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Abstract

The concept of Reload cost in a graph refers to the cost that occurs while traversing a vertex
via two of its incident edges. This cost is uniquely determined by the colors of the two edges.
This concept has various applications in transportation networks, communication networks, and
energy distribution networks. Various problems using this model are defined and studied in the
literature. The problem of finding a spanning tree whose diameter with respect to the reload
costs is smallest possible, the problems of finding a path, trail or walk with minimum total reload
cost between two given vertices, problems about finding a proper edge coloring of a graph such
that the total reload cost is minimized, the problem of finding a spanning tree such that the
sum of the reload costs of all paths between all pairs of vertices is minimized, and the problem
of finding a set of cycles of minimum reload cost, that cover all the vertices of a graph, are
examples of such problems. In this work we focus on the last problem. Noting that a cycle
cover of a graph is a 2-factor of it, we generalize the problem the the problem of finding an
r-factor of minimum reload cost of an edge colored graph. We prove several NP-hardness results
for special cases of the problem. Namely, bounded degree graphs, planar graphs, bounded total
cost, and bounded number of distinct costs. For the special case of r = 2, our results imply
an improved NP-hardness result. On the positive side, we present a polynomial-time solvable
special case which provides a tight boundary between the polynomial and hard cases in terms
of r and the and the maximum degree of the graph. We then investigate the parameterized
complexity of the problem, prove W[1]-hardness results and present an FPT-algorithm.

keywords: Parameterized Complexity, Graph Factors, Reload Costs

1 Introduction

Edge-colored graphs can be used to model optimization problems in diverse fields such as bioin-

formatics, communication networks, and transportation networks. Reload cost in an edge-colored

graph refers to the cost that occurs while traversing a vertex via two of its incident edges. This

cost is uniquely determined by the colors of the two edges.
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6Supported by projects DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA (ANR-17-CE23-0010) and by the

Research Council of Norway and the French Ministry of Europe and Foreign Affairs, via the Franco-Norwegian
project PHC AURORA 2019.

1

ar
X

iv
:1

81
0.

11
70

0v
2 

 [
cs

.C
C

] 
 6

 F
eb

 2
01

9

mailto:julien.baste@lip6.fr
mailto:didem.gozupek@gtu.edu.tr
mailto:cmshalom@telhai.ac.il
mailto:sedthilk@thilikos.info


The reload cost concept has various applications in transportation networks, communication

networks, and energy distribution networks. For instance, a multi-modal cargo transportation net-

work involves different means of transportation, where the (un)loading of cargo at transfer points

is costly [9]. In energy distribution networks, transferring energy between different carriers cause

energy losses and reload cost concept can be used to model this situation [9]. In communication

networks, routing often requires switching between different technologies such as cable and fiber,

where data conversion incurs high costs. Switching between different service providers in a com-

munication network also causes switching costs [9]. Recently, dynamic spectrum access networks,

a.k.a. cognitive radio networks, received a lot of attention in the communication networks research

community. Unlike other wireless networks, cognitive radio networks are envisioned to operate in

a wide range of spectrum; therefore, frequency switching has adverse effects in delay and energy

consumption [2,5,15]. This frequency switching cost depends on the frequency separation distance;

hence, it corresponds to reload costs.

The reload cost concept was first introduced by Wirth and Steffan [27] who focused on the

problem of finding a spanning tree whose diameter with respect to the reload costs is smallest

possible. Other works also focused on numerous optimization problems regarding reload costs: the

problems of finding a path, trail or walk with minimum total reload cost between two given ver-

tices [13], numerous path, tour, and flow problems [1], the minimum changeover cost arborescence

problem [10,14,16,18], problems about finding a proper edge coloring of a graph such that the total

reload cost is minimized [17], and the problem of finding a spanning tree such that the sum of the

reload costs of all paths between all pairs of vertices is minimized [12].

An r-factor of a graph is an r-regular spanning subgraph. A 2-factor is also called a cycle cover

and has many applications in areas such as computer graphics and computational geometry [21],

for instance for fast rendering of 3D scenes. In an edge-weighted graph, the problem of finding a

cycle cover with minimum cost can be solved in polynomial-time [25]. Its reload cost counterpart

was studied by Galbiati et.al. in [11]. In particular, they proved that the minimum reload cost

cycle cover problem is NP-hard even when the number of colors is 2, the reload costs are symmetric

and satisfy the triangle inequality. In this work, we build on this work by studying the minimum

reload cost r-factor problem, which is a more generalized version of the minimum reload cost

cycle cover problem. In particular, we prove several NP-hardness results for the special cases of

this problem. Namely, bounded degree graphs, planar graphs, bounded total cost, and bounded

number of distinct costs. For the special case of r = 2, we prove an NP-hardness result stronger

than the one in [11]. On the positive side, we present a polynomial-time solvable special case. We

then investigate the parameterized complexity of this problem, prove W[1]-hardness results and

present a fixed parameter tractable algorithm.

2 Preliminaries

Sets, vectors: Given a non-negative integer n, we denote by N≥n the set of all integers x such

that x ≥ n. If n1, n2 ∈ N≥0, we denote by [n1, n2] the set of integers x such that n1 ≤ x ≤ n2. We

also use [n] instead of [1, n]. Given a finite set X and an integer s ∈ N≥0, we denote by
(
X
s

)
the

set of all subsets of A with exactly s elements. For a set X and an element x we use X + x and

X − x as shorthands for X ∪ {x} and X \ {x}, respectively. For two vectors u = (u1, . . . , ud) and

v = (v1, . . . , vd) over the reals, we write u ≤ v if ui ≤ vi for every i ∈ [d].
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Graphs: All graphs we consider in this paper are undirected, finite, and without self loops or

multiple edges. Given a graph G, we denote by V (G) the set of vertices of G and by E(G) the

set of edges of G. We say that a vertex v ∈ V (G) and an edge e ∈ E(G) are incident if v ∈ e,
that is, v is an endpoint of e. Given a vertex v ∈ V (G), we denote by EG(v) the set of edges of

G that are incident to v. The degree of v in G, denoted by degG(v) is |EG(v)|. We also define

the maximum degree of G as ∆(G) = max{degG(v) | v ∈ V (G)}, the minimum degree of G as

δ(G) = min{degG(v) | v ∈ V (G)}, and the average degree of G as deg(G). For a subset X of V (G),

we denote by G[X] the subgraph of G induced by X. A graph is r-regular if all its vertices have

degree r.

We say that a graph H is a factor of a graph G when V (H) = V (G) and E(H) ⊆ E(G). An

r-regular factor of G is termed an r-factor of G.

Parameterized complexity: We refer the reader to [6,8] for basic background on parameterized

complexity, and we recall here only some basic definitions. A parameterized problem is a language

L ⊆ Σ∗ × N. For an instance I = (x, k) ∈ Σ∗ × N, k is called the parameter.

