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Abstract. This paper presents a novel framework for human trajec-
tory prediction based on multimodal data (video and radar). Motivated
by recent neuroscience discoveries, we propose incorporating a struc-
tured memory component in the human trajectory prediction pipeline
to capture historical information to improve performance. We introduce
structured LSTM cells for modelling the memory content hierarchically,
preserving the spatiotemporal structure of the information and enabling
us to capture both short-term and long-term context. We demonstrate
how this architecture can be extended to integrate salient information
from multiple modalities to automatically store and retrieve important
information for decision making without any supervision. We evaluate
the effectiveness of the proposed models on a novel multimodal dataset
that we introduce, consisting of 40,000 pedestrian trajectories, acquired
jointly from a radar system and a CCTV camera system installed in a
public place. The performance is also evaluated on the publicly avail-
able New York Grand Central pedestrian database. In both settings, the
proposed models demonstrate their capability to better anticipate future
pedestrian motion compared to existing state of the art.

Keywords: Human Trajectory Prediction · Structured Memory Net-
works · Multimodal Information Fusion · long-term Planing.

1 Introduction

Understanding and predicting crowd behaviour is an important topic due to its
myriad applications (surveillance, event detection, traffic flow, etc). However this
remains a challenging problem due to the complex nature of human behaviour
and the lack of attention that researchers pay to human navigational patterns
when developing machine learning models.

Recent neuroscience studies have revealed that humans utilise map and grid
like structures for navigation [12, 26]. The human brain builds a unified repre-
sentation of the spatial environment, which is stored in the hippocampus [13]
and guides the decision making process. Further studies [6] provide strong evi-
dence towards a hierarchical spatial representation of these maps. Additionally
in [11,20] authors have observed multiple representations of structured maps in-
stead of one single map in the long-term memory. This idea was explored in [28]
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using structured memory for Deep Reinforcement Learning. To generate an out-
put at a particular time step, the system passes the memory content through a
series of convolution layers to summarise the content. We argue this is inefficient
and could lead to a loss of information when modelling large spatial areas.

Motivated by recent neuroscience [12,26] and deep reinforcement leaning [28]
studies, we utilise a structured memory to predict human navigational behaviour.
In particular such a memory structure allows a machine learning algorithm to
exploit historical knowledge about the spatial structure of the environment, and
reason and plan ahead, instead of generating reflexive behaviour based on the
current context. Novel contributions of this paper are summarised as follows:

– We introduce a novel neural memory architecture which effectively captures
the spatiotemporal structure of the environment.

– We propose structured LSTM (St-LSTM) cells, which model the structured
memory hierarchically, preserving the memories’ spatiotemporal structure.

– We incorporate the neural memory network into a human trajectory predic-
tion pipeline where it learns to automatically store and retrieve important
information for decision making without any supervision.

– We introduce a novel multimodal dataset for human trajectory prediction,
containing more than 40,000 trajectories from Radar and CCTV streams.

– We demonstrate how the semantic information from multiple input streams
can be captured through multiple memory components and propose an ef-
fective fusion scheme that preserves the spatiotemporal structure.

– We provide extensive evaluations of the proposed method using multiple
public benchmarks, where the proposed method is capable of imitating hu-
man navigation behaviour and outperforms state-of-the-art methods.

2 Related Work

The related literature can be broadly categorised into human behaviour predic-
tion approaches, introduced in Sec 2.1; neural memory architectures, presented
in Sec. 2.2; and multimodal information fusion which we review in Sec. 2.3.

2.1 Human Behaviour Prediction

Before the dawn of deep learning, Social Force models [33, 34] had been exten-
sively applied for modelling human navigational behaviour. They rely on the
attractive and repulsive forces between pedestrians to predict motion. However
as shown in [1,14,16] these methods ill represent the structure of human decision
making by modelling the behaviour with just a handful of parameters.

