
AWX: An Integrated Approach to
Hierarchical-Multilabel Classification

Luca Masera(B) and Enrico Blanzieri

University of Trento, 38123 Trento, Italy
{luca.masera,enrico.blanzieri}@unitn.it

Abstract. The recent outbreak of works on artificial neural networks
(ANNs) has reshaped the machine learning scenario. Despite the vast
literature, there is still a lack of methods able to tackle the hierarchi-
cal multilabel classification (HMC) task exploiting entirely ANNs. Here
we propose AWX, a novel approach that aims to fill this gap. AWX is
a versatile component that can be used as output layer of any ANN,
whenever a fixed structured output is required, as in the case of HMC.
AWX exploits the prior knowledge on the output domain embedding
the hierarchical structure directly in the network topology. The infor-
mation flows from the leaf terms to the inner ones allowing a jointly
optimization of the predictions. Different options to combine the signals
received from the leaves are proposed and discussed. Moreover, we pro-
pose a generalization of the true path rule to the continuous domain
and we demonstrate that AWX’s predictions are guaranteed to be con-
sistent with respect to it. Finally, the proposed method is evaluated on
10 benchmark datasets and shows a significant increase in the perfor-
mance over plain ANN, HMC-LMLP, and the state-of-the-art method
CLUS-HMC. Code related to this paper is available at: https://github.
com/lucamasera/AWX.
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1 Introduction

The task of multilabel classification is an extension of binary classification, where
more then one label may be assigned to each example [17]. However, if the
labels are independent, the task can be reduced without loss of generality to
multiple binary tasks. Of greater interest is the case where there is an underlying
structure that forces relations through the labels. These relations define a notion
of consistency in the annotations, that can be exploited in the learning process
to improve the prediction quality. This task goes under the name of hierarchical
multilabel classification (HMC) and can be informally defined as the task of
assigning a subset of consistent labels to each example in a dataset [21].

Knowledge is organized in hierarchies in a wide spectrum of applications, rang-
ing from content-categorization [16,19] to medicine [14] and biology [4,10,13].
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Hierarchies can be described by trees or direct acyclic graphs (DAG), where the
nodes are the labels (we will refer to them as terms in the rest of the paper) and
the edges represent is a relations that occurs between a child node and its parents.
These relations can be seen as a logical implication, because if a term is true then
also its parents must be true. In other words, “the pathway from a child term to its
top-level parent(s) must always be true” [4]. This concept was introduced by “The
Gene Ontology Consortium” (GO) under the name of “true path rule” (TPR) to
guarantee the consistency of the ontology with respect to the annotations, such
that, whenever a gene product is found to break the rule, the hierarchy is remod-
elled consequently. Besides guaranteeing the consistency of the annotation space,
the TPR can be forced also on the predictions. Inconsistencies in the predictions
have been shown to be confusing for the final user, who will likely not trust and
reject them [11]. Even though there are circumstances where inconsistencies are
accepted, we will focus on the strict case, where the TPR should hold for predic-
tions as well.

HMC has a natural application in bioinformatics, where ontologies are widely
used as annotation space in predictive tasks. The critical assessment of functional
annotation (CAFA) [7,12], for example, is the reference challenge for the pro-
tein function prediction community and uses the GO terms as annotations. The
ontology comprises thousands of terms organized in three DAGs and the concepts
expressed by some of those terms are so specific that just few proteins have been
experimentally found belonging to them. Therefore, even though a perfect multil-
abel classification on the leaf nodes would solve the problem, the lack of examples
forces the participants to exploit the hierarchical structure, by learning a single
model [15] or by correcting the output of multiple models a posteriori [5].

