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Modular Dimensionality Reduction

Henry W J Reeve1, Tingting Mu2, and Gavin Brown2
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Abstract. We introduce an approach to modular dimensionality reduc-
tion, allowing efficient learning of multiple complementary representa-
tions of the same object. Modules are trained by optimising an unsuper-
vised cost function which balances two competing goals: Maintaining the
inner product structure within the original space, and encouraging struc-
tural diversity between complementary representations. We derive an ef-
ficient learning algorithm which outperforms gradient based approaches
without the need to choose a learning rate. We also demonstrate an
intriguing connection with Dropout. Empirical results demonstrate the
efficacy of the method for image retrieval and classification.

Keywords: Ensemble learning · Dimensionality reduction · Dropout ·
Kernel principal components analysis.

1 Introduction

High dimensional data is a widespread challenge in machine learning applica-
tions, from computer vision through to bioinformatics and natural language
processing. A natural solution is to find a structure-preserving mapping to a low
dimensional space, many techniques for which can be found in the literature,
such as kernel PCA, Isomap, LLE and Laplacian Eigenmaps [6, 23]. This paper
provides a meta-level tool for modular dimensionality reduction, applicable to
each of the aforementioned approaches.

We start from the observation that multiple abstractions of the same con-
cept can be taken, and may provide complementary views on a task of interest.
We therefore propose a modular approach to unsupervised dimensionality reduc-
tion, in which we learn a diverse collection of low-dimensional representations of
the data. Once a modular representation is learned, each module may be used
independently – with their respective predictions combined at test time. This
procedure is naturally parallelisable in a distributed computing architecture;
and, since each representation is low-dimensional, processing for each module is
fast and efficient.

In the context of supervised learning, successful ensemble performance em-
anates from a fruitful trade-off between the accuracy of the individual members
of the ensemble and the degree of diversity [15],[4]. We carry this insight across
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to the domain of unsupervised dimensionality reduction, by demonstrating the
importance of diversity for a set of representation modules. We introduce an un-
supervised loss function for training a set of dimensionality reduction modules,
which balances two competing objectives. The first objective is for each module
to preserve relational structure within the original feature space; the second is
for modules to exhibit a diversity of relational structures.

The contributions of this paper are as follows:

1. An unsupervised loss function for modular dimensionality reduction.
2. A bespoke optimisation procedure which outperforms gradient based meth-

ods such as stochastic gradient descent in our setting.
3. A detailed empirical comparison with competitors.
4. An intriguing connection to the dropout algorithm from deep learning [13].

2 Background

We first review work on dimensionality reduction and ensemble learning.

2.1 Unsupervised Dimensionality Reduction

The canonical approach to unsupervised dimensionality reduction is PCA, and
its kernelised generalisation, KPCA [21]. KPCA is a general approach which
may be applied to a wide variety of application domains through an appropriate
choice of kernel [19, 25]. Several manifold learning techniques have also been
shown to be special cases of KPCA, with a data-dependent kernel [12].

Classically, KPCA has been viewed as the orthogonal projection which max-
imises the preserved variance [21]. We shall adopt an alternative perspective in
which we view KPCA as a form of unsupervised similarity learning, whereby a
mapping is chosen so that inner-products in the low dimensional space approxi-
mate the kernel. To make this precise we require some notation. We let X denote
our original feature space and let k : X × X → R denote a symmetric positive
semi-definite kernel function. Take an unlabelled dataset D = {x1, ...,xN} ⊂ X .
For simplicity, we assume throughout that k is centred with respect to D [21].
Let Hk denote the associated reproducing kernel Hilbert space (RKHS) of real-
valued functions. For each H ∈ N, we let HHk denote the class of H-dimensional
mappings ϕ : X → RH with coordinate functions taken from the RKHS Hk.
That is, for each ϕ ∈ HHk there exists ϕ1, · · · , ϕH ∈ Hk such that for all x ∈ X ,

ϕ(x) =
(
ϕh(x)

)H
h=1

.

Definition 1 (Inner product loss function). Given an unsupervised data
set D and a mapping ϕ ∈ HHk , the inner product loss is given by

Lk (ϕ,D) =
1

N2

∑
i,j≤N

(〈ϕ (xi) ,ϕ (xj)〉 − k (xi,xj))
2
.
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We can interpret KPCA as a form of unsupervised similarity learning which min-
imises the inner product loss. Let ξ : X → Hk denote the canonical embedding
given by ξ(x)(y) = k(x, y).