One of the most popular deep learning methods for predicting human be-
haviour is the Social LSTM model of [1], which removed the need for hand-
crafted features by using LSTMs to encode and decode trajectory information.
This method is further augmented in [16] where the authors incorporate the
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entire trajectory of the pedestrian of interest as well as the neighbouring pedes-
trians and extract salient information from these embeddings through a combi-
nation of soft and hardwired attention. Similar to [16] the works in [3,32,36] also
highlight the importance of fully capturing context information. However these
methods all consider short-term temporal context in the given neighbourhood,
completely discarding scene structure and the longterm scene context.

2.2 Neural Memory Architectures

External memory modules are used to store historic information, and learn to
automatically store and retrieve important facts to aid future predictions. Many
approaches across numerous domains [14,15,17,18,22,27] have utilised memory
modules to aid prediction, highlighting the importance of stored knowledge for
decision making. However existing memory structures are one dimensional mod-
ules which completely ignore the environmental spatial structure. This causes a
significant hindrance when modelling human navigation, since they are unable
to capture the map-like structures humans use when navigating [12,26].

The work of Parisotto et al. [28] proposes an interesting extension to mem-
ory architectures where they structure the memory as a 3D block, preserving
spatial relationships. However, when generating memory output they rely on a
static convolution kernel to summarise the content, failing to generate dynamic
responses and propagate salient information from spatial locations to the trajec-
tory prediction module, where multiple humans can interact in the environment.

Motivated by the hierarchical sub-map structure humans use to navigate
[11,20], we model our spatiotemporal memory with gated St-LSTM cells, which
are arranged hierarchically in a grid structure.

2.3 Multimodal information fusion

Multimodal information fusion addresses the task of integrating inputs from
various modalities and has shown superior performance compared to unimodal
approaches [4, 10] in variety of applications [2, 21, 35]. The simplest approach is
to concatenate features to obtain a single vector representation [23,29]. However
it ignores the relative correlation between the modalities [2].

More complex fusion strategies include concatenating higher level representa-
tions from individual modalities separately and then combining them together,
enabling the model to learn the salient aspects of individual streams. In this
direction, attempts were made using Deep Boltzmann Machines [31] and neural
network architectures [9, 25].

In [15] the authors explore the importance of capturing both short and
longterm temporal context when performing feature fusion, utilising separate
neural memory units for individual feature streams and aggregating the tempo-
ral representation during fusion. Yet this fails to preserve the spatial structure,
restricting its applicability when modelling human navigation.



4 T. Fernando et al.

3 Architecture

In this section we introduce the encoding scheme utilised to embed the trajec-
tory information of the pedestrian of interest and their neighbours; the structure
and the operations of the proposed hierarchical memory; how to utilise memory
output to enhance the future trajectory prediction; and an architecture for effec-
tively coupling multimodal information streams through structured memories.

3.1 Embedding local neighbourhood context

In order to embed the current short-term context of the pedestrian of interest
and the local neighbourhood, we utilise the trajectory prediction framework
proposed in [16]. Let the observed trajectory of pedestrian k from frame 1 to
frame Tobs be given by,

Xk = [(x1, y1), (x2, y2), . . . , (xTobs
, yTobs

)], (1)

where the trajectory is composed of points in a 2D Cartesian grid. Similar to
[16] we utilise the soft attention operation [8] to embed the trajectory information

from the pedestrian of interest (k) and generate a vector embedding Cs,kt . To
embed neighbouring trajectories the authors in [16,19] have shown that distance
based hardwired attention is efficient and effective. We denote the hardwired
context vector as Ch,kt .

Now we define the combined context vector, C∗,kt , representing the short-term
context of the local neighbourhood of the kth pedestrian as,

C∗,kt = tanh([Cs,kt , Ch,kt ]), (2)

where [., .] denotes a concatenation operation. Please see [16,19] for details.