HMC methods can be characterized in terms of local (top-down) or global
(one-shot)approaches. The former [1,2,5] rely on traditional classifiers, training
multiple models for each or subset of the labels, and applying strategies for select-
ing training examples or correcting the final predictions. Global methods [15,21],
on the other hand, are specific classification algorithms that learn a single global
model for the whole hierarchy. Vens et al. [21] compare the two approaches, and
propose a global method called CLUS-HMC, which trains one decision-tree to
cope with the entire classification problem. The proposed method is then com-
pared with its näıve version CLUS-SC, which trains a decision-tree for each class
of the hierarchy, ignoring the relationships between classes, and with CLUS-
HSC, which explores the hierarchical relationships between the classes to induce
a decision-tree for each class. The authors performed the experiments using bio-
logical datasets, and showed that the global method was superior both in the pre-
dictive performance and size of the induced decision-tree. CLUS-HMC has been
shown to have state-of-the-art performance, as reported in the study by Triguero
et al. [20].

More recently, the introduction of powerful GPU architectures brought artifi-
cial neural networks (ANNs) back to the limelight [6,9,18]. The possibility to scale
the learning process with highly-parallel computing frameworks allowed the com-
munity to tackle completely new problems or old problems with completely new
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and complex ANNs’ topologies. However, ANN-based methods that account for
HMC have not yet evolved consequently. Attempts to integrate ANNs and HMC
have been conducted by Cerri et al. [1,2]. They propose HMC-LMLP, a local model
where for each term in the hierarchy is trained an ANN, that is fed with both the
original input and with the output of models built for the parent terms. The per-
formance are comparable with CLUS-HMC, however, because of the many mod-
els trained, the proposed approach is not scalable with deep learning architectures
that requires a considerable amount of time for training. To the best of our knowl-
edge there are no better model that exploits ANNs in the training process.

In this work we present AWX (Adjacency Wrapping matriX), a novel ANN
output component. We aim at filling the gap between HMC and ANNs left open
in the last years, enabling HMC tasks to be tackled with the power of deep learn-
ing approaches. The proposed method incorporates the knowledge on the output-
domain directly in the learning process, in form of a matrix that propagates the
signals coming from the previous layers. The information flows from the leaves,
up to the root, allowing a jointly optimization of the predictions. We propose and
discuss two approaches to combine the incoming signals, the first is based on the
max function, while the second on �-norms. AWX can be incorporated on top of
any ANN, guaranteeing the consistency of the results with respect to the TPR.
Moreover, we provide formal description of the HMC task, and propose a gen-
eralization of the TPR to the continuous case. Finally AWX is evaluated on ten
benchmark datasets and compared against CLUS-HMC, that is the state-of-the-
art, HMC-LMLP and the simple multi-layer perceptron MLP.

2 The HMCTask

This section formalizes the task of hierarchical multilabel classification (HMC)
and introduces the notation used in the paper. Consider the hierarchy involved in
the classification task described by a DAG H = (T , E), where T = {t1, . . . , tm}
is a set of m terms and E = {T × T } is a set of directed edges. In particular
the edges in E represent “is a” relations, i.e. given a sample x and 〈tu, tv〉 ∈ E,
tu is a tv means that tu implies tv, tu(x) =⇒ tv(x) for all x.

Here follows a set of relevant definitions.

child tu is a child of tv iff 〈tu, tv〉 ∈ E, children(tv) returns the children of tv;
parent tv is a parent of tu iff 〈tu, tv〉 ∈ E, parents(tu) returns the parents of tu;
root a term tv such that parents(tv) = ∅;
leaf a term tu such that children(tu) = ∅, F = {tu|child(tu) = ∅} is the set of

leaves;
ancestors the set of terms belonging to all the paths starting from a term to the

root, ancestors(tv) returns the set of ancestors of tv;
descendants the set of terms belonging to the paths in the transposed graph HT

starting from a term to the leaves.

Let X be a set of i.i.d. samples in IRd drawn from an unknown distribution,
and Y the set of the assignments {y1, . . . ,yn} of an unknown labelling function
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y : X → P(T )1, namely yi = y(xi). The function y is assumed to be con-
sistent with the TPR (formalized in the next paragraph). Let D be the dataset
D = {〈x1,y1〉, . . . , 〈xn,yn〉} where xi ∈ X, and yi ∈ Y. For convenience the
labels yi assigned to the sample xi are expressed as a vector in {0, 1}m such that
the j-th element of y is 1 iff tj ∈ y(xi). The hierarchical multilabel classification
can be defined as the task of finding an estimator ŷ : X → {0, 1}m of the unknown
labelling function. The quality of the estimator can be assessed with a loss function
L : P(T ) × P(T ) → IR, whose minimization is often the objective in the learning
process.