A parameterized problem is fixed-parameter tractable (FPT) if there exists an algorithm A, a

computable function f , and a constant c such that given an instance I = (x, k), A (called an FPT

algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|c.
A parameterized problem is in XP if there exists an algorithm A and two computable functions

f and g such that given an instance I = (x, k), A (called an XP algorithm) correctly decides whether

I ∈ L in time bounded by f(k) · |I|g(k).

A parameterized problem with instances of the form I = (x, k) is para-NP-hard if it is NP-hard

for some fixed constant value of the parameter k. Note that, unless P = NP, a para-NP-hard

problem cannot be in XP, hence it cannot be FPT either.

Within parameterized problems, the class W[1] may be seen as the parameterized equivalent

to the class NP of classical optimization problems. Without entering into details (see [6, 8] for the

formal definitions), a parameterized problem being W[1]-hard can be seen as a strong evidence that

this problem is not FPT. To transfer W[1]-hardness from one problem to another, one uses an FPT

reduction, which given an input I = (x, k) of the source problem, computes in time f(k) · |I|c, for

some computable function f and a function c, an equivalent instance I ′ = (x′, k′) of the target

problem such that k′ is bounded by a function depending only on k. The following problem is a

W[1]-hard problem that we will use in our reductions.

Multicolored Clique

Input: A graph G, an integer k, a coloring function χ : V (G)→ [k].

Parameter: k.

Question: Does G contain a clique on k vertices with one vertex from each color class?

Multicolored Clique is known to be W[1]-hard on general graphs, even in the special case

where all color classes have the same number of vertices [22]. Clearly, we can also assume that

every color class is an independent set since the problem is indifferent to edges within the same

color class.

Tree decompositions: A tree decomposition of a graph G = (V,E) is a pair D = (T,X ), where

T is a tree and X = {Xt | t ∈ V (T )} is a collection of subsets of V (G) such that:

•
⋃
t∈V (T )Xt = V ,
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• for every edge uv ∈ E, there is a t ∈ V (T ) such that {u, v} ⊆ Xt, and

• for every {x, y, z} ⊆ V (T ) such that z lies on the unique path between x and y in T , Xx∩Xy ⊆
Xz.

We call the vertices of T nodes of D and the sets in X bags of D. The width of D is maxt∈V (T ) |Xt|−1.

The treewidth of G, denoted by tw(G), is the smallest integer w such that there exists a tree

decomposition of G of width w. A tree decomposition in which the tree T is restricted to be a path

is called a path decomposition. The pathwidth of G, denoted by pw(G), is the smallest integer w

such that there exists a path decomposition of G of width w.

A tree decomposition is rooted if we distinguish in T some specific vertex r, and consider T as

a rooted (on r) tree. We denote such a tree decomposition by a triple D = (T,X , r).

Nice tree decompositions: Let D = (T,X , r) be a rooted tree decomposition of G, and G =

{Gt | t ∈ V (T )} be a collection of subgraphs of G. We say that the ordered pair (D,G) is nice if

the following conditions hold:

• Xr = ∅ and Gr = G,

• every node of D has at most two children in T ,

• for each leaf t ∈ V (T ), Xt = ∅ and Gt = (∅, ∅). Such a node t is called a leaf node,

• if t ∈ V (T ) has exactly two children t′ and t′′, then Xt = Xt′ = Xt′′ , Gt = Gt′ ∪ Gt′′ , and

E(Gt′) ∩ E(Gt′′) = ∅. The node t is called a join node.

• if t ∈ V (T ) has exactly one child t′, then exactly one of the following holds.

– Xt = Xt′ + v for some v /∈ Xt′ and Gt = (V (Gt′) + v,E(Gt′)). The node t is called

vertex-introduce node and the vertex v is the introduced vertex of Xt.

– Xt = Xt′ and Gt = (Gt′ , E(Gt′) + e) where e is an edge of G with endpoints in Xt. The

node t is called edge-introduce node and the edge e is the introduced edge of Xt.

– Xt = Xt′ − v for some v ∈ Xt′ and Gt = Gt′ . The node t is called forget node and v is

the forget vertex of Xt.

The notion of a nice pair defined above is essentially the same as the one of nice tree decompo-

sition in [7] (which in turn is an enhancement of the original one, introduced in [20]). As already

argued in [7, 20], given a tree decomposition, it is possible to transform it in polynomial time to a

tree decomposition D of the same width and construct a collection G such that (D,G) is nice.

Reload cost model: For reload costs, we follow the notation and terminology defined by [27].

We consider an edge-colored graph G where edge colors are taken from a finite set X and the

coloring function is χ : E(G) → X. The reload costs are given by a function c : X2 → N≥0 where

c(x1, x2) = c(x2, x1) for each (x1, x2) ∈ X2. The cost of traversing two incident edges e1, e2 of

G is tc(e1, e2) = c(χ(e1), χ(e2)). Given a subgraph H of G and a vertex v ∈ V (H), we define

the reload cost of v in H as rcχ,c(H, v) =
∑
{e1,e2}∈(EH (v)

2 ) tc(e1, e2) and the reload cost of H as

rcχ,c(H) =
∑

v∈V (H) rcχ,c(H, v). When χ and c are clear from the context, we write rc(v) and rc(H)

instead.
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Problem statement: The problem we study in this paper can be formally defined as follows for

every r ∈ N≥2:

Minimum Reload Cost r-Factor (r-MRCF)

Input: A graph G, an edge-coloring χ, a reload cost function c, and a non-negative integer k.

Output: Is there an r-factor H of G with reload cost at most k, i.e., rc(H) ≤ k?

Given an instance (G,χ, c, k) of r-MRCF we consider the following parameters:

• the maximum degree ∆(G) of G,

• the treewidth tw(G) of G,

• the number of colors q = |X|,

• the number of distinct costs: d = |{c(x1, x2) | (x1, x2) ∈ X2}|,

• the minimum traversal cost cmin = min{c(x1, x2) | (x1, x2) ∈ X2}, and

• the total cost k.

Clearly, we can assume that ∆(G) ≥ r+1, and also δ(G) ≥ r since otherwise the instance is trivial.

Let kmin = cmin · |V (G)| ·
(
r
2

)
. Note that the reload cost of every r-factor is at least kmin. Therefore,

we can also assume that k ≥ kmin.

A summary of the results regarding the classical and parameterized complexity of the r-MRCF

problem is shown in Table 1 and Table 2, respectively.

G ∆(G) d k q

≤ r + 2 2 kmin min{r, 3} NP-hard (Theorem 1)

r + 1 Polynomial (Theorem 2)

Planar ≤ r + 4 2 kmin 7 NP-hard (Theorem 3)

Table 1: Summary of classical complexity results for the r-MRCF problem.

