-type faults in-
troduced by developers [24]. We incorporate these mutation operators in Lit-
tleDarwin, an extensible open-source tool for mutation testing [32], creating a
new version called LittleDarwin-Null. We organize our research in two steps: we
show that (i) the current general-purpose mutation testing tools do not account
for null-type faults by default, and modeling operators for null-type faults can
drive the improvement of the test suite in practice, and (ii) the test suites of real
open-source projects cannot properly catch null-type faults. The paper is driven
by the following research questions:

– RQ1: Are traditional mutation operators enough to prevent null-type faults?
– RQ2: To what extent is the addition of null-type mutation operators useful

in practice?

The rest of the paper is organized as follows: In Section 2, background infor-
mation and related work is provided. In Section 3, the details of the experiment
are discussed. In Section 4, the results are analyzed. In Section 5, we discuss the
threats that affect the results. Finally, we present the conclusion in Section 6.

2 Background and Related Work

Mutation testing is the process of injecting faults into a software system and
then verifying whether the test suite indeed fails, and thus detects the injected
fault. First, a faulty version of the software is created by introducing faults into
the system (Mutation). This is done by applying a transformation (Mutation
Operator) on a certain part of the code. After generating the faulty version of
the software (Mutant), it is passed onto the test suite. If a test fails, the mutant



Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 3

is marked as killed (Killed Mutant). If all tests pass, the mutant is marked as
survived (Survived Mutant).

Mutation Operators. A mutation operator is a transformation which intro-
duces a single syntactic change into its input. The first set of mutation operators
were reported in King et al. [16]. These mutation operators work on essential
syntactic entities of programming languages such as arithmetic, logical, and re-
lational operators. For object-oriented languages, new mutation operators were
proposed [19]. The mature mutation testing tools of today still mostly use the
traditional (i.e. method-level) mutation operators [27].

Equivalent Mutants. An equivalent mutant is a mutant that does not
change the semantics of the program, i.e. its output is the same as the original
program for any possible input. Therefore, no test case can differentiate between
an equivalent mutant and the original program. The detection of equivalent
mutants is undecidable due to the halting problem [22].

Mutation Coverage. Mutation testing allows software engineers to monitor
the fault detection capability of a test suite by means of mutation coverage [13].
A test suite is said to achieve full mutation test adequacy whenever it can kill all
the non-equivalent mutants, thus reaching a mutation coverage of 100%. Such
test suite is called a mutation-adequate test suite.

Mutant Subsumption. Mutant subsumption is defined as the relationship
between two mutants A and B in which A subsumes B if and only if the set of
inputs that kill A is guaranteed to kill B [18]. The subsumption relationship for
faults has been defined by Kuhn in 1999 [17]. Later on, Ammann et al. tackled
the theoretical side of mutant subsumption [2] where they define dynamic mutant
subsumption as follows: Mutant A dynamically subsumes Mutant B if and only
if (i) A is killed, and (ii) every test that kills A also kills B. The main purpose
behind the use of mutant subsumption is to detect redundant mutants. These
mutants create multiple threats to the validity of mutation analysis [26]. This
is done by determining the dynamic subsumption relationship among a set of
mutants, and keep only those that are not subsumed by any other mutant.

Mutation Testing Tools. In this study, we use three different mutation
testing tools: Javalanche, PITest, and LittleDarwin. Javalanche is a mutation
testing framework for Java programs that attempts to be efficient, and not pro-
duce equivalent mutants [35]. It uses byte code manipulation in order to speed
up the process of mutation testing. Javalanche has been used in numerous stud-
ies in the past (e.g. [10,9]). PITest is a state-of-the-art mutation testing system
for Java, designed to be fast and scalable [4]. PITest is the de facto standard for
mutation testing within Java, and it is used as a baseline in mutation testing
research (e.g. [12,34]). LittleDarwin is a mutation testing tool designed to work
out of the box with complicated industrial build systems. For this, it has a loose
coupling with the test infrastructure, instead relying on the build system to
run the test suite. LittleDarwin has been used in several studies, and is capable
of performing mutation testing on complicated software systems [33,30,31]. For
more information about LittleDarwin please refer to Parsai et al. [32]. We imple-
mented the new null-type mutation operators in a special version of LittleDarwin



4 Ali Parsai, Serge Demeyer

called LittleDarwin-Null. LittleDarwin and LittleDarwin-Null only differ in the
set of mutation operators used, and are identical otherwise.

Related Work. Creating new mutation operators to deal with the evolu-
tion of software languages is a trend in mutation testing research. For exam-
ple, mutation operators have been designed to account for concurrent code [3],
aspect-oriented programming [7], graphical user interfaces [23], modern C++
constructs [29], and Android applications [6]. Nanavati et al. have previously
studied mutation operators targeting memory-related faults [20]. However, the
difference in the semantics of null object of Java and NULL macro of C is suffi-
cient to grant the need for a separate investigation.