2.1 True Path Rule

The TPR plays a crucial role in the hierarchical classification task, imposing a
consistency over the predictions. The definition introduced in Sect. 1 can now be
formalized within our framework. The ancestors function, that returns the terms
belonging to all the paths starting from a node up to the root, can be computed
by

ancestors(tu) =

⎧
⎪⎨

⎪⎩

(
⋃

tk∈par(tu)

anc(tk)

)

∪ par(tu) if par(tu) 	= ∅

∅ otherwise

(1)

where anc and par are shorthand abbreviations for the parents and ancestors
functions.

Definition 1. The labelling function y observes the TPR iff

∀tu ∈ T , tu ∈ y(xi) =⇒ ancestors(tu) ⊂ y(xi).

Generalized TPR. The above definition holds for binary annotations, but, as
we will see in Sect. 2.2, hierarchical classifiers often do not set thresholds and pre-
dictions are evaluated based only on the output scores order. We introduce here
a generalized notion of TPR, namely the generalized TPR (gTPR), that expands
the TPR to this setting. Intuitively it can be defined by imposing a partial order
over the DAG of predictions’ scores. In sthis way the TPR is respected for each
global threshold.

Definition 2. The gTPR is respected iff ∀〈tu, tv〉 ∈ E is true that ŷv ≥ ŷu.

This means that for each couple of terms in a is a relation, the prediction scores
for the parent term must be grater or equal to the one of the child. In the extreme
case of predictions that have only binary values, the gTPR clearly coincide with
the TPR.

1 P(·) is the power set of a given set.
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2.2 Evaluation Metrics

Multilabel classification requires a dedicated class of metrics for performance eval-
uation. Zang et al. [22] reports an exhaustive set of those metrics highlighting
properties and use cases. We report here the definitions of the metrics required
to evaluate AWX and compare it with the state-of-the-art.

Selecting optimal thresholds in the setting of HMC is not trivial, due to the
natural unbalance of the classes. Indeed, by the TPR, classes that lay in the upper
part of the hierarchy will have more annotated examples with respect to one on the
leaves. Metrics that do not set thresholds, such as the area under the curve (AUC),
are therefore very often used. In particular we will use the area under the precision
recall curve, with three different averaging variants, each one highlighting different
aspects of the methods.

The micro-averaged area under the precision recall curve (AUC(PR)) com-
putes the area under a single curve, obtained computing the micro-averaged pre-
cision and recall of the m classes

Prec =
∑m

i TPi
∑m

i TPi +
∑m

i FPi

Rec =
∑m

i TPi
∑m

i TPi +
∑m

i FNi

(2)

where TPi, FPi and FNi are respectively the number of true positives, the false
positives and the false negatives of the i-th term. It gives a global snapshot of the
prediction quality but is not sensitive to the size of the classes.

To take more into account the classes with fewer examples, we use also macro-
averaged (AUCPR) and weighted (AUCPRw) area under the precision recall
curve. Both compute AUCPRi for each class i ∈ {1, . . . , m}, which are then aver-
aged uniformly by the former and proportionally by the latter.

AUCPR =
1
m

m∑

i

AUCPRi

AUCPRw =
m∑

i

wi · AUCPRi

(3)

where wi = vi/
∑m

j vj with vi the frequency of the i-th class in the dataset.

3 Model Description

This section describes the AWX hierarchical output layer, that we propose in this
paper. Consider an artificial neural network with L hidden layers and the DAG
representing the hierarchy H = (T , E). Let

E′ = {〈tu, tv〉|tu ∈ F , tu = tv ∨ tv ∈ ancestors(tu)}.
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Fig. 1. The figure on the left shows a hierarchical tree structure, i.e. a sub-tree of the
FunCat [13] annotation tree. On the right, the adjacency scheme described by E′ of the
nearby tree.