3.2 Structured Memory Network (SMN)

Let the structured memory, M , be a l×W ×H block where l is the embedding
dimension of pkt . W is the vertical extent of the map and H is the horizontal
extent. We define a function ψ(x, y) which maps spatial coordinates (x, y) with
x ∈ R and y ∈ R to a map grid (x′, y′) where x′ ∈ 0, . . . ,W and y′ ∈ 0, . . . ,H.

The works of [16,19] have shown that the context embeddings C∗,kt capture the
short-term context of the pedestrian of interest and the local neighbourhood.
Hence we store these embeddings in our structured memory as it represents the
temporal context in that grid cell. The operations of the proposed structured
memory network (SMN) can be summarised as follows,

ht = read(Mt), (3)

β
(x′,y′)
t+1 = write(C∗,kt ,M

(x′,y′)
t ), (4)

Mt+1 = update(Mt, w
(x′,y′)
t+1 ). (5)

The following subsections explain these three operations.
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Fig. 1. The operations of the proposed St-LSTM cell. It considers the current repre-
sentation of the respective memory cell and the 3 adjacent neighbours as well as the
previous time step outputs and utilises gated operations to render the output in the
present time step.

Hierarchical Read Operation The read operation outputs output a vector,
ht, capturing the most salient information from the entire memory for decision
making in the present state. We define a hierarchical read operation which passes
the current memory representation, Mt, through a series of gated, structured
LSTM (St-LSTM) cells arranged in a grid like structure. Fig. 1 depicts the
operations of the proposed St-LSTM cells.

Let the content of (x′, y′) memory cell at time t be represented by m
(x′,y′)
t and

the three adjacent cells be represented by m
(x′+1,y′)
t ,m

(x′,y′+1)
t and m

(x′+!,y′+1)
t .

As shown in Fig. 2, we first pass the current state of the memory cell through
an input gate to decide how much information to pass through the gate and how
much information to gather from the previous hidden state of the that particular

cell, ĥ
(x′,y′)
t−1 . This operation is given by,

z
(x′,y′)
t = σ(w(x′,y′)

z [m
(x′,y′)
t , ĥ

(x′,y′)
t−1 ]),

ô
(x′,y′)
t = tanh([m

(x′,y′)
t , ĥ

(x′,y′)
t−1 ]).

(6)

Then we generate the new hidden state of the cell using,

ĥ
(x′,y′)
t = z

(x′,y′)
t ô

(x′,y′)
t + (1− z(x

′,y′)
t )ĥ

(x′,y′)
t−1 , (7)
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Fig. 2. Utilisation of proposed St-LSTM cell to generate a hierarchical embedding of
the structured memory. In each layer we summarise the content of 4 adjacent neighbours
via propagating the most salient information to the layer above. The process is repeated
until we generate a single vector representation of the entire memory block.

and pass the hidden state of that particular cell as well as the hidden states
of the adjacent cell through a composition gate function which determines the
amount of information to be gathered from each of the cells as,

q
(x′,y′)
t = σ(w(x′,y′)

q [ĥ
(x′,y′)
t , ĥ

(x′+1,y′)
t , ĥ

(x′,y′+1)
t , ĥ

(x′+1,y′+1)
t ]). (8)

Now we can generate the augmented state of the cell (x′, y′) as,

ḧ
(x′,y′)
t = tanh(ĥ

(x′,y′)
t )q

(x′,y′)
t . (9)

We perform the above operations to the rest of the group of 3 cells: (x′ +

1, y′), (x′, y′+1) and (x′+1, y′+1); and generate the representations ḧ
(x′+1,y′)
t , ḧ

(x′,y′+1)
t

and ḧ
(x′+1,y′+1)
t respectively. Then the feature embedding representation, ht, of

the merged 4 cells in the next layer of the memory is given by,

ht = ḧ
(x′,y′)
t + ḧ

(x′+1,y′)
t + ḧ

(x′,y′+1)
t + ḧ

(x′+1,y′+1)
t . (10)