Proposition 1. The inner product loss Lk (ϕ,D) is minimised by taking ϕ to
be the member of HHk obtained by embedding D into Hk via ξ and projecting onto
the top H kernel principal components.

The proofs of all results within the main text are given in the appendices.

2.2 Ensembles and Diversity

Combining the outputs of multiple predictors often brings both statistical ad-
vantages, such as bias or variance reduction, and computational advantages,
through parallelism. In order outperform an individual model, ensembles pro-
mote a level of diversity or disagreement between the predictions the constituent
models [10, 15]. Whilst methods such as bagging and boosting encourage diver-
sity through a manipulation of the training data, a more direct approach is the
Negative Correlation Learning (NCL) algorithm of Liu and Yao [18] in which
diversity is targeted explicitly.

Suppose we have have a supervised regression ensemble H = {hm}Mm=1 con-
sisting of predictors hm. In the previous section we used an unsupervised dataset
D = {x1, ...,xN}. To distinguish this we use notation T = {(x1, y1), ..., (xN , yN )}
for a supervised dataset. We let V(·) denote the empirical variance of a finite se-
quence. The NCL algorithm can be understood in terms of the following modular
loss function.

Definition 2 (Modular loss function). The modular loss Eλ is defined by

Eλ(H, T ) =
1

NM

N∑
n=1

M∑
m=1

(hm(xn)− yn)
2 − λ · 1

N

N∑
n=1

V
(
{hm(xn)}Mm=1

)
.

The modular loss function consists of two terms: A squared loss term which
targets the average individual accuracy of the predictors hm, combined with
a diversity term which encourages disagreement between the predictors. The
hyper-parameter λ controls the degree of emphasis placed on the diversity. This
has the special property that when λ = 1, Eλ(H, T ) is exactly the squared loss
for the ensemble predictor 1

M

∑
m hm(x) from the target y.

The NCL algorithm is equivalent to stochastic gradient descent applied to
the modular loss. This perspective differs from original formulation of the NCL
algorithm first introduced by Liu and Yao which utilises a multiplicity of in-
teracting cost functions [18]. However, the updates of the two formulations are
equal up to a factor of 1/M applied to the learning rate.
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3 The Modular Inner Product Loss

Our goal is to train a collection of M distinct but complementary representations
of the data. With this goal in mind, we introduce the modular inner product
loss which combines two contrasting objectives. On the one hand, we seek high
quality representations which faithfully preserve the relational structure encoded
by the kernel. On the other hand, we would like the relational structure encoded
in our different representations to be diverse. Let F(H,M) denote the class of

all M -tuples Φ = {ϕm}Mm=1 with each ϕm ∈ HHk . Recall that V(·) denotes the
empirical variance.

Definition 3 (The modular inner product loss). Suppose we have an un-
labelled data set D ⊂ X and a kernel k. Given Φ ∈ F(H,M), the modular inner
product loss is given by

Lλk (Φ,D) =
1

M

M∑
m=1

Lk (ϕm,D)− λ · 1

N2

∑
1≤i.j≤N

V
(
{ϕm(xi) · ϕm(xj)}Mm=1

)
.

(1)

The modular inner product loss is an analogue of the supervised modular loss
function (Definition 2), with inner products between a pair of examples in a
representation module replacing predictions for a single example, and the target
replaced by an unsupervised inner product.

An equivalent reformulation of the modular inner product loss is as a convex
combination between the average inner product loss of the individual modules
and the inner product loss of a composite representation. Given Φ ∈ F (H,M)

we define Φ ∈ (Hk)
H·M

by Φ(x) =
(

1/
√
M
)
·
[
ϕ1(x)T , · · · ,ϕM (x)T

]T
. Propo-

sition 2 is proved in Appendix 9.

Proposition 2. Lλk (Φ,D) = (1− λ) · 1
M

∑M
m=1 Lk (ϕm,D) + λ · Lk

(
Φ,D

)
.