3 Experimental Setup

In this section, we first introduce our proposed mutation operators, and then we
discuss the experimental setup we used to address our research questions.

3.1 Null-Type Mutation Operators

We derived four null-type mutation operators to model the typical null-type
faults often encountered by developers [25]. These mutation operators are pre-
sented in Table 1.

Table 1. Null-Type Faults and Their Corresponding Mutation Operators

Mutation Operator Description

NullifyReturnValue If a method returns an object, it is replaced by null

NullifyInputVariable If a method receives an object reference, it is replaced by null

NullifyObjectInitialization Wherever there is a new statement, it is replaced with null

NegateNullCheck Any binary relational statement containing null at one side is negated

3.2 Case Study

For RQ1, we use a didactic project. For RQ2, we use 15 open-source projects.
RQ1. In order to address RQ1, we chose a modified version of VideoStore

as a small experimental project [8]. Choosing a small project allows us to (i)
create a mutation-adequate test suite ourselves, (ii) find out which mutants are
equivalent, and (iii) avoid complexities when using multiple mutation testing
tools. The source code for VideoStore is available in the replication package.

RQ2. We selected 15 open-source projects for our empirical study (Table 2).
The selected projects differ in size of their production code and test code, num-
ber of commits, and team size to provide a wide range of possible scenarios.
Moreover, they also differ in the adequacy of their test suite based on state-
ment, branch, and mutation coverage (Table 2). We used JaCoCo and Clover
for statement and branch coverage, and LittleDarwin for mutation coverage.

4 Results and Discussion
RQ1: Are traditional mutation operators enough to prevent null-type faults?

We are interested to compute the number of killed, survived and equivalent
mutants along with three versions of VideoStore. The first version we analyze



Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 5

Table 2. Projects Sorted by Mutation Coverage

Project Ver.
Size (LoC)

#C TS SC BC MC
Prod. Test

Apache Commons CLI 1.3.1 2,665 3,768 816 15 96% 93% 94%

JSQLParser 0.9.4 7,342 5,909 576 19 81% 73% 94%

jOpt Simple 4.8 1,982 6,084 297 14 99% 97% 92%

Apache Commons Lang 3.4 24,289 41,758 4,398 30 94% 90% 91%

Joda Time 2.8.1 28,479 54,645 1,909 42 90% 81% 82%

Apache Commons Codec 1.10 6,485 10,782 1,461 10 96% 92% 82%

Apache Commons Collections 4.1 27,914 32,932 2,882 26 85% 78% 81%

VRaptor 3.5.5 14,111 15,496 3,417 65 87% 81% 81%

HTTP Request 6.0 1,391 2,721 446 15 94% 75% 78%

Apache Commons FileUpload 1.3.1 2,408 1,892 846 19 76% 74% 77%

jsoup 1.8.3 10,295 4,538 888 43 82% 72% 76%

JGraphT 0.9.1 13,822 8,180 1,150 31 79% 73% 69%

PITest 1.1.7 17,244 19,005 1,044 19 79% 73% 63%

JFreeChart 1.0.17 95,354 41,238 3,394 4 53% 45% 35%

PMD r7706 70,767 43,449 7,706 20 62% 54% 34%

Acronyms: Version (Ver.), Line of code (LoC), Production code (Prod.), Number of commits (#C),

Team size (TS), Statement coverage (SC), Branch coverage (BC), Mutation coverage (MC)

is the original one (VideoStore Orig). This version has only 4 tests. Then, we
create a mutation-adequate test suite that kills all mutants generated by the
general-purpose tools (Javalanche, PITest, and LittleDarwin). In this version
(VideoStore TAdq) we added 15 tests. Finally, we create a mutation-adequate
test suite that kills all mutants, included the ones generate by LittleDarwin-Null.
In this version (VideoStore NAdq) we added 3 more tests.

Table 3. Mutation testing results for VideoStore

Program
LittleDarwin PITest Javalanche LittleDarwin-

Null
K S E K S E K S E K S E

VideoStore Orig 24 18 2 25 43 5 87 69 11 11 14 1

VideoStore TAdq 42 0 2 68 0 5 202 0 11 22 3 1

VideoStore NAdq 42 0 2 68 0 5 202 0 11 25 0 1

K: Killed, S: Survived, E: Equivalent

Table 3 shows the number of remaining mutants after each phase of test
development: VideoStore Orig, VideoStore TAdq, and VideoStore NAdq. The
discrepancy in total number of generated mutants for the three versions of the
program in case of Javalanche is due to its particular optimizations. In Video-
Store Orig, there are several survived mutants according to all the tools. This is
because the test suite accompanying the VideoStore program was not adequate.