We repeat this process for all cells (x′, y′) where x′ ∈ 0, . . . ,W and y′ ∈
0, . . . ,H. Note that as we are merging four adjacent cells we have W/2 and H/2
St-LSTM cells in the immediate next layer of the memory block. We continue
merging cells until we are left with one cell summarising the entire memory
block. We denote the hidden state of this cell as ht.
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Write Operation Given the current position of the pedestrian of interest at
(x, y), we first evaluate the associated location in the map grid by passing (x, y)
through function, ψ, such that,

(x′, y′) = ψ(x, y). (11)

Then we retrieve the current memory state of (x′, y′) as,

m
(x′,y′)
t = M

(x′,y′)
t . (12)

Then by utilising the above stated vector and the short-term context of the
pedestrian of interest, C∗t , we define a write function which generates a write
vector for memory update,

β
(x′,y′)
t+1 = LSTMw(c∗t ,m

(x′,y′)
t ). (13)

Update Operation We update the memory map for the next time step by,

M
(a,b)
t+1 =

{
β
(x′,y′)
t+1 for (a, b) = (x′, y′)

M
(a,b)
t for (a, b) 6= (x′, y′)

(14)

The new memory map is equal to to the memory map at the previous time
step except for the current location of the pedestrian where we completely update
the content with the generated write vector.

3.3 Trajectory prediction with structured memory hierarchies

We utilise the combined context vector C∗,kt representing the short-term context
of the local neighbourhood of the kth pedestrian, and the generated memory
output ht to generate an augmented vector for the context representation,

c̄
(k)
t = tanh([C∗,kt , ht]), (15)

which is used to predict the future trajectory of the pedestrian k,

Yt = LSTM(pkt−1, c̄
(k)
t , Yt−1). (16)

3.4 Coupling multimodal information to improve prediction

Using multimodal input streams allows us to capture different semantics that are
present in the same scene, and compliment individual streams. For instance, in a
surveillance setting, radar and video fusion is widely utilised [5,30] as radar offers
better coverage in the absence of visual light, however has a lower frame rate
(<5 fps) compared to video (∼25fps) which records more fine grained motion.

As pointed out in [15], simply concatenating data from both streams leads
to information loss as they contain information at different granularities. Hence
it is vital to jointly back propagate among the information streams to learn
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the important aspects of each. Therefore, we capture streams through separate
memory modules, and perform gated coupling of memory hierarchies.

We denote the two synchronised input modalities as I and R, where the
trajectory of pedestrian k observed in stream I is denoted as Xk

I and the same
pedestrian trajectory observed in stream R is given as Xk

R. We pass each stream
separately through the local neighbourhood embedding mechanism proposed in
Sec. 3.1 and generate vector embeddings C∗,kt,I and C∗,kt,R respectively. We embed
these through individual memory blocks denoted as Mt,I and Mt,R. In the ab-
sences of such trajectories (i.e due to poor coverage, occlusions, . . . ), we evaluate

only the neighbourhood embeddings Ch,kt,R and use them as C∗,kt,R.
After the hierarchical gated operations, let the memory output generated

using Eq. 10 from memory Mt,I at time instance t be denoted by ht,I and
memory Mt,R be denoted as ht,R. For simplicity, in Fig. 3 we consider 2 input
streams, however the proposed coupling mechanism is flexible and is able to
handle any number of modalities.

Motivated by [2, 24] we perform gated modality fusion such that,

h̄t,I = tanh(WIht,I),

h̄t,R = tanh(WRht,R),

ν = σ(Wν [h̄t,I , h̄t,R]),

(17)

where WI and WR are the weights for the respective memories and Wν is
the weight of the fusion gate. This can be seen as performing attention from
one modality over the other where each modality determines the amount of
information to flow from the other. We then obtain the combined feature vector,

ht = νh̄t,I + (1− ν)h̄t,R, (18)

and augment Eq. 15 to utilise information from both streams,

C̄
(k)
t = tanh([C∗,kt,I , C

∗,k
t,R, ht]), (19)

and predict the future trajectory using Eq. 16. In contrast to [5, 30] where
simple concatenation of multimodal data is used, the proposed multi-memory
architecture allows the model to store salient information of individual streams
separately and propagate it effectively to the decision making process. We denote
this model as SMN(I +R) as it couples I and R streams to the SMN model.