When λ = 0 the loss Lλk (Φ,D) is minimised by taking each ϕm to be a pro-
jection onto the top H kernel principal components, whilst for λ = 1, Lλk (Φ,D)
is minimised by taking Φ to be the projection onto the top M ·H kernel principal
components. Hence, Lλk (Φ,D) blends smoothly between training representation
modules as individuals and targeting the composite representation.

4 Efficient Optimization

We now introduce the module-by-module (MBM) algorithm, which is a form of
alternating optimisation designed to minimise the modular inner product loss
without the need to choose a learning rate. Our objective is to minimise Lλ (Φ,D)
over Φ ∈ F (H,M). We require an empirical kernel map.

Definition 4. A rank R empirical kernel map is a function ψ ∈ HRk such that
ψ(xi)

Tψ(xj) = k(xi,xj) for all pairs (xi,xj) ∈ D2.
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One can always construct an empirical kernel map of rank N by taking ψ(x) =

K(D)−
1
2 [k(x,x1), · · · , k(x,xN )]

T
, whereK(D) = (k(xi,xj))ij denotes the ker-

nel gram matrix. Moreover, given a kernel k we can often obtain a low rank em-
pirical kernel map ψ for a kernel k̃ which closely approximates k by employing
a method such as random Fourier features [11] or the Nyström method [27]. By
reasoning analogous to [20] we have the following useful proposition.

Proposition 3. Given a rank R empirical kernel map ψ, the minimum for
Lλk (Φ,D) is attained by Φ = {ϕm}Mm=1 with each ϕm of the form ϕm(x) =
Wm ·ψ(x) for some matrix Wm ∈ RH×R.

Hence, our objective reduces to the following matrix optimisation problem:
Minimise

Cλ (W,Ψ) : =

M∑
m=1

∣∣∣∣F TmFm − ΨTΨ ∣∣∣∣2 − λ · M∑
m=1

∣∣∣∣∣
∣∣∣∣∣F TmFm − 1

M

M∑
q=1

F Tq Fq

∣∣∣∣∣
∣∣∣∣∣
2

∝ Lλk (ΦW ,D) ,

where Ψ = [ψ(x1), · · · ,ψ(xn)] ∈ RR×N , Fm = Wm·Ψ andΦW = {Wm ·ψ}Mm=1.
We make use the concept of the rank-constrained approximate square root of a
symmetric matrix.

Definition 5. Define RTr : Rd×d → Rr×d by

RTr(M) = argminF∈Rr×d

{∣∣∣∣F TF −M ∣∣∣∣2} .
Dax has shown that the rank-constrained approximate square root RTr(M)

of any d × d symmetric matrix M (not necessarily positive semi-definite) may
be computed via the singular value decomposition in O(d2 · r) time and O(d2)
space complexity [7]. The following proposition allows us to optimise the weights
of a single module ϕm, whilst leaving the remaining modules fixed.

Proposition 4. Suppose we take m ∈ {1, · · · ,M}, fix Wq for q 6= m, and let

Tm =
M

M − λ · (M − 1)
· ΨT

ID − λ

M
·
∑
q 6=m

W T
q Wq

Ψ .
Take Fm = RTH (Tm). Setting Wm = FmΨ

† minimises Cλ (W,Ψ) with respect
to Wm, under the constraint that Wq remains fixed for q 6= m, where Ψ † denotes
the psuedo-inverse of Ψ .

Unfortunately, computing Fm via Proposition 4 is O(N2 · H) which is in-
tractable for large N . The following proposition enables us to reduce the com-
plexity of this optimisation whenever we have access to an empirical kernel map
of rank R� N .
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Proposition 5. Suppose that ψ is an empirical kernel map of rank R. Take
Ψ̃ = (RTR(ΨΨT ))T ∈ RR×R. For all W = {Wm}Mm=1 with Wm ∈ RH×R we

have Cλ

(
W, Ψ̃

)
= Cλ (W,Ψ). Moreover, computing Ψ̃ is O

(
R2 ·N

)
in time

complexity and O(R2) in space complexity.

Combining Propositions 3, 4 and 5 gives rise to the module-by-module algo-
rithm (MBM, Algorithm 1), which is O(NR2 + EHR2) in time and O(NR) in
space complexity, and has the advantage of reducing the modular inner product
loss at every iteration until a critical point is reached.