Note that for each 〈tu, tv〉 ∈ E′ holds that tu ∈ F . Let R be a |F|×m matrix that
represents the information in E′, where ri,j = 1 iff 〈ti, tj〉 ∈ E′ and 0 otherwise.
Figure 1 shows an example of the topology described by E′.

Now, let yL, WL and b denote respectively the output, the weight matrix and
the bias vector of the last hidden layer in the network and ri the i-th column vector
of R. The AWX hierarchical layer is then described by the following equation

z = WL · yL + bL ,

ŷi = max(ri ◦ (f(z1), . . . , f(z|F|))T )
(4)

where ◦ is the symbol of the Hadamard product, max is the function returning the
maximum component of a vector, and f is an activation function f : IR → [0, 1]
(e.g. the sigmoid function). This constraint on the activation function is required
to guarantee the consistency of the predicted hierarchy as we will show in Sect. 3.1.

Being R binary by definition, the Hadamard product in Eq. 4, acts as a mask,
selecting the entries of z corresponding to the non-zero elements of ri.

Fig. 2. Shape of the function z = ||(x, y)T ||� at different values of l and the comparison
with the max function. Darker colors corresponds to lower values of z, while brighter
ones to higher.

The max represents a straightforward way of propagating the predictions
through the hierarchy, but it complicates the learning process. Indeed, the error
can be back-propagated only through the maximum component of ri, leading to
local minima. The max function can be approximated by the �-norm of the incom-
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ing signals as follows

ŷi =

{
||ri ◦ f(z)||�, if < 1
1, otherwise.

(5)

The higher �, the more similar the results will be to the ones obtained by the
max, the closer is � to 1 the more each component of the vector contributes to the
result. Figure 2 shows a two-dimensional example, and we can see that with � = 5
the norm is already a good approximation of the max. On the other hand, we can
notice that, even if the input is in [0, 1], the output exceeds the range and must
therefore be clipped to 1. Especially with � close to 1, the �-norm diverges from
the max, giving output values that can be much higher than the single components
of the input vector.

3.1 The gTPR Holds for AWX

In this section we prove the consistency of the AWX output layer with respect to
the gTPR, introduced in Sect. 2.1.

We want to show that ∀ < tu, tv >∈ E, ŷv ≥ ŷu holds for ŷv, ŷu in Eq. 4.

Proof. Note that Eq. 4 can be rewritten as ŷv = max(Cv), where

Cv = {f(zu)| < tu, tv >∈ E′}

is the set of the contributions to the predictions coming from the leaf terms. In
the special case of leaf terms, tu ∈ F , by construction, Cu = {f(zu)} therefore
ŷu = f(zu). We can express the statement of the thesis as ∀ < tu, tv >∈ E,

ŷv = max(Cv) ≥ max(Cu) = ŷu (6)

Being the max function monotonic, the above inequality holds if Cu ⊆ Cv.
Consider the base case 〈tu, tv〉 ∈ E such that tu ∈ F . It clearly holds that

Cu = {f(zu)} ⊆ Cv, because if 〈tu, tv〉 ∈ E then 〈tu, tv〉 ∈ E′ and therefore f(zu) ∈
Cv.

Now consider two generic terms in a “is a” relation 〈tu, tv〉 ∈ E and their con-
tributions sets Cu and Cv. By design

∀ tk ∈ F , 〈tk, tu〉 ∈ E′ =⇒ 〈tk, tv〉 ∈ E′

and therefore
{f(zk)|〈tk, tu〉 ∈ E′} ⊆ {f(zk)|〈tk, tv〉 ∈ E′}

Cu ⊆ Cv,

and Eq. 6 holds. ��
The reasoning proceeds similarly for the estimator ŷi in Eq. 5, but in order

to guarantee the consistency the input must be in [0,+∞) since the �-norm is
monotonic only in that interval.
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3.2 Implementation

The model has been implemented within the Keras [3] framework and a public ver-
sion of the code is available at https://github.com/lucamasera/AWX. The choice
of Keras was driven by the will of integrating AWX into deep-learning architec-
tures, and at the time of writing Keras represents a widely-used framework in the
area.