4 Evaluation and Discussion

4.1 Datasets

We present the experimental results for the single modal framework on the pub-
licly available New York Grand Central (GC) [34] dataset. The Grand Central
dataset consist of 12,600 trajectories. For training, testing and validation we use
the same splits defined in [16]. Due to the unavailability of public multimodal
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St-LSTM

ht,I WI WR

ht

St-LSTM

ht,R

Fig. 3. Coupling multimodal information through multiple memory modules. The in-
formation from each modality is stored separately. Note that the figure shows only the
top most layer in each memory.

pedestrian trajectory data, we introduce a new large scale dataset 1. Pedestrian
trajectories from a CCTV surveillance feed (I) and Radar (R) streams, for 32
hours, were collected and synchronised. Please refer to the supplementary ma-
terial for statistics, calibration and synchronisation details of the dataset.

4.2 Evaluation Metrics

Following [1,16] we evaluate the performance with the following 3 error metrics:
Average displacement error (ADE), Final displacement error (FDE) and Average
non-linear displacement error (n-ADE). Please refer to [1, 16] for details.

4.3 Evaluation of trajectory prediction with single modal data

The evaluation of single modal trajectories is conducted on the GC dataset [34].
We compare our model against 6 state of the art baselines. The first baseline is
the Social Force (SF) model of [33]. It requires the destination of the pedestrian
as input, and a linear SVM is trained with ground truth destination areas for
this task. The next baseline is the Social LSTM (So-LSTM) model of [1]. It re-
quires the neighbourhood size as a hyper-parameter and is set to 32px. The soft
+ hardwired attention model from [16] (SHA) does not posses any memory and
computes the trajectory prediction by modelling the local neighbourhood of the
pedestrian of interest. We also consider the Tree Memory Network (TMN) [14]
which models the memory as a tree structure. This model uses the hyper param-
eter δ, which defines the length of the memory as it structures a flat memory
vector as a tree. We also evaluate the Neural Map (NM) model introduced in [28].
The pedestrian of interest’s trajectory is embedded using a soft attention mech-
anism as defined in Sec. 3.1 and is stored in the memory. To provide a fair
comparison, we also augment the NM module with the neighbourhood embed-
dings, Cs,kt and Ch,kt , combine these with the memory output vector generated
from the NM as in Eq. 15. We define this model as NMA.

To provide a direct comparison among baselines we set the hidden state
dimensions of So-LSTM, SHA, TMN, NM, NMA and the proposed SMN model
to be 30 units. As the models NM, NMA and SMN have a map width (W)
and map height (H) as hyper-parameters, we evaluate different memory sizes.
Similarly, for TMN we evaluate different memory lengths δ. Please refer to the

1 available at https://github.com/qutsaivt/SAIVTMultiSpectralTrajectoryDataset
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supplementary material for those evaluations. Best results are shown in Tab. 1.
To evaluate the relative performance of each model, we observe the trajectory
for 20 frames and predict the future trajectory for the next 20 frames.

Method
Metric

ADE FDE n-ADE

SF [33] 3.364 5.808 3.983

So-LSTM [1] 1.990 4.519 1.781

SHA [16] 1.096 3.011 0.985

TMN (δ=64) [14] 2.982 4.989 2.780

NM (W=H=64) [28] 2.505 4.151 2.432

NMA (W=H=64) 1.466 3.811 1.445

SMN (W=H=128) 0.891 2.899 0.814

Table 1. Quantitative results with the GC dataset [34] for Social Force (SF) [33],
Social LSTM (So-LSTM) [1], Soft + Hardwired Attention (SHA) [16], Tree Memory
Network (TMN) [14], Neural Map (NM) [28], Neural Map Augmented (NMA) and
the proposed Structured Memory Network (SMN) models. In all the methods forecast
trajectories are of length 20 frames. The measured error metrics are as in Sec. 4.2.