Inputs: A data set D = {x1, · · · ,xN}, a rank R empirical kernel map ψ, a
number of modules M , a number of dimensions per module H, a diversity
parameter λ and ε > 0.
Compute Ψ = [ψ(x1), · · · ,ψ(xn)];

Update Ψ = (RTρ
(
ΨΨT

)
)T ;

Randomly initialise Fm ∈ RH×R for m = 1, · · · ,M ;

Compute Q = ΨTΨ and S =
∑M
m=1 F

T
mFm;

Compute c = ((1− λ) + λ/M + ε)−1;
for e = 1, · · · , E do

for m = 1, · · · ,M do
Compute S−m = S − F TmFm;

Compute T = c ·
(
Q− (λ/M)S−m + ε · F TmFm

)
;

Update Fm = RTH (T );

Update S = S−m + F TmFm;

end

end

Compute Wm = FmΨ
† for m = 1, · · · ,M ;

Output: Φ = {Wm ·ψ}Mm=1.

Algorithm 1: The module-by-module (MBM) algorithm.

The following theorem justifies the use of the MBM algorithm - it is guar-
anteed to reduce the modular inner product loss at every epoch until a critical
point is reached.

Theorem 1. Given E ∈ N, let ΦE ∈ F(H,M) denote the set obtained by
training with Algorithm 1, for E epochs. Then for all E ∈ N, Lλk

(
ΦE+1,D

)
<

Lλk
(
ΦE ,D

)
, unless ΦE is a critical point of Lλk (Φ,D), in which case Lλk

(
ΦE+1,D

)
≤

Lλk
(
ΦE ,D

)
.
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5 The Dropout Connection

In this section we introduce a surprising connection between the modular in-
ner product loss and the dropout algorithm [13, 22]. Dropout is a state of the
art approach to regularising deep neural networks in which a random collec-
tion of hidden neurons is “dropped out” at each stochastic gradient update.
The dropout algorithm can be understood as implicitly minimising the expec-
tation of a stochastic loss function based on predictions from a random sub-
network [22, 26]. There is a natural analogue of this, in our setting: to min-
imise the expectation of a stochastic variant of the inner product loss, based on
inner products computed from a random subset of modules. We refer to this
analogue as the drop-module (DM) algorithm. To be precise, given an ensem-

ble of feature mappings Φ ∈ F(H,M) each binary vector η = {ηm}Mm=1 ∈
{0, 1}M corresponds to a ‘noisy’ representation Φη given by Φη(x) = (1/

√
M) ·

(η1 ·ϕ1(x), · · · , ηM ·ϕM (x)).
Fix a probability p ∈ [0, 1] and let B(p) denote the probability measure on

{0, 1} with EB(p)(η) = p. Let Θ denote the parameters of Φ. The DM algorithm
proceeds by randomly sampling xi,xj ∈ D and ηm ∼ B(p) and updating

Θ ← Θ − α · ∂

∂Θ
(〈Φη (xi) ,Φη (xj)〉 − k (xi,xj))

2
.

The DM algorithm implicitly minimises the following stochastic loss function

Ldrop
k,p (Φ,D) = Eη∼B(p)M [Lk (Φη,D)] .

Previously, Baldi et al. demonstrated that dropout may be understood as train-
ing an exponentially large ensemble with shared weights [1]. In our setting this
corresponds to shared weight a ensemble of size 2M with an ensemble member
for each η ∈ {0, 1}M . We demonstrate that the DM algorithm can be related to
an ensemble of size M , trained via the modular inner product loss (see Definition
3). We emphasise that unlike the shared weight ensembles considered by Baldi et
al. [1], here we consider ensembles with separate weights in which the interaction
takes place purely via the diversity term in the modular inner product loss.

Theorem 2. The drop-module inner product loss at p is equivalent to the modu-
lar inner product loss at λ = Mp/(1+p(M−1)). To be precise, for Φ0 ∈ F(H,M)
we have

∂Ldrop
k,p (Φ,D)

∂Φ

∣∣∣∣
Φ=Φ0

= p · ∂L
λ
k (Φ,D)

∂Φ

∣∣∣∣
Φ=(
√
p/λ)·Φ0

.

Theorem 2 implies that if we take λ = Mp/(1 + p(M − 1)) then the minima

of Lλk (Φ,D) are equal to the minima of Ldrop
k,p (Φ,D), up to a constant scaling

factor of
√
p/λ. In this sense, the minima for the two loss functions are represen-

tationally equivalent. The relationship between the diversity parameter λ in the
MBM algorithm and the probability of keeping module p in the DM algorithm
is illustrated in Figure 1.