6 Ali Parsai, Serge Demeyer

Fig. 1. The Surviving Non-Equivalent Null-Type Mu-
tants

In VideoStore TAdq, we
create a mutation-adequate
version of the test suite
with respect to the results
of PITest, Javalanche, and
LittleDarwin. In the pro-
cess of creating this test
suite, we noticed that all of
these tools produce equiva-
lent mutants. Two of such
mutants are shown in Fig-
ure 2. Mutant A is equiv-
alent because the method
super.determineAmount al-
ways returns 0, so it does
not matter whether it is
added to or subtracted from
thisAmount. Mutant B is
also equivalent, because if
daysRented is 2, the value added to thisAmount is 0. We analyzed VideoStore
TAdq with LittleDarwin-Null in order to find out whether the mutation-adequate
test suite according to three general-purpose tools is able to kill all the null-type
mutants. By analyzing the 26 generated mutants, we noticed that 22 mutants
were killed and 4 survived. The manual review of these mutants show that one
of them is an equivalent mutant.

Fig. 2. Two of the Equivalent Mutants Generated by Traditional Mutation Operators

Fig. 3. One of the Equivalent Mutants Generated by Null-Type Mutation Operators

Considering that 3 mutants generated by null-type mutation operators are
not equivalent, and yet the mutation-adequate test suite we created according to
the general-purpose tools cannot kill them, we conclude that using traditional
mutation operators to strengthen the test suite does not necessarily
prevent null-type faults.



Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 7

The four mutants survived in VideoStore TAdq are all of type NullifyObjec-
tInitialization. Figure 3 shows the equivalent null-type mutant. Here the default
behavior of Rental object is to create a new RegularMovie object when it re-
ceives null as its input. So, replacing new RegularMovie(null) with null does
not change the behavior of the program.

Fig. 4. The Tests Written to Kill the Surviving Null-
Type Mutants

The three remaining
surviving mutants are de-
scribed in Figure 1. Here,
mutants A and B re-
place the exception with
null. Consequently, as
opposed to the program
throwing a detailed ex-
ception, the mutant al-
ways throws an empty
NullPointerException.
Such a mutant is desir-
able to kill, since the pro-
gram would be able to
throw an unexpected ex-
ception due to a fault
that the test suite can-
not recognize. In the
case of Mutant C, it re-
places the initialization
of a RegularMovie object
with null. This means
that as opposed to the
program that guarantees
the private attribute movie
is always instantiated, the
same attribute contains a
null literal in the mutant.
If not detected, a NullPointerException might be thrown when another object
tries to access the movie attribute of this object.

We created three new tests to kill each of the survived mutants. These tests
are shown in Figure 4. Here, testMutantA and testMutantB verify whether the
unit under test throws the correct exception if called with an invalid input value.
testMutantC verifies whether the unit under test is able to handle a null input
correctly. These three tests are not “happy path tests”, namely a well-defined
test case using known input, which executes without exception and produces an
expected output. Consequently, they might not be intuitive for a test developer
to consider, even though they are known as good testing practice [1]. If not for the
three survived null-type mutants, these tests would not have been written. This
leads us to conclude that traditional mutation operators are not enough
to prevent null-type faults.



8 Ali Parsai, Serge Demeyer

RQ2: To what extent is the addition of null-type mutation operators

useful in practice?

RQ1 shows for the VideoStore project that mutation testing tools need to
introduce explicit mutation operators for modeling null-type faults. Yet, such a
project is not representative of real projects. In this RQ, we want to verify to
what extent null-type mutation operators are useful in practice. For this rea-
son, we perform an experiment that involves real open-source projects. After
introducing null-type mutants, two groups of mutants are affected: (i) survived
mutants are the targets the developer needs during test development, (ii) killed
mutants show the types of faults the test suite can already catch.

Considering this, we can justify the effort needed for extending mutation
testing by incorporating null-type mutants only if: (i) the real test suites do
not already kill most of the null-type mutants, (ii) the null-type mutants are
not increasing redundancy by a large margin. Otherwise, the current mutation
testing tools are already “good enough” for preventing null-type faults.

To verify to what extent the null-type mutants “do matter” when testing for
null-type faults we analyze both killed and survived mutants:

In case of survived mutants, we analyze the number of survived mutants
that each mutation operator generates for each project. We divide this analysis
into two parts. First, we analyze survived mutants for null-type and traditional
mutation operators. Second, we analyze each mutation operator individually to
find out which one produces the most surviving mutants. This analysis shows
whether the survived mutants produced by the null-type mutation operators are
“enough” to drive the test development process.