From the results tabulated in Tab. 1 we observe poor performance in the SF
model due to its lack of capacity to model long-term history. Models So-LSTM
and SHA utilise short-term history from the pedestrian of interest and the local
neighbourhood and generate improved predictions accordingly.

The lack of spatial structure and context modelling in the TMN module
leads to it’s poor performance despite it’s long-term history modelling capacity.
Comparing the NM and NMA models, the performance increase from NM and
NMA is due to the addition of local context, highlighting the importance of
capturing both long and short-term context. The NMA model attains improved
performance due to the improved modelling of the local neighbourhood, and
the structured memory; however when compared to the SHA model it fails to
propagate salient spatiotemporal information from the structured memory to aid
the decision making. This is due to the static kernel used when generating the
memory output. In contrast, we map the memory output hierarchically using the
proposed St-LSTM cells and propagate salient information to the upper layer,
enabling efficient information transfer to the prediction model. The proposed
gated architecture considers the evolution of memory over time, where multiple
humans can interact with the environment, changing the state of multiple spatial
locations. Hence we are able to generate dynamic responses instead of passing
the information through a static convolution kernel as in NM and NMA; enabling
superior performance even with large memory sizes.

We present a qualitative evaluation of the proposed SMN model with the
SHA and NMA baselines in Fig. 4. We selected these baselines as they provide
the highest comparative results. The trajectories are shown in the first column
where the observed part of the trajectory is denoted in green, the ground truth
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observations in blue, neighbouring trajectories are in purple and the predicted
trajectories are shown in red (SMN), yellow (SHA) and orange (NMA).

(a) (b)

Time Elapsed

PI Model
Front Neighbours
Right Neighbours

Memory
Left Neighbours

0 5 10 15 20 25
5.0

2.5

0.0

2.5

5.0

(c)

(d) (e)

Time Elapsed

PI Model
Front Neighbours
Right Neighbours

Memory
Left Neighbours

0 5 10 15 20 25
5.0

2.5

0.0

2.5

5.0

(f)

Fig. 4. Qualitative results for the GC dataset [34]: Given (in green), Ground Truth (in
blue), Neighbouring (in purple) and Predicted trajectories from SMN model (in red),
from SHA model (in yellow), from NMA model (in orange) along with the respective
structured memory activations and relative activation contribution of each component
in the prediction module. Please note that in the structured memory activations the
intensity of the colour represents the degree of the activation and has been manually
aligned with the figure in the first column for the clarity of visualisation.

When observing the qualitative results it can be clearly seen that the pro-
posed SMN model generates better trajectory predictions compared to the state-
of-the-arts. For instance in Fig. 4 (a) and (d) we observe significant deviation of
the predictions of SHA and NMA models from the ground truth. However the
proposed SMN model has been able to anticipate the pedestrian motion more
accurately with the improved context modelling.

From the memory activation visualisations, it is evident more attention is
given to cells surrounding the trajectory of the pedestrian of interest and the
neighbours. Varying levels of attention are given to the cells occupied by the
neighbours. However by passing this information through the proposed gated
St-LSTM cells the proposed model is able to learn salient information among
the passed activations from the layer below. This can be verified by observing
the relative activation plots presented in the 3rd column of Fig. 4. While in
general more attention is given to the encoded trajectory information from the
pedestrian of interest (PI model), in cases such as Fig. 4 (c) more attention is
given to the historic neighbourhood embeddings present in memory, where as
in Fig. 4 (f) the model gives more attention to the neighbours. This verifies our
hypothesis that both current context information encoded within the motion of
pedestrian of interest and the neighbouring trajectories as well as the information



12 T. Fernando et al.

from the long-term history that preserves the structural integrity, is vital for
prediction. Refer to the supplementary material for more qualitative evaluations.