Parameter d k average degree

pw(G) 2 kmin < r +

{
4 if r = 2

4/3 otherwise.
W[1]-hard (Theorem 4)

tw(G) + min{q,∆(G)} FPT(Theorem 5)

Table 2: Summary of parameterized complexity results for the r-MRCF problem.

3 Classical Complexity of r-MRCF

The following construct will be used in our reductions. A diamond is a graph on four vertices and

five edges, that is obtained by adding one chord to a cycle on four vertices. Clearly, a diamond

contains two vertices of degree two and two vertices of degree three. The degree two vertices are
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termed as the tips of the diamond. A joker is a monochromatic diamond, that is, a diamond whose

edges have the same color. In our reductions, every a joker J will have exactly one vertex adjacent

to other vertices of the graph. This vertex will always be a tip of J , and we will term it as the

connecting tip of J . Given a joker J and a 2-factor F , it is easy to see that exactly one of the

following happens:

• F ∩ E(J) is the 4-cycle of J , and F \ E(J) does not contain any edges incident to J .

• F ∩E(J) is a triangle of J , F \E(J) contains exactly two edges incident to J both of which

are incident its connecting tip.

Furthemore, since our cost functions satisfy c(λ, λ) = 0 for every color λ, and F ∩E(J) is always a

cycle, the joker edges do not affect the cost of F . When we describe a 2-factor F , these properties

allow us to leave the edges F ∩ E(J) unspecified since they are implied by the edges of F \ E(J).

Such a partial description is valid if and only if the connecting tip have degree zero or two. Finally,

a 5-joker is a cycle on five vertices with an added chord. This graph has one triangle with one

degree 2 vertex that we will refer to as the tip of the 5-joker. Note that a 5-joker has all the

properties of a joker.

Another construct that we use in our reductions is a graph Q` that is obtained from the clique

on ` + 1 vertices by subdividing ` − 2 arbitrary edges twice (into three edges) and removing the

middle edge of each one. Clearly, Q` contains ` + 1 vertices of degree ` and 2(` − 2) vertices of

degree one. In total G` has 3`− 3 vertices.

Galbiati et.al. proved in [11] that 2-MRCF, a.k.a. the minimum reload cost cycle cover problem,

is NP-hard even when the number of colors is 2, the reload costs are symmetric and satisfy the

triangle inequality. In the following, we obtain a hardness result for r-MRCF, which in particular

implies a stronger hardness result for the special case of r = 2.

Theorem 1. r-MRCF is NP-hard for every r ≥ 2 even when ∆(G) ≤ r + 2, d = 2, k = kmin = 0

and q = min{r, 3}.

Proof. We start by proving the claim for r = 2, that is, we prove that 2-MRCF is NP-hard

when ∆(G) ≤ 4, d = q = 2, k = kmin. The proof is by reduction from the Monotone 1 in

3-SAT problem which is known to be NP-hard [24]. An instance of Monotone 1 in 3-SAT is an

expression φ that consists of n boolean variables x1, . . . , xn and m clauses c1, . . . , cm. Every clause

cj consists of three literals `j,1, `j,2, `j,3, each of which is either an occurrence of some variable xi or

its negation x̄i. A clause is satisfied by a truth assignment if exactly one of its literals is satisfied

by it, and φ is satisfied if all its clauses are satisfied. Monotone 1 in 3-SAT is the problem of

determining whether a given expression φ has a satisfying assignment.

Given an instance φ as described above, we construct an instance (G,χ, c, k) of 2-MRCF. The

set of colors is X = {red, blue}, thus q = 2. The traversal cost between two identical colors is

zero and the traversal cost between red and blue is 1, thus d = 2. Furthermore, k = 0. We have

cmin = 0, which implies that kmin = 0 = k. To complete the reduction, we construct a graph G

with ∆(G) = 4 whose edges are colored with colors from X.

The graph G is the union of n vertex disjoint variable gadgets with vertex sets X1, . . . , Xn, m

vertex disjoint clause gadgets with vertex sets C1, . . . , Cm, and 3m+ 4n vertex disjoint jokers, that

is, four jokers J
(u)
i , J

(v)
i , J

(2)
i , J

(4)
i for every variable xi and a joker Ji,k′ for every occurrence of it.

In our construction, every edge will join two vertices of the same gadget. However, we will allow
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i,4
z
−

i,p

wi,1

wi,3

wi,4

w
i,2

Figure 1: The variable gadget in Theorem 1 corresponding to a variable xi having p occurrences

in φ. The solid edges are blue, the dashed edges are red. Every vertex surrounded with a circle is

the connecting tip of a joker. For every k′ ∈ [p] exactly one of z+
i,k′ , z

−
i,k′ is a connecting tip. The

gadget contains p+ 4 connecting tips.

a vertex to appear in two (but not more) of the above gadgets. Every gadget will have maximum

degree 4, where vertices shared with another gadget have degree only 2 inside the gadget. This will

ensure that ∆(G) = 4. We now proceed with the description of the individual gadgets.

Let xi be a variable that has p occurrences in φ. Consult Figure 1 for the description of the

corresponding variable gadget. We set Xi = Ui∪Vi∪Wi∪Z+
i ∪Z

−
i where Ui = {ui,0, ui,1, . . . , ui,p},

Vi = {vi,0, vi,1, . . . , vi,p}, Wi = {wi,1, wi,2, wi,3, wi,4} ZDi = {zDi,1, . . . , zDi,p} for D ∈ {+,−}. The edge

set induced by Xi is the disjoint union of p red triangles, p blue triangles, a blue cycle on the

four vertices ui,0, wi,1, wi,2, wi,3 and a red cycle on the four vertices vi,0, wi,1, wi,4, wi,3 as depicted

in Figure 1. Note that every vertex of Z+
i (resp. Z−i ) has degree two, and both its incident edges

are red (resp. blue).

For every clause cj , the gadget Ci has six vertices aj , bj , dj , sj,1, sj,2, sj,3 connected with blue

edges as depicted in Figure 2.

We identify each of the vertices wi,2, wi,4, ui,k and vi,k with a tips of the jokers J
(2)
i , J

(4)
i , J

(u)
i ,

and J
(v)
i , respectively. Finally, for every literal `j,k that is the k′-th occurrence of some variable

xi we identify the vertex sj,k with the vertex z+
i,k′ (resp. z−i,k′) if the occurrence is positive (resp.

negative) and we identify the vertex z−i,k′ (resp. z+
i,k′) with a tip of the joker that corresponds to

this literal.