An important aspect to consider is that AWX is independent from the underly-
ing network, and can therefore been applied to any ANN that requires a consistent
hierarchical output.

4 Experimental Setting

In order to assess the performance of the proposed model, an extensive comparison
was performed on the standard benchmark datasets2. The datasets cover different
experiments [21] conducted on S. cerevisiae annotated with two ontologies, i.e.
FunCat and GO. For each dataset are provided the train, the validation and the
test splits of size respectively of circa 1600, 800, and 1200. The only exception
is the Eisen dataset where, the examples per split are circa 1000, 500, and 800.
FunCat is structured as a tree with almost 500 term, while GO is composed by
three DAGs, comprising more then 4000 terms. The details of the datasets are
reported in Table 1 while Fig. 2 reports the distribution of terms and leaves per
level. Despite having many more terms and being deeper, most of the GO terms
lay above the sixth level, depicting an highly unbalance structure with just few
branches reaching the deepest levels (Fig. 3).

Fig. 3. The figures show the distribution of terms and leaves by level. Each dataset has
a blue marker for the number of terms and an orange one for the number of leaves.

AWX has been tested both with the formulation in Eq. 4 (AWXMAX) and with
the one of Eq. 5 (AWX�=k with k ∈ {1, 2, 3}). The overall scheme of the network
employed in the experiments is reported in Table 2 and consists in just an hidden
layer with 1000 units and AWX as output layer. The model has been trained with

2 https://dtai.cs.kuleuven.be/clus/hmcdatasets/.

https://github.com/lucamasera/AWX
https://dtai.cs.kuleuven.be/clus/hmcdatasets/
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Table 1. The table reports the details of the benchmark datasets used in the experi-
ments. d, |T | and |F| reports respectively the dimensionality of the dataset, the number
of terms and how many of them are leaves.

Dataset d FunCat GO

|T | |F| |T | |F|
Cellcycle 77 499 324 4122 2041

Church 27 499 324 4122 2041

Derisi 63 499 324 4116 2037

Eisen 79 461 296 3570 1707

Expr 551 499 324 4128 2043

Gasch1 173 499 324 4122 2041

Gasch2 52 499 324 4128 2043

Hom 47034 499 324 4128 2043

Seq 478 499 324 4130 2044

Spo 80 499 296 4116 2037

Table 2. ANN architecture used in the experiments.

fully connected(size=1000, activation = relu, l2 = 10−3)
awx(activation = sigmoid, l2 = 10−3)

the ADAM optimizer algorithm [8] (lr = 10−5, β1 = 0.9, and β2 = 0.999) and
loss function

L =
1
N

N∑

i

yilog(ŷi) + (1 − yi)log(1 − ŷi)

for a maximum of 1000 epochs. An early stopping criterion with zero patience
has been set on the validation set, such that, as soon as the performance on the
validation test degrades, the learning is stopped.

The results of the four tested variants (AWX�=1, AWX�=2, AWX�=3,
AWXMAX) have been evaluated with the metrics shown in Sect. 2.2 and compared
against three other methods.

1. HMC-clus [21]: state-of-the-art model based on decision trees. The results
reported are taken from the original work.

2. HMC-LMLP [1,2]: The model is trained level by level, enriching the input
space with the output of the previous level. As for HMC-clus, the reported
results are taken from the original paper.

3. MLPleaves: ANN trained only on the leaf terms with the same parameters of
AWX. The prediction for the non-leaf terms are obtained by taking the max of
the predictions for underlying terms in the hierarchy.
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The comparison with MLPleaves is crucial, because it highlights the impact of
jointly learning the whole hierarchy with respect to inferring the prediction after
the learning phase.