4.4 Evaluation of trajectory prediction with multimodal data

The evaluation of multi-modal trajectories is conducted on the proposed multi-
modal dataset. We compared our proposed model, SMN(I+R), with 4 state of the
art baselines. In the first baseline, SHA(I+R), we concatenate the embeddings

C∗,kI,t and C∗,kR,t for the I and R modalities directly to generate the augmented

vector representation, C̄
(k)
t , and use it in Eq. 16 to generate the prediction. The

work of Fernando et al. [15] introduces a multi-modal extension to the TMN
module. We use this model, TMN(I+R), as our next baseline. We extend the
NM and NMA architectures (see Sec. 4.3) to handle multi-modal data. Similar
to TMN(I+R) model we use multiple memories to store each input streams and
pass the memory outputs through Eq. 17 to generate predictions. The augmented
models are denoted NM(I+R) and NMA(I+R) in the evaluations. For models
NM(I+R), NMA(I+R) and SMN(I+R) we set the map width (W) and map
height (H) to be 128 and for TMN(I+R) we set the memory length δ=64, as
this provided the best accuracies in Sec 4.3.

Following the previous experiment, we observe the trajectory for 20 frames
and predict the trajectory for the next 20 frames. After filtering out short and
fragmented trajectories we are left with 40,800 trajectories. We randomly se-
lected 28,560 trajectories for training, 10,200 for testing and 2,040 for validation.

Method
Metric

ADE FDE n-ADE

SHA(I+R) [16] 1.245 1.654 1.454

TMN(I+R) [15] 2.901 3.169 3.001

NM(I+R) [28] 2.015 2.741 2.344

NMA(I+R) 1.325 1.814 1.558

SMN(I+R) 0.979 0.998 1.036
Table 2. Quantitative results with the proposed multimodal dataset for, Soft + Hard-
wired Attention (SHA(I+R)) [16], Tree Memory Network (TMN(I+R)) [14], Neural
Map (NM(I+R)) [28], Neural Map Augmented (NMA(I+R)) and the proposed Struc-
tured Memory Network (SMN(I+R)) models. In all the methods forecast trajectories
are of length 20 frames. Error metrics are defined in Sec. 4.2.

Similar to the evaluations in Sec. 4.3, we observe poor performance from
TMN(I+R) and NM(I+R) due to their inability to capture local neighbourhood
information. However we observe a significant reduction in the performance gap
between SHA(I+R) and NMA(I+R), compared to the that in Tab.1, which is a
result of the naive fusion method used in the former model. SHA(I+R) simply
concatenates the two modes together, and as such the model lacks the capacity
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to capture salient information from individual modes. In contrast, by captur-
ing long-term temporal dependencies of the two modalities, the memory based
coupling mechanism yields better predictions. We further augment this process
in SMN(I+R) by utilising the St-LSTM cells to hierarchically capture salient
information from each mode. This enables the model to jointly back propagate
through the two modalities and learn the strengths and weaknesses of each, ef-
fectively complimenting the prediction module with the additional information
stream. Please refer to supplementary material for qualitative evaluations of the
proposed SMN(I+R) model with the SHA(I+R) and NMA(I+R) baselines.

4.5 Ablation Experiments

To further demonstrate the effectiveness of our proposed fusion approach, we
conduct a series of ablation experiments, identifying the crucial components
of the proposed architecture. In the same settings as the experiment in Sec.
4.4, we compare the SMN(I+R) (proposed) method to a series of counterparts
constructed by removing components of the model as follows:

– SA(I): Uses only the soft attention context vector, Cs,kt , and data from the
image stream (I) for trajectory prediction.