To complete this part of the proof, it remains to show that φ has a satisfying assignment if

and only if G contains a 2-factor H with zero reload cost. We suppose that φ has a satisfying

assignment and provide a partial description of the 2-factor H incrementally. Recall that a partial

description is valid if and only if every vertex has degree two, except possibly some connecting

tips that are isolated. Let xi be a variable assigned true by the assignment. H[Xi] consists of all

the blue edges of G[Xi]. Clearly, the traversal cost between these edges is zero. It is also easy to

see that all the vertices of H[Xi] have degree two except the vertices Z+
i , wi,4 and one of ui,p, vi,p

(depending on the parity of p) all of which are isolated. Note that ui,p, vi,p, wi,4 and all the vertices

of Z+
i corresponding to negative occurrences of xi are connecting tips of some joker. We remain

with the vertices of Z+
i corresponding to positive occurrences of xi that are isolated but should

7



aj
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dj sj,1 sj,2 sj,3b

b

b

b b b

Figure 2: The clause gadget corresponding to the clause cj .

have degree two in order to make (the partial description of) H valid. Proceeding in the same

way for the variables assigned false, we get a subgraph H in which all the vertices of the variable

gadgets which are not connecting tips have degree two, except the vertices of Z+
i corresponding

to positive occurrences of variables assigned true and the vertices of Z−i corresponding to negative

occurrences of variables assigned false. In other words, these are exactly the vertices of Z+
i ∪ Z

−
i

that correspond to literals satisfied by the assignment. By adding to H the cycle ajdjbjsj,p for

every clause cj (where `j,p is its unique literal satisfied by the assignment), we get a 2-factor H of

zero cost.

Conversely, suppose that G contains a 2-factor H of zero reload cost. Consider the vertices Ui
of the gadget Xi. Since every such vertex has two incident blue edges and two incident red edges,

H contains either the two blue edges or the two red edges. We conclude that the vertices of Ui−ui,0
are covered either by all the red triangles incident to them or all the blue ones. By symmetry, the

same holds for the vertices of Vi − vi,0. However, we note that the choice of the color (blue or red)

must be identical in both Ui and Vi since otherwise a positive traversal cost is incurred at each of

the vertices wi,1, wi,3. Therefore, H[Xi] is the subgraph of G[Xi] that consists of all the blue (or

all the red) edges. We assign true to xi if H[Xi] contains the blue edges and false otherwise. It

remains to show that this assignment satisfies φ. Consider a clause gadget Cj . H must contain

the two edges djaj and djbj . Furthermore, since every vertex sj,k is identified with a z vertex, H

contains either both edges of the clause gadget incident to sj,k or none of them. Since aj has degree

2 in H, exactly one of these three vertices, say sj,1, has both incident edges of the clause gadget in

H. Then, the two edges incident to sj,1 in the corresponding variable gadget are not in H. This

implies that either `j,1 is a positive occurrence of a positive variable, or a negative occurrence of a

negative variable. In other words, `j,1 is satisfied. The vertices sj,2 and sj,3 must have in H their

incident (red or blue) edges in their corresponding variable gadgets. Then, each one of them is

either a positive occurrence of a negative variable, or a negative occurrence of a positive variable.

In other words, their corresponding literals are not satisfied. We conclude that Cj is satisfied, and

thus φ is satisfied.

We now prove the claim for any r ≥ 3. We need to show that r-MRCF is NP-hard even when

t = 2, q = 3, k = kmin = 0 and ∆ ≤ r + 2. Given an instance (G,χ, c, k) of 2-MRCF with ∆ ≤ 4,

t = q = 2 and k = kmin = 0, we construct an instance (G′, χ′, c′, k′) of r-MRCF as follows. By

eventually adding a monochromatic cycle of size 3, we may assume that G has an even number of

8



vertices. The color set X ′ is X ∪ {white} where white is not a color of X. Thus, q = 3. White

edges are precisely the edges E(G′) \E(G). The traversal cost c′ between white and every color is

zero, and for any two colors of X, the traversal cost c′ is the same as c. Thus, t = 2 and cmin = 0,

implying that kmin = 0 = k. Let P be a partition of the vertices V (G) into pairs. G′ is obtained

from G by adding to G a Qr for every pair {u, v} ∈ P and identifying r − 2 of its degree one

vertices and u altogether with each other as well as identifying the remaining r − 2 vertices and v

with each other. Note that the pair {u, v} is not necessarily an edge of the graph. Every vertex of

V (G′) ∩ V (G) has r − 2 white incident edges and at most 4 other incident edges since ∆(G) ≤ 4,

for a total of at most r + 2 edges. The degree of every vertex of V (G′) \ V (G) is r. Therefore,

∆(G′) ≤ r + 2. Let H ′ be an r-factor of G′. As the vertices of V (G′) \ V (G) are of degree exactly

r in G′, H ′ contains all the edges incident to the vertices of V (G′) \ V (G), i.e. all the white edges.

By removing these edges from H ′ we get a 2-factor H of G. Moreover, rc(H) = rc(H ′) since the

white edges do not introduce a traversal cost. We conclude that (G,χ, c, k) has a 2-factor of zero

cost if and only if (G′, χ′, c′, k′) has an r-factor of zero cost.

The value of the parameter t in Theorem 1 is clearly tight. When t = 1, that is, when there

is only one traversal cost, all the r-factors have the same reload cost. In this case the problem

reduces to determining the existence of an r-factor. This problem is known to be polynomial-time

solvable [23]. The following theorem states that the parameter ∆(G) of Theorem 1 is also tight.

Theorem 2. For every r ∈ N≥2, if ∆(G) = r+1, then r-MRCF can be solved in polynomial time.

Proof. Recall that we assume δ(G) ≥ r. Let R be the vertices of degree r of G and R+ = V (G) \R
the vertices of degree r + 1. Let also H be an r-factor of G. We observe that H is obtained by

removing a perfect matching M of G[R+] from G. Every edge e ∈ M reduces the reload cost by

the sum of the traversal costs with all its incident edges. Therefore, rc(H) = rc(G) −
∑

e∈M w(e)

where

w(e)
def
=

∑
e′∈EG(u)−e

c(e, e′) +
∑

e′∈EG(v)−e

c(e, e′)

for every edge e = uv of G. Then, minimizing rc(H) boils down to the problem of finding a

maximum weight perfect matching M of G[R+] with the edge weight function w, which can clearly

be solved in polynomial time.

Both the result in [11] and Theorem 1 are for general graphs and hence leave the complexity of

the problem open for special graph classes. In the following (in Theorem 3), we prove hardness of

r-MRCF in planar graphs even under restricted cases. We need the following Lemma.

Lemma 1. Let G be a planar graph with an even number of vertices and δ(G) ≥ 2. There is a

partition M of V (G) into pairs such that the multigraph G′ obtained by adding to G an edge between

every pair of M is planar. Moreover, such a partition can be found in polynomial time.