8 Henry WJ Reeve, Tingting Mu, Gavin Brown

Fig. 1. The diversity parameter λ in MBM vs. the corresponding p in DM.

6 Experimental Results

In this section we first demonstrate the optimisation performance of the MBM
algorithm before comparing our method for other natural approaches for training
multiple kernelised representations. The data sets used in all experiments are
described in Section 12.1.

6.1 Optimisation performance of the MBM algorithm

In this section we assess the MBM algorithm (Algorithm 1) in terms of its
efficiency at optimising the modular inner product loss. We compare with two
gradient based approaches. As a baseline we consider stochastic gradient descent
(SGD) applied directly to the modular inner product loss. This is expected to
perform poorly in our setting since the modular inner product loss sums over
all pairs of examples. We also consider the state of the art Adam optimiser of
Kingma et al. [14] (Adam). The Adam optimiser is applied in batch mode, first
compressing the data by applying Proposition 5. We set M = 10, H = 10,
λ = 0.9 and let k to be the Gaussian kernel with γ set using the the heuristic
of Kwok and Tsang [16, Section 4]. In addition, we employ a rank R = 1000
Nyström approximation [27]. For SGD and Adam we we consider learning rates
in the range {10−6, · · · , 102}. We evaluated the algorithms by training for one
hour and evaluating the minimum value of the loss function attained during
training and the convergence time - the time taken for the loss function to fall
within 1% of its minimum. For SGD and Adam we report results corresponding
to the learning rate which achieves the lowest minimum loss. The results are
shown in Table 1. The SGD method was extremely slow and typically failed
to converge within one hour. The compressed Adam method performed much
better and typically converged within 30 minutes. However, the bespoke MBM
algorithm achieved the same minimum loss in at most twice the speed on each
of the data sets. The MBM algorithm also has the advantage of not requiring
the user to set a learning rate.
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Table 1. A comparison of the MBM algorithm with gradient based methods.

Loss function minimum Convergence time (seconds)

Data set SGD Adam MBM SGD Adam MBM

Convex 110.0±21.2 13.4±0.0 13.3±0.0 3369.8±163.8 963.9±368.9 334.7±151.2
MNIST 427.6±16.3 59.9±0.0 59.9±0.0 3484.7±63.2 1609.1±69.2 400.6±69.4
NUS Wide 598.6±8.4 73.1±0.0 73.1±0.0 3376.3±185.2 1495.1±149.5 422.7±47.7
NVDR 110.0±18.5 10.7±0.0 10.6±0.0 1891.3±578.8 1157.2±227.0 402.4±35.1
Rectangles 29.4±0.4 10.3±0.0 10.3±0.0 1796.1±687.6 746.9±162.0 256.2±36.5

6.2 Image retrieval & classification performance of MBM modules
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Fig. 2. Test time as vs. H. See Appendix 12.2 for discussion & other data sets.

We compare four unsupervised approaches to training multiple kernelised
feature mappings:

Partition We compute the top HM KPCAs and randomly partition these into
M sets of H, so that each mapping ϕm ∈ HHk is a projection onto a disjoint
subset of the top H ·M KPCAs.
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Bootstrap Bagging [3] applied to KPCA. For each m ∈ {1, · · · ,M} take a boot-
strap sample D̃m, of size N , and let ϕm ∈ HHk be the KPCA projection mapping

onto H dimensions for D̃m.

Random A kernelised variant of the widely used technique of random projections
[2, 8]. For each m = 1, · · · ,M we sample a random matrix Rm ∈ RH×D from
an H ×D standard normal distribution, and normalise each row so that it has
unit norm. In order to kernelise this technique the feature space for the random
matrices is the output of the empirical kernel map ψ (see Section 4).

MBM Our proposed approach in which Φ is trained to minimise the modular in-
ner product loss via MBM algorithm. The diversity parameter λ is set based upon
performance on a validation set. We shall consider H ∈ {5, 10, 15, 20, 30, 50, 100}
and take M so that H · M = 300. We also compare with the following non-
modular base line.

Monolithic A single mapping ϕ ∈ HHk - the projection onto the top 300 KPCAs.