– SHA(I): Uses both soft (Cs,kt ) and hardwired (Ch,kt ) attention vectors and
data from image stream (I) for trajectory prediction

– SMN(I): Uses the proposed SMN model and data from Image (I) stream.
– SA(R): Similar to SA-I but uses data from the Radar (R) stream.
– SHA(R): Similar to SHA-I but uses data from the Radar (R) stream.
– SMN(R): Similar to SMN-I but uses data from the Radar (R) stream.

– SA(I+R): SA model that directly concatenates Cs,kt,I and Cs,kt,R and generates
a vector embedding for Eq. 16.

– SHA(I+R): SHA model that directly concatenates C∗,kt,I and C∗,kt,R and gen-
erates a vector embedding for Eq. 16.

– SMN(I+R): Uses the model proposed in Sec. 3.4.

Note that for all SMN models we used W = H = 128.
The results of our ablation study are presented in Tab. 3. Models SA(I)

and SA(R) perform poorly due to their inability to oversee the neighbourhood
context. We observe improved performance in SHA(I) and SHA(R) with the
introduction of information from neighbouring pedestrians. The combined infor-
mation from both modalities contributes to the performance gain we observe in
SHA(I+R) over the unimodal counterparts, verifying the observations in [4,10].

Comparing the unimodal SMN(I) and SMN(R) models with the multimodal
SHA(I+R) model, the former outperforms the latter by a significant margin,
emphasising the importance of capturing long-term spatial context, and propa-
gating the information effectively to the prediction model. The introduction of
a secondary modality in SMN(I+R) further improves the prediction accuracy.

We would like to further compare the results obtained from the individual
models in the I and R streams. We observe a performance boost in modality I,
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Method
Metric

ADE FDE n-ADE

SA(I) 2.012 3.011 2.190

SHA(I) 1.235 2.731 1.442

SMN(I) 1.029 1.104 1.092

SA(R) 2.259 3.312 2.261

SHA(R) 1.613 3.070 1.892

SMN(R) 1.198 1.330 1.288

SA(I+R) 1.334 1.813 1.579

SHA(I+R) 1.245 1.654 1.454

SMN(I+R) 0.979 0.998 1.036
Table 3. Ablation experiment evaluations

due to the finer granularity present in the CCTV stream due to the higher frame
rate, compared to the radar stream. Hence extracted trajectories are smoother
compared to the trajectories from modality R, making it easier to model.

4.6 Implementation Details

We use Keras [7] for our implementation. The SMN and SMN(I+R) modules
do not require any special hardware (i.e. GPUs) to run. The SMN (W=H=128)
model has 152K trainable parameters, and SMN(I+R) (W=H=128) has 358K.
We ran the test set in Sec. 4.3 on a single core of an Intel Xeon E5-2680 2.50GHz
CPU and the SMN algorithm was able to generate 1000 predicted trajectories
with 40, 2 dimensional data points (i.e. using 20 observations to predict the next
20 data points) in 2.791 seconds. In a similar experiment with the test set in
Sec. 4.4 we were able to generate 1000 predicted trajectories in 11.722 seconds.

5 Conclusions

In this paper we propose a method to anticipate complex human motion by
analysing structural and temporal accordance. We extend the standard pedes-
trian trajectory prediction framework by introducing a novel model, Structured
Memory Network (SMN), which is able to oversee the long-term history, pre-
serving the structural integrity and improving prediction of pedestrian motion.
As an extension to the proposed SMN model, we contribute a novel data driven
method to capture salient information from multiple modalities and demonstrate
how to incorporate this to enhance prediction. Additionally, we introduce a novel
multi-modal pedestrian trajectory dataset, collected from synchronised CCTV
and Radar streams, and consisting of 40,000 pedestrian trajectories. Our evalu-
ations on both single and multi-modal datasets demonstrate the capacity of the
proposed SMN method to learn complex real world human navigation behaviour.
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