Proof. We construct M incrementally, starting from M = ∅. At any given point of the execution of

the algorithm M is a set of vertex-disjoint pairs of vertices. We add pairs to M until ∪M = V (G),

implying that M is a partition of V (G). A vertex v is paired (resp. unpaired) if v ∈ ∪M (resp.

v /∈ ∪M). We use a sweep line algorithm 1 that scans the embedding from left to right. Whenever

1A well known technique in computational geometry [3].
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the sweep line encounters a new inner face F , it pairs all the unpaired vertices of F , except possibly

one vertex in case the number of unpaired vertices is odd. The pairing is done such that the pairs

are non-crossing, i.e. such that one can add edges to G between the pairs while preserving planarity.

Such a pairing can be easily obtained as follows. Let v1, v2, . . . , v2` be the vertices to be paired,

in the clockwise order they appear on the face F . The pairing, {{v1, v2} , . . . , {v2`−1, v2`}} is a

non-crossing pairing. If the number of unpaired vertices of F is odd, the rightmost unpaired vertex

of F is left unpaired.

When the sweeping phase is terminated, all the unpaired vertices are on the outer face, and

their number is even. The algorithm terminates after processing the outer face exactly in the same

way as an inner face was processed.

Theorem 3. For every r ∈ [2, 5], r-MRCF is NP-hard even when the input graph G is planar,

∆(G) ≤ r + 4, d = 2, k = kmin, and q =

{
6 if r = 2

7 otherwise.

Proof. We start by proving the theorem for r = 2 by reducing an instance (G,χ, c, k) of 2-MRCF

with ∆(G) ≤ 4, d = 2, k = kmin, q = 2 to an instance (G′, χ′, c′, k′) of 2-MRCF, with ∆(G′) ≤ 6,

d = 2, k = kmin, q = 6, and G′ is planar.

We rename the colors of the original graph as 1 and 2, and we add four colors XC = {red,blue,
green, yellow}. Therefore, q = 6. As for the cost function we use the following function c′ that is

an extension of c and uses only costs from {0, 1}, i.e. d = 2.

c′(λ, λ′) =


0 if λ = λ′

0 if yellow ∈ {λ, λ′} and {1, 2} ∩ {λ, λ′} 6= ∅
0 if 1 ∈ {λ, λ′} and 2 /∈ {λ, λ′}
1 otherwise.

We consider a planar embedding of G where all crossings are polynomial on |V (G)| and no three

edges cross the same point. G′ is obtained by replacing every crossing point of two edges e, e′ of

G by a copy of the gadget depicted in Figure 3, and 9 jokers such that one tip of each joker is

identified with a distinct vertex of the gadget. We observe that ∆(G′) ≤ 6, as required. For a

gadget under consideration, the set of vertices that contain the index L (resp. R) are its left (resp.

right) vertices, and the remaining vertices are its middle vertices. The left part (resp. right part)

of the gadget is the subgraph induced by the left (resp. right) and middle vertices together. We

refer to a four cycle mPaP,T tPaP,B for P ∈ {L,R} as a green cycle, to the triangle tT tLtR as the

middle triangle, to a triangle that consists of an m-vertex, a t-vertex and an a-vertex as a blue or

red triangle, and to the 8-cycle induced by the four c-vertices together with the four m-vertices as

the yellow rectangle. Note that all these cycles have zero reload cost, though (despite their names)

they are not monochromatic.

The two parts of the edge e (resp. e′) inherit their color from e (resp. e′). Clearly, V (G) ⊆
V (G′). Finally, k′ = 0.

It remains to show that G has a 2-factor with zero reload cost if and only if G′ has one. Suppose

that G has a 2-factor F with zero cost. We construct a 2-factor F ′ of G′ as follows.

A part of an original edge is in F ′ if and only if the original edge is in F . Since F is a 2−factor

of zero cost, all the original vertices have degree 2 in F ′ and they incur a zero reload cost. Recall

that we allow for the vertex of a gadget that is the connecting tip of a joker to be isolated in our
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Figure 3: The planar gadget that replaces two crossing edges of G. The vertices marked with a

circle are identified with a tip of a joker.

description of F ′ since such a vertex will be in a cycle of the joker in F ′. For every gadget that

corresponds to a crossing point of two edges e and e′, we proceed as follows to ensure that F ′ incurs

a zero cost in every gadget.

• {e, e′} ∩ F = ∅: In this case F ′ contains the yellow rectangle and the middle triangle. Then

F ′ incurs a zero cost in this gadget.

• {e, e′} ⊆ F : In this case F ′ contains the two green cycles and the two paths cL,HmHcR,H for

H ∈ {T,B}. Combining with the two parts of e and e′ incident to this gadget, the degree

of every vertex of this gadget in F ′ is 2. We recall that c′(1, yellow) = c′(2, yellow) = 0 and

conclude that F ′ incurs a zero cost in this gadget.

• |{e, e′} ∩ F | = 1: Assume without loss of generality that e ∈ F and e′ /∈ F . In this case

F ′ contains the left blue triangle, the right green cycle, and the two adjacent edges of the
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yellow rectangle, namely the path cL,TmLcL,BmBcR,B. Combining with the two parts of e

incident to this gadget, the degree of every vertex of this gadget in F ′ is 2. We note that

c′(χ(e), yellow) = 0 and conclude that F ′ incurs a zero cost in this gadget.

Conversely, suppose that G′ has a 2-factor F ′ with zero cost. Recall that for any two distinct

colors λ, λ′ ∈ {red, blue, green, yellow} we have c′(λ, λ′′) = 1. Therefore, for every m-vertex the 2-

factor F ′ contains two edges of the same color. If F ′ contains two adjacent blue (resp. red) edges, it

must contain the third edge colored 1 that completes the blue (resp. red) triangle because otherwise

an a-vertex incurs a positive cost, since c′(green, red) = c′(green, blue) = 1. If F ′ contains two

adjacent green edges, then for the same reason, F ′ contains the corresponding green cycle.

Consider one of the parts, say the left part of a gadget. Since tL is common to the blue, red

and green cycles of this part, at most one of these cycles are in F ′. We consider two cases:

• F ′ contains none of the cycles on the left part: Then the edges tLtR and tLtT are in F ′,

implying that none of the cycles on the right part are in F ′. Since all the m vertices have

degree 2 in F ′ and none is covered by the inner cycles, F ′ must contain the yellow rectangle.

Then none of the parts of e and e′ are in F ′.

• F ′ contains one cycle on the left part: In this case, since the degree of tR must be 2 in F ′, F ′

contains one cycle of the right part. Every cycle saturates one of the m vertices, for a total of

two m vertices saturated. Then, the remaining two m vertices are saturated by four yellow

edges that together form two edges of the yellow rectangle. We consider two sub-cases

– F ′ contains two non-adjacent edges of the yellow rectangle. In this case all the four

yellow edges have degree 1. Therefore, both parts of e and both parts of e′ are in F ′.

– F ′ contains two adjacent edges of the yellow rectangle. In this case two opposite corners

of the yellow cycle, say cL,T and cR,B have one incident yellow edge, while the other

two corners have either two or zero incident yellow edges. Then both parts of e (in the

symmetric case, of e′) are in F ′, and none of the parts of the other edge is in F ′.