In case of killed mutants, we take all projects as a whole, and we analyze
whether the killed null-type mutants are redundant when used together with
traditional mutation operators. We measure redundancy using dynamic mutant
subsumption: we analyze the distributions of subsuming, killed, and all null-type
mutants. This way we can tell whether or not the null-type mutation operators
are producing “valuable” mutants to strengthen the test suite.

Survived mutants. Table 4 shows for each project the number of survived,
killed, and total generated mutants for both groups of mutation operators. The
first noticeable trend is a strong correlation (R2 = 0.81) between survived to
killed ratio (SKR) of the traditional mutants and SKR of the null-type mutants.
One exception to this trend is JSQLParser, in which there are significantly more
survived null-type mutants than survived traditional mutants. Investigating fur-
ther, we find that this happens because 50 small classes lack statements that
can be mutated by the traditional mutation operators. However, null-type mu-
tation operators are able to generate mutants for these classes. This uncovers
many of the weaknesses of the test suite. On the other side of the fence, there
is PITest, in which a single class (sun.pitest.CodeCoverageStore) contains
many arithmetic operations while poorly tested, so it produces 129 out of 398
survived traditional mutants. This shows that the usefulness of the null-type
mutation operators is program-dependent.



Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 9

Table 4. Mutants Generated by LittleDarwin and LittleDarwin-Null

Project
Traditional Mutation Operators Null-Type Mutation Operators
Survived Killed Total Survived Killed Total

Apache Commons CLI 24 318 342 71 415 486

JSQLParser 31 457 488 358 1,062 1,420

jOpt Simple 17 189 206 37 494 531

Apache Commons Lang 559 5,455 6,014 564 5,469 6,033

Joda Time 892 3,978 4,870 836 5,371 6,207

Apache Commons Codec 364 1,612 1,976 147 927 1,074

Apache Commons Collections 638 2,705 3,343 1,179 5,851 7,030

VRaptor 111 478 589 795 2,111 2,906

HTTP Request 49 178 227 69 383 452

Apache Commons FileUpload 81 273 354 137 211 348

jsoup 291 928 1,219 553 1,455 2,008

JGraphT 416 940 1,356 834 1,457 2,291

PITest 398 672 1,070 551 2,964 3,515

JFreeChart 10,558 5,603 16,161 8,563 6,248 14,811

PMD 5,205 2,734 7,939 5,099 4,613 9,712

Total 19,634 26,520 46,154 19,793 39,031 58,824

Figure 5 shows the number of killed and survived mutants for each mutation
operator. We see that among the traditional mutation operators, Arithmetic-
OperatorReplacementBinary, LogicalOperatorReplacement, and ArithmeticOper-
atorReplacementUnary have the highest ratio of survived to killed mutants. This
means that these mutation operators are generating mutants that are harder to
kill than the rest. The same can be observed among the null-type mutation oper-
ators, where NullifyObjectInitialization produces harder to kill mutants than the
others. This is as we expected, since NullifyInputVariable applies a major change
to the method (removal of an input), and NegateNullCheck negates a check that
the developer deemed necessary. However, the unexpected part of the result is
that so many of the mutants generated by NullifyReturnValue have survived.
This means that lots of methods are not tested on their output correctly. This
can be due to the fact that many of such methods are not tested directly, and
when tested indirectly, their results only affect a small part of the program state
of the method under test.

In general, the number of survived null-type mutants has a strong correlation
with the number of survived traditional mutants for most projects. This implies
that not all parts of the code are tested well. However, the exceptions to this
rule are caused by classes that produce many more mutants of a particular type.
Here, our results show that the null-type mutation operators complement
the traditional mutation operators and vice versa by each providing
a large portion of survived mutants.

Killed mutants. Considering all projects as a whole, the number of generated
mutants is 104,978. Out of this total, the number of killed and subsuming mu-
tants are 65,551 and 16,205 respectively. This means that at least 50,029 were
subsumed, and thus redundant. To put null-type and traditional mutants in per-
spective, Figure 6 shows the percentages for all, killed, and subsuming mutants
for both groups. Here, we notice that the percentage of the null-type mutants
remains similar in these three categories. The null-type mutants have a higher