Both AWX and MLPleaves are based on ANNs, so, in order to mitigate the
effect of the random initialization of the weight matrix, the learning process has
been repeated 10 times. We report the average results of the 10 iterations and the
standard deviation ranges are reported in the caption of the tables. We performed
a t-test with α = 0.05 to assess the significativity of the difference with respect to
the state-of-the-art and marked with * the results that passed the test.

No parameter tuning has been performed for the trained methods and the val-
idation split has been used only for the early stopping criterion.

5 Results

In this section are reported and discussed the results obtained by the proposed
method on ten benchmark datasets. Besides the comparison with the state-of-the-
art, we will show the impact of AWX highlighting the differences with respect to
MLPleaves.

Table 3 reports the micro-averaged area under the precision recall curve
(AUC(PR)). AWX�=1 has a clear edge over the competitors, in both the ontolo-
gies. With the FunCat annotation, it is significantly better then CLUS-HMC
six out of ten times and worse just in the Hom dataset, while with GO it wins
nine out of ten times. AWX�=1 clearly outperforms also the other AWX versions
and MLPleaves in all the datasets. We can notice that the performance tends to
decrease for higher values of �, and reaches the minimum with AWXMAX. This can
be explained by the distribution of the example-annotation: due to the TPR, the
terms placed close to the root are more likely to be associated with more examples
then the lower terms. With � = 1 each leaf, among the descendants, contributes
equally to the prediction, boosting the prediction values of the upper terms.

Of great interest is the comparison between MLPleaves and AWXMAX. We
can notice that AWXMAX, despite being the worst performing version of AWX,
always outperforms MLPleaves. Remember that the main difference between the
two architectures is that with AWXMAX prediction are propagated at learning
time and consequently optimized, while in MLPleaves the predictions of the non-
leaf terms are inferred offline.

Table 4 reports the macro-averaged area under the precision recall curves
(AUCPR). Unfortunately HMC-LMLP does not provide the score for this met-
ric, but AWX clearly outperforms CLUS-HMC, both with the FunCat and with
the GO annotations. We can notice that the differences are significant in all the
datasets, with the exception of Hom, where the variance of the computed results
is above 0.04 with FunCat and 0.007 with GO. Within AWX is instead more
difficult to identify a version that performs clearly better then the others, their
performance are almost indistinguishable. Focusing on the differences between
MLPleaves and AWXMAX, we can see that the former is outperformed fourteen
out of twenty times by the latter. The advantage of the AWX layer in this case
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Table 3. AUC(PR). Bold values show the best preforming method on the dataset.
The standard deviation of the computed methods is in the range [0.001, 0.005] and
[0.002, 0.008] respectively for FunCat and GO, with the only exception of Hom, where
is an order of magnitude bigger.