We conclude that for every edge e of G, either all its parts or none are in F ′. Then F ′ implies a

subgraph F of G. Since all the original vertices have degree 2 in F ′, they have degree 2 in F , i.e.

F is a 2-factor of G. Furthermore, the cost at every original vertex is zero since c′ extends c.

Now for any r ∈ [3, 5], we have to reduce an instance (G,χ, c, k) of 2-MRCF where ∆(G) ≤ 6,

d = 2, k = kmin, q = 6, to an instance (G′, χ′, c′, k′) of r-MRCF, where ∆(G′) ≤ r + 4, d = 2,

k = kmin, q = 7 and G′ is planar. Note that, since whenever G is planar, we have δ(G) ≤ 5, it does

not make sense to consider other values of r.

If G is odd, we subdivide an edge and add a 5-joker whose tip is identified with the newly created

vertex. We color all the edges with the color of the original edge. This creates an equivalent instance

having all the properties assumed for G. By Lemma 1, there is a pairing M of the vertices of G

such that edges can be added between each pair of vertices while still preserving planarity. For

every pair {u, v} ∈ M we will add a gadget that will have the desired properties of Qr, and in

addition will preserve planarity. Namely, the gadget will have 2(r−2) vertices of degree one, all the

remaining vertices of degree r, and will have a planar embedding in which all the degree one vertices

are in the outer face. Half (i.e., (r− 2)) of the degree one vertices of the gadget are identified with

u and the remaining half are identified with v. Now every new vertex has degree r and the degree

12
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Figure 4: The planar gadget used for the case r = 5.

of every original vertex increased by r − 2. The new edges are colored with a new color λ′ such

that for every color λ we have c′(λ′, λ) = 0. (G′, χ′, c′, k′) has an r-factor F ′ such that rc(F ′) = 0

if and only if (G,χ, c, k) has a 2-factor F with rc(F ) = 0. We omit the proof of this fact since it is

identical to the non-planar case.

We now describe the gadget depending on the value of r.

• r = 3. In this case the gadget is a Q3 which has the desired planarity properties.

• r = 4. In this case the gadget is a Q4. However, in order to get the planarity properties, the

subdivided edges of the K5 should constitute a matching.

• r = 5. In this case we use the gadget depicted in Figure 4.

4 Parameterized Complexity of r-MRCF

Lemma 2. For every α > 1, 2-MRCF, parameterized by pw(G), is W[1]-hard even when d = 2,

k = kmin, and deg(G) < 6 · α.

Proof. The proof is by an FPT reduction from Multicolored Clique. We first note that Mul-

ticolored Clique is W[1]-hard even when the number of colors k is restricted to be odd. Indeed,

the problem can be reduced to its special case as follows. Let (H, c, k) be an instance of Multi-

colored Clique where k is even. Let (H ′, c′, k + 1) be an instance of Multicolored Clique,

where (H ′, c′) is obtained by adding a universal vertex v colored k + 1 to H. It is easy to see that

H contains a clique on k vertices with one vertex from each color class if and only if H ′ contains

one. Also, by adding dummy vertices, we can also assume that each chromatic class in the input

graph of Multicolored Clique has at least t vertices, where t = α
α−1 .

Given an instance (H, c, k) of Multicolored Clique with k odd, we construct an instance

(G,χ, c, k) of 2-MRCF. Let V (H) = V1 ] V2 ] · · · ] Vk, where Vi is the set of vertices of V (G) that

are colored i, for i ∈ [k]. Notice that |V (G) ≥ t · k. Let W be an Eulerian circuit of the complete

graph Kk, which exists since k is odd. We assume that V (Kk) = [k]. We also assume, for ease

13



b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
s3,1 s3,1

U1,1 U2,1 Uk,1 Ui,i′ Uj,j′ U3,k′

u1,1,1 u2,1,1 uk,1,1 ui,i′,1 uj,j′,1 u3,k′,1

u1,1,|V1|
u2,1,|V2| uk,1,|Vk|

ui,i′,|Vi| uj,j′,|Vj | u3,k′,|V3|

s1,2 si,j

Figure 5: The S − U edges of G. A sample clique cycle appears in bold.

of exposition, that W starts with the sequence of vertices 1, 2, . . . , k, where every vertex i of this

sequence is considered as the first occurence of i in W . We also assume that the last vertex of W

(i.e. the vertex before the first occurence of 1) is 3. Clearly, every i ∈ [k] appears in W exactly

k′
def
= (k − 1)/2 times. The vertex set of G is the disjoint union of three sets U, S, and T where

• U consists of k′ copies Ui,1, . . . , Ui,k′ of Vi for every i ∈ [k], for a total of
(
k
2

)
sets. For every

i ∈ [k], we number the vertices of Vi from 1 to |Vi|, and we number the vertices of every copy

Ui,j accordingly, as ui,j,1, . . . ui,j,|Vi|.

• S consists of
(
k
2

)
vertices si,j , one for every arc ij of W ,

• T = T1 ∪ T2 ∪ · · · ∪ Tk, where every set Ti consists of |Vi| − 1 vertices ti,1, ti,2, . . . , ti,|Vi|−1.

We proceed with the description of the edge set of G, which contains three types of edges

depending on their endpoints. Every edge has one endpoint in U and the other endpoint is in one

of U, S or T .

• S − U edges: Let e = ij be an arc of W such that e is incident to the i′-th (resp. j′-th)

occurence of i (resp. j) in W . Then si,j is adjacent to every vertex of Ui,i′ and to every vertex

of Uj,j′ (see Figure 5).

• U −U edges: The U −U edges form |V (H)| vertex-disjoint paths, one path on k′ vertices for

every v ∈ V (H). The path corresponding to the `-th vertex of Vi is is ui,1,`ui,2,` . . . ui,k′,` (see

Figure 7).

• T − U edges: For every i ∈ [k] and every ` ∈ [|Vi| − 1], the vertex ti,` is adjacent to ui,1,`,

ui,1,`+1, ui,k′,` and ui,k′,`+1 (see Figure 7).

We prove two properties of G that are necessary to conclude the lemma.

Claim 1. deg(G) < 6α.
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Figure 6: A path decomposition of a connected component of G \ S.

Proof of Claim 1. Clearly, |U | = k′ · |V (H)|, |T | = |V (H)| − k, and S 6= ∅. Therefore, |V (G)| >
(k′ + 1) · |V (H)| − k.

We now proceed with the calculation of |E(G)|. Every U − S edge is incident to a vertex of

U , and every vertex of U has two incident U − S edges. Therefore, the number of U − S edges is

2k′ · |V (H)|. The total number of U −U and U − T edges is (k′ + 1)(V (H)), since for every vertex

v ∈ V (H) we have a cycle that contains k′ + 1 vertices, namely all the copies of v and a t vertex.