In each case we take k to be the Gaussian kernel with the γ parameter set via
the heuristic of Kwok and Tsang [16, Section 4]. For computational efficiency we
employ a rank 1000 Nyström approximation [27] in each case. We shall consider
two distinct tasks:

Image retrieval: We shall consider the modular low dimensional represen-
tation’s capability for efficiently retrieving a set of κ close-by images. Let Φ =
{ϕm}Mm=1 ∈ F(H,M) be a modular representation and D an unlabelled training
set. Given a test point x ∈ X , for each module, we compute the set Iϕm

κ,n(x) ⊂
D of κ-nearest neighbours of x based the distance ‖ϕm(xq) − ϕm(x)‖2. We

then extract subset of size κ, IΦκ,n(x) ⊂
⋃M
m=1 Iϕm

κ,n(x) so that the elements

xq ∈ IΦκ,n(x) minimise the average squared distance from the test point x over

the low dimensional spaces ie. (1/M) ·
∑M
m=1 ‖ϕm(xq)− ϕm(x)‖22 is minimised.

Let Iκ,n(x) denote the set of κ nearest neighbours as computed in the original
space X . To assess performance we compute the precision: the average value
of (1/κ) · #

(
IΦκ,n(x) ∩ Iκ,n(x)

)
. This procedure is based upon the method of

[24] and gives a quantitative assessment of the representation’s ability to pre-
serve structural information. The results of the image retrieval task for κ = 10,
H = 20 and M = 15 are shown in Table 2. On each of the eight data sets the
precision attained by the MBM method significantly exceeds the precision at-
tained by the other modular methods: partition, bootstrap and random. Table
3 compares MBM with the monolithic method in which we simply compute the
10 nearest neighbours in the ϕ-projected space, where ϕ is the projection onto
the top 300 KPCAs. For a relatively modest reduction in performance the MBM
method obtains a significant speed up at test time. The speed up is due to the
fact that each set of nearest neighbours Iϕm

κ,n(x) may computed in parallel on a
low-dimensional space (see Figure 2 and Appendix 12.2). Figure 3 demonstrates
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Fig. 3. Precision as a function of H (See Section 6.2).

the precision as a function of the number of dimensions per module (H) with
κ = 10 and H ·M = 300. As H increases, the precision monotonically approaches
the precision attained by the 300-dimensional Monolithic approach. The preci-
sion attained by the MBM approach typically exceeds that attained by the other
modular approaches (Bootstrap, Partition, Random) across a range of values of
H. Corresponding figures for other data sets are given in Appendix 12.3.

Classification We compare the methods in terms of their capacity for extracting
multiple sets of features for use in a classification ensemble. Given a modular rep-
resentation Φ = {ϕm}Mm=1 ∈ F(H,M), for each m we train a classifier fm based
on the features extracted by ϕm. Given a test point x we combine the outputs
of {fm (ϕm(x))}Mm=1 by taking a modal average. Table 2 shows the classification
accuracy for ensembles consisting of 15 5-nearest neighbour classifiers trained on
20-dimensional spaces. The MBM approach significantly outperforms the other
approaches on five out of eight data sets, and performs comparably or better
than the alternatives on every data set. Table 3 compares with the monolithic
approach - a single 5-nearest neighbour classifier on 300 KPCAs. The MBM ap-
proach is both faster and more accurate than the monolithic method on all but
one data set.
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Table 2. A comparison of methods for modular dimensionality reduction. See Section
6.2 for details.

Image retrieval precision (%) Ensemble classification accuracy (%)