CLUS-HMC HMC-LMLP MLPleaves AWX�=1 AWX�=2 AWX�=3 AWXMAX

FunCat Cellcycle 0.172 0.185 0.148* 0.205* 0.189* 0.181* 0.174

Church 0.170 0.164 0.102* 0.173 0.150* 0.136* 0.127*

Derisi 0.175 0.170 0.112* 0.175 0.152* 0.142* 0.136*

Eisen 0.204 0.208 0.196* 0.252* 0.243* 0.234* 0.225*

Expr 0.210 0.196 0.201 0.262* 0.236* 0.229* 0.223*

Gasch1 0.205 0.196 0.182 0.238* 0.227* 0.217* 0.209

Gasch2 0.195 0.184 0.150* 0.211* 0.195 0.186 0.178*

Hom 0.254 0.192 0.100* 0.107* 0.109* 0.106* 0.127*

Seq 0.211 0.195 0.188* 0.253* 0.234* 0.227* 0.218

Spo 0.186 0.172 0.117* 0.179 0.159* 0.150* 0.143*

GO Cellcycle 0.357 0.365 0.315* 0.441* 0.406* 0.385* 0.362

Church 0.348 0.347 0.272* 0.440* 0.378* 0.355* 0.329

Derisi 0.355 0.349 0.274* 0.424* 0.376* 0.352 0.335*

Eisen 0.380 0.403 0.347* 0.481* 0.449* 0.426* 0.410*

Expr 0.368 0.384 0.357* 0.480* 0.437* 0.418* 0.407*

Gasch1 0.371 0.384 0.346* 0.468* 0.437* 0.416* 0.401*

Gasch2 0.365 0.369 0.328* 0.454* 0.417* 0.394* 0.379

Hom 0.401 0.203* 0.264* 0.256* 0.242* 0.238*

Seq 0.386 0.384 0.347* 0.472* 0.429* 0.412* 0.397*

Spo 0.352 0.345 0.278* 0.420* 0.378* 0.355 0.336

is not as visible as in terms of AUC(PR), because AUCPR gives equal weight to
the curve for each class, ignoring the number of annotated examples. Within our
setting, where most of the classes have few examples, this evaluation metric tends
to flatten the results, and may not be a good indicator of the performance.

Table 5 reports the weighted-average of the area under the precision recall
curves (AUCPRw). AWX has solid performance also considering this evaluation
metric, outperforming significantly CLUS-HMC in most of the datasets. HMC-
LMLP provides results only for the FunCat-annotated datasets, but appears to
be not competitive with our method. Within the proposed variants of AWX, � = 2
has an edge over � = 1 and MAX, while is almost indistinguishable from � = 3.
Moreover, comparing AWXMAX and MLPleaves, we can see that the former is sys-
tematically better then the latter.

The results reported for AWX (in all its variants) and MLP were not obtained
tuning the parameters on the validation sets, but rather setting them a priori.
The lack of parameter-tuning is clear on the Hom dataset. With all the considered
evaluation metrics, this dataset significantly diverges with respect to the others.
This behaviour is common also to CLUS-HMC, but unlikely the proposed meth-
ods, it has the best performance on this dataset. An explanation of this anomaly
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Table 4. AUCPR. Bold values show the best preforming method on the dataset. HMC-
LMLP provides no results for this metric, so it has been removed from the table. The
standard deviation of the computed methods is in the range [0.001, 0.005] for both Fun-
Cat and GO, with the only exception of Hom, where it is an order of magnitude bigger.

CLUS-HMC MLPleaves AWX�=1 AWX�=2 AWX�=3 AWXMAX

FunCat Cellcycle 0.034 0.068* 0.075* 0.076* 0.077* 0.076*

Church 0.029 0.040* 0.040* 0.041* 0.040* 0.041*

Derisi 0.033 0.047* 0.047* 0.048* 0.049* 0.048*

Eisen 0.052 0.095* 0.103* 0.104* 0.106* 0.106*

Expr 0.052 0.114* 0.120* 0.121* 0.121* 0.120*

Gasch1 0.049 0.101* 0.108* 0.110* 0.111* 0.109*

Gasch2 0.039 0.069* 0.080* 0.078* 0.077* 0.078*

Hom 0.089 0.116 0.095 0.086 0.112 0.164

Seq 0.053 0.126* 0.121* 0.126* 0.126* 0.124*

Spo 0.035 0.043* 0.045* 0.045* 0.045* 0.045*

GO Cellcycle 0.021 0.057* 0.059* 0.057* 0.057* 0.057*

Church 0.018 0.034* 0.030* 0.032* 0.031* 0.031*

Derisi 0.019 0.038* 0.041* 0.040* 0.040* 0.039*

Eisen 0.036 0.082* 0.091* 0.089* 0.088* 0.088*

Expr 0.029 0.092* 0.104* 0.102* 0.104* 0.102*

Gasch1 0.030 0.076* 0.086* 0.086* 0.086* 0.085*

Gasch2 0.024 0.065* 0.067* 0.066* 0.067* 0.066*

Hom 0.051 0.071 0.042 0.046 0.042 0.053

Seq 0.036 0.130* 0.130* 0.130* 0.128* 0.128*

Spo 0.026 0.037* 0.038* 0.039* 0.040* 0.038*

can be found in Table 1, where we can see the difference in the dimensionality.
Hom dataset features are indeed two order of magnitude more then the second
biggest dataset, i.e. Expr. The sub-optimal choice of the model parameters and
the dimensionality could therefore explain the deviation of this dataset from the
performance trend, and these aspects should be explored in the future.