Thus, |E(G)| = (3k′ + 1) · |V (H)|. As |V (G) ≥ t · k ⇒ |V (G)|/(V (G) − k) ≤ t/(t − 1) = α, we

conclude that deg(G) is

2|E(G)|
|V (G)|

<
2(3k′ + 1) · |V (H)|

(k′ + 1) · (|V (H)| − k)
< 6 · |V (H)|

|V (H)| − k
< 6α.

Claim 2. pw(G) ≤
(
k
2

)
+ 3.

Proof of Claim 2. Clearly, pw(G) ≤ pw(G \ S) + |S| = pw(G \ S) +
(
k
2

)
. We observe that the edge

set of G \ S consists of U − U and T − U edges that form connected components Ti ∪ ∪k
′
j′=1Ui,j′ as

depicted in Figure 7. Every such component has a path decomposition of k′ · |Vi| bags with at most

4 vertices in a bag, as depicted in Figure 6. Therefore, pw(G \ S) ≤ 3 and the claim follows.

We proceed with the description of the coloring function χ and the traversal cost function c.

The color set is V (H) ∪ {white}. In other words, the vertices of H corresponds to colors in the

constructed instance H ′; that is, there is a color in H ′ corresponding to each vertex in H. All the

U −U and T −U edges are colored white, and the S −U edges are colored upon their endpoint in

U as follows. For every S − U edge e with endpoint ui,j,`, we define χ(e) = vi,`. The traversal cost
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c(v, white) is 1 for every v ∈ V (H) and c(white, white) = 0. Finally, for every v, v′ ∈ V (H)

c(v, v′) =

{
0 if vv′ ∈ E(H) or v = v′

1 otherwise.

Finally, we set k = 0. This completes the construction of (G,χ, c, k), which can be clearly performed

in polynomial time.
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Figure 7: The U − U and T − U edges of G.

We now prove that H has a k-clique with one vertex from every color class if and only if G has

a 2-factor F with rc(F ) = 0. Assume that H has a clique K with exactly one vertex from every

color, and suppose without loss of generality that K consists of the first vertices of each color class.

Let F be the 2-factor of G consisting of the following cycles.

• The clique cycle G[CK ], where CK = S ∪ {ui,j,1 | i ∈ [k], j ∈ [k′]}.

• The vertex cycles, one per every vertex v ∈ V (H) \ K. For every i ∈ [k] and every ` ∈
[2, |Vi|], the vertex cycle corresponding to the vertex vi,` ∈ V (H) \K is G[Ci,`], where Ci,` =

{ti,`−1, ui,j,` | j ∈ [k′]}.

It is easy to see that every vertex is in exactly one of these cycles. Furthermore, the edges of the

vertex cycles are all white, incurring a reload cost of zero. It remains to show that that the edges of

the clique cycle also incur a zero cost. Indeed, the two edges incident to a vertex ui,j,` ∈ U incur a
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cost c(vi,`, vi,`) = 0, and the two edges incident to a vertex si,j incur a zero cost since the adjacent

vertices are ui,i′,1 and uj,j′,1 that correspond to the vertices vi,1 and vj,1 of K, which are adjacent

in H.

Conversely, suppose that H contains a 2-factor F with rc(F ) = 0. Every vertex si,j is adjacent

to two distinct vertices of U that correspond to two distinct vertices v, v′ of V (H). Furthermore,

since the cost at vertex si,j is zero, we conclude that v and v′ are adjacent in H. In particular,

v and v′ are in different color classes. Therefore, si,j is adjacent to one vertex from each of Ui,i′

and Uj,j′ . The second edge incident to these vertices in F is not white, since otherwise it incurs

a positive traversal cost. Thus, the other edge is also a U − S edge. We conclude that the
(
k
2

)
vertices S are all in one cycle CK that also contains

(
k
2

)
vertices from U , one from every set Ui,i′ .

Furthermore, two consecutive vertices of U in CK correspond to two adjacent vertices of H.

All the remaining cycles must be in G \ S, which consists of k connected components Ti ∪
∪k′i′=1Ui,i′ , for every i ∈ [k]. The result is now apparent from Figure 7 that depicts this connected

component. If a vertex ui,i′,` is in one of the remaining cycles, then all the vertices ui,i′′,` for i′′ ∈ [k′]

are in the same cycle as ui,i′,`. Therefore, if a vertex ui,i′,` is in CK , then all the vertices ui,i′′,` for

i′′ ∈ [k′] are in CK . Recall that CK contains one vertex ui,i′,` from every set Ui,i′ . We conclude

that these vertices correspond to the same vertex vi,` of Vi. We recall that consecutive U -vertices

of CK correspond to two adjacent vertices of H. Therefore, the vertices U ∩CK correspond to the

vertices of a clique of H.

Given a graph G on n-vertices where n is even, a pairing collection of G is a collection M of

pairs of vertices in G that forms a partition of V (G). We denote G + M = (V (G), E(G) ∪M).

Notice that G + M can be a multi-graph as the pairings in M might already be edges of G. We

prove the following lemma that will prove useful in our proof.

Lemma 3. Let G be a n-vertex graph where n is even where pw(G) ≤ k for some k ≥ 1. Then G

has a pairing collection M such that pw(G+M) ≤ k + 1.

Proof. We say that a vertex v of a graph is k-simplicial if its neighbourhood induces a complete

graph on k vertices. Proper k-paths are recursively defined as follows: A complete graph on k + 1

vertices is a proper k-path. A graph H on more than k+ 1 vertices is a proper k-path if it contains

a k-simplicial vertex v such that the removal of v results to a proper k-path with a simplicial vertex

that belongs in the neighbourhood of v in H. Notice that this recursive definition gives rice to

sequence of simplicial vertices where every two successive vertices are adjacent and such that all

vertices of G appear in this sequence. Therefore every proper k-tree H has a hamiltonian path,

which, in case H has an even number of vertices, implies that H contains a perfect matching. It

was proved in [26] (see also [19]) that every graph G of pathwidth ≤ k is a spanning subgraph

of a proper (k + 1)-path H. As a perfect matching in H is a pairing collection in G, the lemma

follows.

Theorem 4. For every r ∈ N≥2, r-MRCF, parameterized by pw(G), is W[1]-hard even when

d = 2, k = kmin and deg(G) is less than r +

{
4 if r = 2

4/3 otherwise.

Proof. For r = 2 the Theorem is equivalent to Lemma 2. For r > 2 we present an FPT reduction

from the base case, i.e. r = 2. using the same technique as in the proof of Theorem 1. Namely,

given an instance (G,χ, c, k) of 2-MRCF with d = 2 and k = kmin = 0 where deg(G) < 6, we
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construct an instance (G′, χ′, c′, k′) of r-MRCF where d = 2 and the average degree of G′ is less

than r + 4/3 by adding to G a pair collection, and replacing every new edge by the gadget Qr.