Data set Partition Bootstrap Random MBM Partition Bootstrap Random MBM

NUS Wide 29.8±0.3 27.5±0.3 46.1±0.3 53.4±0.3 32.2±0.7 37.7±0.7 42.0±0.7 43.7±0.7
NVDR 68.0±0.5 48.1±0.5 73.4±0.5 77.6±0.4 44.9±1.0 39.6±1.0 43.9±1.0 44.8±1.0
MNIST 67.7±0.1 55.4±0.1 71.5±0.1 76.6±0.1 89.2±0.2 95.0±0.2 94.5±0.2 95.8±0.1
Background 30.5±0.2 26.8±0.2 42.4±0.2 45.0±0.2 41.0±0.4 47.3±0.4 53.8±0.4 57.3±0.4
Random 7.0±0.1 10.9±0.1 6.1±0.1 17.2±0.1 40.9±0.4 89.5±0.2 53.1±0.4 90.3±0.2
Rotations 59.6±0.2 54.3±0.1 68.4±0.1 75.3±0.1 72.0±0.3 85.5±0.3 83.8±0.3 87.4±0.2
Convex 74.1±0.1 57.8±0.2 75.2±0.1 79.7±0.1 55.7±0.4 65.5±0.3 60.3±0.4 65.6±0.3
Rectangles 63.3±0.1 44.6±0.1 46.7±0.1 71.6±0.1 93.0±0.2 95.5±0.2 93.9±0.2 98.1±0.1

Table 3. Comparing the MBM & the Monolithic approach (See Section 6.2).

Image retrieval Ensemble classification

Data set Monolithic MBM ∆ Speed λ Monolithic MBM ∆ Speed λ

NUS Wide 56.8±0.3 -3.4±0.5 10.8× 0.999 40.6±0.7 +3.1±1.0 11.7× 0.990
NVDR 79.0±0.5 -1.4±0.6 7.7× 0.999 40.8±1.0 +3.9±1.4 12.6× 0.999
MNIST 78.6±0.1 -1.9±0.1 9.1× 0.990 95.7±0.1 +0.1±0.2 12.9× 0.900
Background 47.2±0.2 -2.2±0.2 5.8× 0.999 52.5±0.4 +4.9±0.5 8.1× 0.999
Random 23.1±0.1 -5.9±0.1 5.7× 0.950 83.9±0.3 +6.4±0.3 7.1× 0.500
Rotations 76.5±0.1 -1.2±0.1 7.9× 0.990 86.3±0.3 +1.0±0.4 10.9× 0.800
Convex 80.3±0.1 -0.6±0.1 7.2× 0.999 57.6±0.4 +8.0±0.5 23.0× 0.200
Rectangles 70.1±0.1 +1.5±0.2 2.4× 0.990 95.8±0.1 -2.3±0.2 10.7× 0.990

The two Monolothic columns show the image retrieval precision (%) and the classifica-
tion accuracy (%) of the monolithic method. The MBM columns show the correspond-
ing change in performance due to using the MBM method for each task. The Speed
columns show the corresponding speed ups ie. the test time for the Monolithic method
divided by the test time for the MBM method.
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Fig. 4. Classification accuracy as a function of H (See Section 6.2).

The diversity parameter The diversity parameter λ in the MBM algorithm con-
trols the level of emphasis placed upon encouraging a diversity of representations.
We found that the optimal performance (both in terms of information retrieval
and classification) was typically attained with λ just below 1, with performance
declining sharply by taking λ = 1 (see Figure 5, cols 1& 2). It is interesting to
observe that the dropout algorithm often performs well with p ≈ 0.5 and this
corresponds a value of λ just below 1, when M is large (see Figure 1). How-
ever, whilst this pattern was observed on all data sets for image retrieval (see
Appendix 12.6), for some data sets the best classification performance was at-
tained by taking much lower values of λ (see Figure 5, col 3 and Appendix 12.6).
Ultimately, the optimal value of λ is data dependent and must be set based on
validation performance.
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Fig. 5. Performance as a function of the diversity parameter (λ) (see Section 6.2).

7 Discussion

We have investigated a method for modular unsupervised dimensionality reduc-
tion. Our method is based upon the modular inner product loss (Definition 3), an
adaptation of concepts from both negative correlation learning [4, 18] and kernel
principal components analysis [21]. Whilst the modular loss could be optimised
by gradient based methods we introduced a novel module-by-module algorithm,
which converges at least twice as fast as a state of the art gradient based opti-
miser [14] without the need to tune the learning rate.

Modular representations have the potential to be applied on range of tasks.
Empirical results on both image retrieval and classification tasks confirm that
the MBM algorithm is superior to a range of competitors including random
projections and bootstrapping, whilst providing a parallelisation advantage over
“monolithic” dimensionality reduction. We also demonstrated an intriguing equiv-
alency between our proposal and an analogue of the dropout algorithm - drop
module, which deserves further attention.

In summary, this work has shown the potential of explicitly managing diver-
sity in unsupervised representation learning.
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