10 Ali Parsai, Serge Demeyer
AggregateTypeReport

Page 1

RemoveNullCheck

NullifyObjectInitialization

NullifyReturnValue

NullifyInputVariable

ShiftOperatorReplacement

AssignmentOperatorReplacementShortcut

LogicalOperatorReplacement

ArithmeticOperatorReplacementUnary

ArithmeticOperatorReplacementShortcut

ConditionalOperatorDeletion

ConditionalOperatorReplacement

ArithmeticOperatorReplacementBinary

RelationalOperatorReplacement

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

5247

7741

10875

15662

232

570

274

663

1936

2722

2742

3707

13863

1943

5390

5975

6522

323

454

912

1484

962

728

1734

6092

6962

Killed

Survived

Fig. 5. Number of killed and survived mutants for each mutation operator

impact on the semantics of the program due to being applied at the entry and
exit points of a method, the branching statements, and the declaration of an
object. Therefore, the fact that they comprise a higher percentage of the killed
mutants is not surprising. However, it is important to note that the distribution
of null-type mutants differs only 4% in all and killed mutants. While 60% of the
killed mutants are null-type, they still account for almost 55% of subsuming mu-
tants. This indicates that the inclusion of the null-type mutants increases
the mutant redundancy only marginally. all

Page 1

All Mutants Killed Mutants Subsuming
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

43.97% 40.33% 45.48%

56.03% 59.67% 54.52%

Null Type
Traditional

Fig. 6. Ratio of Null-Type and Traditional
Mutants in All, Killed, and Subsuming

To delve deeper, Figure 7 shows
for each mutation operator the per-
centage of killed and subsuming mu-
tants. Among the traditional muta-
tion operators, RelationalOperatorRe-
placement and ConditionalOperator-
Replacement produce the most sub-
suming mutants. The rest of the mu-
tation operators create mutants that
have the same distribution among
subsuming and killed mutants. As this
figure shows, the marginal increase in
redundancy by the null-type mutation operators can be blamed on NullifyIn-
putVariable mutation operator. This mutation operator produces mutants that
are easier to kill compared to other mutation operators (21% of all, 24% of the
killed), and more of these mutants are redundant compared to others (24% of
killed, only 15% of subsuming). On the contrary, NullifyReturnValue is produc-
ing fewer redundant mutants, which confirms our previous observation.



Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 11
all

Page 1

RelationalOperatorReplacement

ArithmeticOperatorReplacementBinary

ConditionalOperatorReplacement

ConditionalOperatorDeletion

ArithmeticOperatorReplacementShortcut

ArithmeticOperatorReplacementUnary

LogicalOperatorReplacement

AssignmentOperatorReplacementShortcut

ShiftOperatorReplacement

NullifyInputVariable

NullifyReturnValue

NullifyObjectInitialization

RemoveNullCheck

0.00% 5.00% 10.00% 15.00% 20.00% 25.00%

19.76%

9.31%

4.23%

3.25%

2.75%

2.03%

1.13%

0.98%

0.53%

20.92%

15.90%

12.40%

6.81%

20.93%

5.60%

4.14%

4.11%

2.92%

1.00%

0.41%

0.86%

0.35%

23.65%

16.42%

11.69%

7.92%

22.90%

6.29%

6.31%

3.82%

3.26%

1.16%

0.44%

0.91%

0.38%

14.82%

18.47%

12.33%

8.90%

All (%)

Killed (%)

Subsuming (%)

Fig. 7. Ratio of Mutants by Each Mutation Operator in All, Killed, and Subsuming

Given the results of RQ2, we can conclude that while the inclusion of the
null-type mutation operators increases the redundancy marginally,
they complement the traditional mutation operators in their role of
strengthening the test suite against null-type faults.

5 Threats to Validity

To describe the threats to validity we refer to the guidelines reported by Yin [36].
Threats to internal validity focus on confounding factors that can influence
the obtained results. These threats stem from potential faults hidden inside our
analysis tools. While theoretically possible, we consider this chance limited. The
tools used in this experiment have been used previously in several other studies,
and their results went through many iterations of manual validation. In addition,
the code of LittleDarwin and LittleDarwin-Null along with all the raw data of
the study is publicly available for download in the replication package [28].

Threats to external validity refer to the generalizability of the results. In
RQ1 we advocate for the adoption of null-type mutation operators by using
a didactic project. We alleviate the non-representativeness of this project, by
analyzing 15 real open-source projects in RQ2. Although our results are based on
projects with various levels of test adequacy in terms of traditional and null-type
mutation coverage, we cannot assume that this sample is representative of all
Java projects. We use PITest, LittleDarwin, and Javalanche as mutation testing
tools. We cannot assume that these tools are representative of all mutation tools
available in literature. For this reason, we refer to these tools as general-purpose
since they can work with little effort on many open-source projects. We modeled



12 Ali Parsai, Serge Demeyer

null-types mutation operators upon the typical null-type faults described by
Osman et al. [24]. However, there may be other types of null-type faults that
we did not consider. Even if this was the case, our results should still hold since
we already demonstrate with four mutation operators that they are in need of
explicit modeling.