AWX has solid overall performance. AUC(PR) is the most challenging eval-
uation metric, where the improvement over the state-of-the-art is smaller, while
with the last two metrics, AWX appears to have a clear advantage. The choice
of the value for � depends on the metric we want to optimize, indeed AWX per-
forms the best with � = 1 considering AUC(PR), while if we consider AUCPR) or
AUCPRw values of � = 2 or � = 3 have an edge over the others. The direct com-
parison between MLPleaves and AWXMAX is clearly in favour of the latter, which
wins almost on all the datasets. This highlights the clear impact of the proposed
approach, that allows a jointly optimization of all the classes in the datasets.



334 L. Masera and E. Blanzieri

Table 5.AUCPRw. Bold values show the best preforming method on the dataset. HMC-
LMLP provides no data for the GO datasets. The standard deviation of the computed
methods is in the range [0.001, 0.005] for both FunCat and GO, with the only exception
of Hom, where it is an order of magnitude bigger.

CLUS-HMC HMC-LMLP MLPleaves AWX�=1 AWX�=2 AWX�=3 AWXMAX

FunCat Cellcycle 0.142 0.145 0.186* 0.200* 0.204* 0.205* 0.203*

Church 0.129 0.118 0.132 0.139* 0.139* 0.139* 0.138

Derisi 0.137 0.127 0.144* 0.150* 0.152* 0.152* 0.151*

Eisen 0.183 0.163 0.229* 0.246* 0.254* 0.254* 0.252*

Expr 0.179 0.167 0.239* 0.260* 0.260* 0.258* 0.255*

Gasch1 0.176 0.157 0.217* 0.234* 0.241* 0.240* 0.237*

Gasch2 0.156 0.142 0.183* 0.200* 0.202* 0.202* 0.200*

Hom 0.240 0.159 0.185 0.185 0.188 0.193 0.222

Seq 0.183 0.112 0.232* 0.260* 0.263* 0.262* 0.258*

Spo 0.153 0.129 0.152 0.159 0.161* 0.161* 0.160*

GO Cellcycle 0.335 0.372* 0.379* 0.384* 0.385* 0.380*

Church 0.316 0.325* 0.328* 0.331* 0.329* 0.327*

Derisi 0.321 0.331* 0.334* 0.338* 0.337* 0.336*

Eisen 0.362 0.402* 0.418* 0.426* 0.423* 0.418*

Expr 0.353 0.407* 0.424* 0.430* 0.430* 0.427*

Gasch1 0.353 0.397* 0.410* 0.421* 0.419* 0.416*

Gasch2 0.347 0.379* 0.386* 0.394* 0.393* 0.388*

Hom 0.389 0.354* 0.342* 0.349 0.345* 0.356

Seq 0.373 0.408* 0.431* 0.436* 0.434* 0.430*

Spo 0.324 0.333* 0.332 0.339* 0.339* 0.338*

6 Conclusion

In this work we have proposed a generalization to the continuous domain of the
true path rule and presented a novel ANN layer, named AWX. The aim of this
component is to allow the user to compute consistent hierarchical predictions on
top of any deep learning architecture. Despite the simplicity of the proposed app-
roach, it appears clear that AWX has an edge over the state-of-the-art method
CLUS-HMC. Significant improvements can be seen almost on all the datasets for
the macro and weighted averaged area under the precision recall curves evaluation
metric, while the advantage in terms of AUC(PR) is significant in six out of ten
datasets.

Part of improvement could be attributed to the power and flexibility of ANN
over decision trees, but we have shown that AWX systematically outperforms also
HMC-LMLP, based on ANN, and MLPleaves, that has exactly the same architec-
ture as AWX, but with sigmoid output layer just for the leaf terms.

Further work will be focused to test the proposed methods with real-world
challenging datasets, integrating AWX in deep learning architectures. Another
interesting aspect will be to investigate the performance of AWX with semantic-
based metrics, both globally or considering only the leaf terms.
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