By the last part of the proof of Theorem 1, G′ has an r-factor of zero cost if and only if G has a

2-factor of zero cost.

Claim 3. The average degree of G′ is at most r + 4/3.

Proof of Claim 3. Let n = |V (G)|. Then |E(G)| < 3n. On the other hand, the number of edges

added by every Qr is r(r+1)
2 + r − 2. Summarizing, we have

|E(G′)| < 3n+
n

2

(
r(r + 1)

2
+ r − 2

)
|V (G′)| = n+

n

2
(r + 1).

We conclude that the average degree of G′ is less than

6 +
(
r(r+1)

2 + r − 2
)

1 + r+1
2

=
r2 + 3r + 8

r + 3
= r +

8

r + 3
≤ r +

4

3
.

Claim 4. pw(G′) ≤ (pw(G) + 1) · r+1
r−1 − 1.

Proof of Claim 4. According to Lemma 3, there is a pairing collection M of G such that pw(G +

M) ≤ pw(G) + 1.

The operation of replacing each pair of M by a Qr can be reflected in the path decomposition

as follows. Each bag has k + 1 vertices and among the edges with endpoints in this bag, at

most (k + 1)/2 of them can be pairs that belong in M . This means that after the insertion of

at most (k + 1)/2 copies of Qr in each bag the new path decomposition will have width at most

k + 1 + (k + 1)/2 · (r + 1) = (pw(G) + 1) · r+1
r−1 .

Finally, we note that r is a constant of the problem. Therefore, the function proven in Claim

4, is a function of pw(G) as required.

We conclude with the following algorithmic result.

Theorem 5. For every r ∈ N≥2, r-MRCF, parameterized by min{q,∆(G)} and tw(G) is in FPT.

Specifically, it can be solved by an algorithm that runs in time O∗
((

min{q,∆(G)}+r
r

)2(tw(G)+1)
)

.

Proof. We assume that the graph G is given together with a nice pair (D,G) where D = (T,X , r).
Indeed, by using for instance the algorithm of Bodlaender et al. [4], we can compute in time

2O(tw(G)) · n a tree decomposition of G of width at most 5tw(G). Note that this running time is

clearly dominated by the running time stated in Theorem 5. Recall also that, by [7, 20], given a

tree decomposition, it can be transformed in polynomial time into a nice pair.

We first introduce some notation. Let t ∈ T , v ∈ Xt, and F an r-factor of G. The graph

Ft = F [V (Gt)] is a partial r-factor of G. We encode the edges EGt(v) incident to v in Gt as a

vector Et,v of non-negative integers indexed by the colors of the instance. The value of the entry
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λ of Et,v is the number of edges of EGt(v) colored λ. Clearly, the sum of the entries of this vector,

denoted by ‖Et,v‖ is |EGt(v)|. The encoding of a single edge e colored χ(e) = λ, incident to v is

the vector uλ that has a 1 in entry λ and zero elsewhere. We now define the set of all vectors

encoding a subset of |EGt(v) consisting of at most r edges. In other words, these are the sets of

edges incident to v in Gt that can be part of an r-factor of G:

Et,v
def
= {E | E ≤ Et,v, ‖E‖ ≤ r}.

Note that |Et,v| ≤
(
q+r
r

)
. Let E,E′ ∈ Et,v encode two disjoint sets of edges incident to v. Each of

E,E′ has an associated reload cost on v. The reload cost of their union E + E′ is the sum of their

individual reload costs, plus the reload costs incurred by the traversals between the two sets, which

is cv(E,E
′)
def
=
∑

λ

∑
λ′ c(λ, λ

′) ·Eλ ·Eλ′ .

Algorithm 1 DynProg

Require: An instance (G,χ, c, k) of r-MRCF

Require: A nice pair D,G where D = (T, r,X ) is a tree decomposition of G.

1: for t ∈ T (using a bottom-up traversal) do

2: Tk(Et)←∞ for every Et ∈ Et.
3: if t = r then

4: return Tr(()) ≤ k. . Tr = ∅, Er = {()}
5: else if t is a leaf node then

6: Tt(()) = 0.

7: else if t is a join node with children t′, t′′ then

8: for Et′ ∈ Et′ do
9: for Et′′ ∈ Et′′ do

10: if Et′ + Et′′ ∈ Et then
11: cost← Tt′(Et′) + Tt′′(Et′′) + cXt(Et′ ,Et′′).

12: if cost < Tt(Et′ + Et′′) then Tt(Et′ + Et′′)← cost

13: else if t introduces the vertex v and has child t′ then

14: for Et′ ∈ Et′ do
15: Tt((0,Et′)) = Tt′(Et′). . w.l.o.g. v is the first vertex of Xt.

16: else if t introduces the edge e = uv and has child t′ then . Et′ ⊆ Et.
17: for Et ∈ Et′ do . Partial r-factors that do not contain e

18: Tt(Et)← Tt′(Et)

19: for Et ∈ Et \ Et′ do . Partial r-factors that contain e

20: Et′ ← Et − (uχ(e),uχ(e),0, . . . ,0)

21: Tt(Et)← Tt′(Et′) + cu(Et′ ,uχ(e)) + cv(Et′ ,uχ(e))

22: else . t is a forget node that forgets v and has child t′

23: for Et′ = (ev,Et) ∈ Et′ do
24: if ‖ev‖ = r and Tt′(Et′) < Tt(Et) then

25: Tt(Et)← Tt′(Et′)

We extend this definition to any subset X of vertices as cX(E,E′)
def
=
∑

x∈X cx(E,E′).
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Et is the cartesian product ×v∈XtEt,v, i.e. every element of Et is a vector of |Xt| vectors that

encodes a set of edges incident to Xt that is possibly part of an r-factor of G. Clearly, |Et| ≤(
q+r
r

)|Xt| ≤
(
q+r
r

)w+1
. For every t ∈ T we maintain a function Tt : Et → N≥0 that returns for any

given Et ∈ Et, the minimum cost of a partial r-factor whose edges incident to Xt are encoded by

Et.

The dynamic programming algorithm whose pseudo code is given in Algorithm 1 performs a

bottom-up traversal of T and updates the tables Tt at every node, and finally returns the result by

inspecting the value Tr(()) (recall that Er = {()}.
As for the running time of the algorithm, we observe that the dominant running time for a

node is obtained in the case of a join node, in which case the running time is O(|Et′ | · |Et′′ |) =

O∗
((

q+r
r

)2(tw(G)+1)
)

, ignoring polynomial factors. Alternatively, we can encode the vectors of Et,v
using a binary vector of length ∆(G). In this case |Et| =

(
∆(G)+r

r

)
, implying the running time in

the statement of the Theorem.
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