Threats to construct validity are concerned with how accurately the obser-
vations describe the phenomena of interest. The problem of equivalent mutants
affects the analysis of surviving mutants on the test suites of the 15 open-source
projects. Due to the large number of created mutants, it is impractical to filter
equivalent mutants in the final results. Still, we believe this threat is minimal,
because we analyze two different aspects of mutation testing, which lead to con-
verging results. The total number of generated mutants can be different based on
the set of mutation operators that are used in each tool. However, this difference
has been taken into account when discussing the results of the experiments. To
measure redundancy among the mutants, we use dynamic subsumption relation-
ship. However, the accuracy of the dynamic subsumption relationship depends
on the test suite itself. This is a compromise, as the only way to increase the
accuracy is to have several tests that kill each mutant, which is not practical.

6 Conclusion

Developers are prone to introduce null-type faults in Java programs. Yet, there
is no specific approach devoted to helping developers strengthen the test suite
against these faults. On the one hand, mutation testing provides a systematic
method to create tests able to prevent common faults. On the other hand, the
general-purpose mutation testing tools available today do not model null-type
faults explicitly by default.

In this paper, we advocate for the introduction of null-type mutation oper-
ators for preventing null-type faults. As a first step, we show that traditional
mutation operators are not enough to cope with null-type faults as they cannot
lead to the creation of a mutation-adequate test suite that can kill all of them.
Then we demonstrate, by means of code examples, how the null-type mutants
can drive the extension of the test suite. Finally, we highlight that null-type mu-
tation operators are helpful in practice by showing on 15 open-source projects
that real test suites are inadequate in detecting null-type faults. In this context,
we explore the trade-offs of having null-type mutants. On the downside, we show
that the inclusion of null-type mutants increases the mutant redundancy. Yet,
this increment is only marginal. On the upside, we show that null-type mutants
complement traditional mutants in two ways. First, they provide a large number
of survived mutants to the developer to strengthen the test suite. Second, they
comprise a large part of subsuming mutants.

As a consequence, developers can increase their confidence in the test suite
regarding to the null-type faults by (i) prioritizing the classes that have a large
difference in traditional and null-type mutation coverage, (ii) creating tests to
kill the survived null-type mutants in these classes, and (iii) repeating the process
until all classes have similar levels of traditional and null-type mutation coverage.



Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 13

References

1. Alexander, I.: Misuse cases: use cases with hostile intent. IEEE Software 20(1),
58–66 (jan 2003). https://doi.org/10.1109/ms.2003.1159030

2. Ammann, P., Delamaro, M.E., Offutt, J.: Establishing theoretical minimal
sets of mutants. In: 2014 IEEE Seventh International Conference on Soft-
ware Testing, Verification and Validation. pp. 21–30. IEEE (mar 2014).
https://doi.org/10.1109/icst.2014.13

3. Bradbury, J.S., Cordy, J.R., Dingel, J.: Mutation operators for concurrent
java (J2SE 5.0). In: Second Workshop on Mutation Analysis (Mutation 2006
- ISSRE Workshops 2006). pp. 11—-. MUTATION ’06, Sch. of Comput.,
Queen”s Univ., Kingston, ON, IEEE, Washington, DC, USA (nov 2006).
https://doi.org/10.1109/mutation.2006.10

4. Coles, H., Laurent, T., Henard, C., Papadakis, M., Ventresque, A.: PIT:
a practical mutation testing tool for java (demo). In: Proceedings of the
25th International Symposium on Software Testing and Analysis - ISSTA
2016. pp. 449–452. ISSTA 2016, ACM Press, New York, NY, USA (2016).
https://doi.org/10.1145/2931037.2948707

5. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection:
Help for the practicing programmer. Computer 11(4), 34–41 (apr 1978).
https://doi.org/10.1109/c-m.1978.218136

6. Deng, L., Offutt, J., Ammann, P., Mirzaei, N.: Mutation operators for test-
ing android apps. Information and Software Technology 81, 154–168 (jan 2017).
https://doi.org/10.1016/j.infsof.2016.04.012

7. Ferrari, F.C., Maldonado, J., Rashid, A.: Mutation testing for aspect-oriented pro-
grams. In: 2008 International Conference on Software Testing, Verification, and
Validation. pp. 52–61. ICST ’08, Dept. of Comput. Syst., Sao Paulo Univ., Sao Car-
los, IEEE, Washington, DC, USA (apr 2008). https://doi.org/10.1109/icst.2008.37

8. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA (1999)

9. Fraser, G., Zeller, A.: Mutation-driven generation of unit tests and ora-
cles. IEEE Transactions on Software Engineering 38(2), 278–292 (mar 2012).
https://doi.org/10.1109/tse.2011.93

10. Gligoric, M., Groce, A., Zhang, C., Sharma, R., Alipour, M.A., Marinov, D.:
Comparing non-adequate test suites using coverage criteria. In: Proceedings of
the 2013 International Symposium on Software Testing and Analysis - ISSTA
2013. pp. 302–313. ISSTA 2013, ACM Press, New York, NY, USA (2013).
https://doi.org/10.1145/2483760.2483769

11. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java Language Spec-
ification (Java SE 8 edition). Oracle, java se 8 edn. (2014)

12. Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test suite
effectiveness. In: Proceedings of the 36th International Conference on Software
Engineering - ICSE 2014. pp. 435–445. ICSE 2014, ACM Press, New York, NY,
USA (2014). https://doi.org/10.1145/2568225.2568271

13. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering 37(5), 649–678 (sep 2011).
https://doi.org/10.1109/tse.2010.62

14. Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G.: Are
mutants a valid substitute for real faults in software testing? In: Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software

https://doi.org/10.1109/ms.2003.1159030
https://doi.org/10.1109/icst.2014.13
https://doi.org/10.1109/mutation.2006.10
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/c-m.1978.218136
https://doi.org/10.1016/j.infsof.2016.04.012
https://doi.org/10.1109/icst.2008.37
https://doi.org/10.1109/tse.2011.93
https://doi.org/10.1145/2483760.2483769
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1109/tse.2010.62


14 Ali Parsai, Serge Demeyer

Engineering - FSE 2014. pp. 654–665. FSE 2014, ACM Press, New York, NY, USA
(2014). https://doi.org/10.1145/2635868.2635929

15. Kimura, S., Hotta, K., Higo, Y., Igaki, H., Kusumoto, S.: Does return null matter?
In: 2014 Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE). pp. 244–253. IEEE (feb
2014). https://doi.org/10.1109/csmr-wcre.2014.6747176

16. King, K.N., Offutt, A.J.: A fortran language system for mutation-based soft-
ware testing. Software: Practice and Experience 21(7), 685–718 (jul 1991).
https://doi.org/10.1002/spe.4380210704

17. Kuhn, D.R.: Fault classes and error detection capability of specification-based test-
ing. ACM Transactions on Software Engineering and Methodology 8(4), 411–424
(oct 1999). https://doi.org/10.1145/322993.322996

18. Kurtz, B., Ammann, P., Offutt, J.: Static analysis of mutant subsumption.
In: 2015 IEEE Eighth International Conference on Software Testing, Ver-
ification and Validation Workshops (ICSTW). pp. 1–10. IEEE (apr 2015).
https://doi.org/10.1109/icstw.2015.7107454

19. Ma, Y.S., Kwon, Y.R., Offutt, J.: Inter-class mutation operators for
java. In: 13th International Symposium on Software Reliability Engi-
neering, 2002. Proceedings. pp. 352–363. IEEE Comput. Soc (2002).
https://doi.org/10.1109/issre.2002.1173287

20. Nanavati, J., Wu, F., Harman, M., Jia, Y., Krinke, J.: Mutation testing of memory-
related operators. In: 2015 IEEE Eighth International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW). pp. 1–10. IEEE (apr 2015).
https://doi.org/10.1109/icstw.2015.7107449

21. Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf, C.: An ex-
perimental determination of sufficient mutant operators. ACM Transac-
tions on Software Engineering and Methodology 5(2), 99–118 (apr 1996).
https://doi.org/10.1145/227607.227610

22. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible
paths. Software Testing, Verification and Reliability 7(3), 165–192 (sep 1997).
https://doi.org/10.1002/(sici)1099-1689(199709)7:3¡165::aid-stvr143¿3.0.co;2-u

23. Oliveira, R.A., Alegroth, E., Gao, Z., Memon, A.: Definition and evaluation of
mutation operators for GUI-level mutation analysis. In: 2015 IEEE Eighth Inter-
national Conference on Software Testing, Verification and Validation Workshops
(ICSTW). pp. 1–10. IEEE (apr 2015). https://doi.org/10.1109/icstw.2015.7107457

24. Osman, H., Leuenberger, M., Lungu, M., Nierstrasz, O.: Tracking null checks in
open-source java systems. In: 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). vol. 1, pp. 304–313. IEEE (mar
2016). https://doi.org/10.1109/saner.2016.57

25. Osman, H., Lungu, M., Nierstrasz, O.: Mining frequent bug-fix code changes.
In: 2014 Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE). pp. 343–347. IEEE (feb
2014). https://doi.org/10.1109/csmr-wcre.2014.6747191

26. Papadakis, M., Henard, C., Harman, M., Jia, Y., Traon, Y.L.: Threats
to the validity of mutation-based test assessment. In: Proceedings of the
25th International Symposium on Software Testing and Analysis - ISSTA
2016. pp. 354–365. ISSTA 2016, ACM Press, New York, NY, USA (2016).
https://doi.org/10.1145/2931037.2931040

27. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman, M.: Muta-
tion testing advances: An analysis and survey. Advances in Computers (2018).
https://doi.org/10.1016/bs.adcom.2018.03.015

https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1109/csmr-wcre.2014.6747176
https://doi.org/10.1002/spe.4380210704
https://doi.org/10.1145/322993.322996
https://doi.org/10.1109/icstw.2015.7107454
https://doi.org/10.1109/issre.2002.1173287
https://doi.org/10.1109/icstw.2015.7107449
https://doi.org/10.1145/227607.227610
https://doi.org/10.1002/(sici)1099-1689(199709)7:3<165::aid-stvr143>3.0.co;2-u
https://doi.org/10.1109/icstw.2015.7107457
https://doi.org/10.1109/saner.2016.57
https://doi.org/10.1109/csmr-wcre.2014.6747191
https://doi.org/10.1145/2931037.2931040
https://doi.org/10.1016/bs.adcom.2018.03.015


Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 15

28. Parsai, A.: Replication package, http://parsai.net/files/research/

SofSemReplicationPackage.7z

29. Parsai, A., Demeyer, S., Busser, S.D.: C++11/14 mutation operators based on
common fault patterns. In: Medina-Bulo, I., Merayo, M.G., Hierons, R. (eds.) Test-
ing Software and Systems, pp. 102–118. Springer International Publishing, Cham
(2018). https://doi.org/10.1007/978-3-319-99927-2 9

30. Parsai, A., Murgia, A., Demeyer, S.: Evaluating random mutant selection at class-
level in projects with non-adequate test suites. In: Proceedings of the 20th In-
ternational Conference on Evaluation and Assessment in Software Engineering -
EASE 2016. pp. 11:1–11:10. EASE ’16, ACM Press, New York, NY, USA (2016).
https://doi.org/10.1145/2915970.2915992

31. Parsai, A., Murgia, A., Demeyer, S.: A model to estimate first-order mutation
coverage from higher-order mutation coverage. In: 2016 IEEE International Con-
ference on Software Quality, Reliability and Security (QRS). pp. 365–373. IEEE
(aug 2016). https://doi.org/10.1109/qrs.2016.48

32. Parsai, A., Murgia, A., Demeyer, S.: LittleDarwin: A feature-rich and extensible
mutation testing framework for large and complex java systems. In: Fundamentals
of Software Engineering: 7th International Conference, FSEN 2017, Tehran, Iran,
April 26–28, 2017, Revised Selected Papers, pp. 148–163. Springer International
Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-68972-2 10

33. Parsai, A., Murgia, A., Soetens, Q.D., Demeyer, S.: Mutation testing as a safety
net for test code refactoring. In: Scientific Workshop Proceedings of the XP2015
on - XP 2015 workshops. pp. 8:1–8:7. XP ’15 workshops, ACM Press, New York,
NY, USA (2015). https://doi.org/10.1145/2764979.2764987

34. Parsai, A., Soetens, Q.D., Murgia, A., Demeyer, S.: Considering polymorphism
in change-based test suite reduction. In: Dingsøyr, T., Moe, N.B., Tonelli, R.,
Counsell, S., Gencel, C., Petersen, K. (eds.) Lecture Notes in Business Informa-
tion Processing, pp. 166–181. Springer International Publishing, Cham (2014).
https://doi.org/10.1007/978-3-319-14358-3 14

35. Schuler, D., Zeller, A.: Javalanche: efficient mutation testing for java. In: Proceed-
ings of the 7th joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software engineering on
European software engineering conference and foundations of software engineering
symposium - ESEC/FSE 2009. pp. 297–298. ESEC/FSE ’09, ACM Press, New
York, NY, USA (2009). https://doi.org/10.1145/1595696.1595750

36. Yin, R.K.: Case Study Research: Design and Methods. Applied Social Research
Methods, SAGE Publications (2003)

http://parsai.net/files/research/SofSemReplicationPackage.7z
http://parsai.net/files/research/SofSemReplicationPackage.7z
https://doi.org/10.1007/978-3-319-99927-2_9
https://doi.org/10.1145/2915970.2915992
https://doi.org/10.1109/qrs.2016.48
https://doi.org/10.1007/978-3-319-68972-2_10
https://doi.org/10.1145/2764979.2764987
https://doi.org/10.1007/978-3-319-14358-3_14
https://doi.org/10.1145/1595696.1595750

	Do Null-Type Mutation Operators Help Prevent Null-Type Faults?

