
Mining Periodic Patterns with a MDL Criterion

Esther Galbrun1, Peggy Cellier2, Nikolaj Tatti1,4,
Alexandre Termier2, and Bruno Crémilleux3

1 Department of Computer Science, Aalto University, Finland
{esther.galbrun,nikolaj.tatti}@aalto.fi

2 Univ. Rennes, {INSA, Inria}, CNRS, IRISA, France
{peggy.cellier,alexandre.termier}@irisa.fr

3 Normandie Univ., UNICAEN, ENSICAEN, CNRS – UMR GREYC, France
bruno.cremilleux@unicaen.fr

4 F-Secure, Finland

Abstract. The quantity of event logs available is increasing rapidly, be they
produced by industrial processes, computing systems, or life tracking, for
instance. It is thus important to design effective ways to uncover the infor-
mation they contain. Because event logs often record repetitive phenomena,
mining periodic patterns is especially relevant when considering such data.
Indeed, capturing such regularities is instrumental in providing condensed
representations of the event sequences.
We present an approach for mining periodic patterns from event logs while
relying on a Minimum Description Length (MDL) criterion to evaluate can-
didate patterns. Our goal is to extract a set of patterns that suitably char-
acterises the periodic structure present in the data. We evaluate the interest
of our approach on several real-world event log datasets.

Keywords: Periodic patterns · MDL · Sequence mining.

1 Introduction

Event logs are among the most ubiquitous types of data nowadays. They can be
machine generated (server logs, database transactions, sensor data) or human gen-
erated (ranging from hospital records to life tracking, a.k.a. quantified self), and are
bound to become ever more voluminous and diverse with the increasing digitisation
of our lives and the advent of the Internet of Things (IoT). Such logs are often the
most readily available sources of information on a system or process of interest. It
is thus critical to have effective and efficient means to analyse them and extract the
information they contain.

Many such logs monitor repetitive processes, and some of this repetitiveness
is recorded in the logs. A careful analysis of the logs can thus help understand
the characteristics of the underlying recurrent phenomena. However, this is not an
easy task: a log usually captures many different types of events. Events related to
occurrences of different repetitive phenomena are often mixed together as well as
with noise, and the different signals need to be disentangled to allow analysis. This
can be done by a human expert having a good understanding of the domain and of
the logging system, but is tedious and time consuming.

ar
X

iv
:1

80
7.

01
70

6v
1

 [
cs

.D
B

]
 4

 J
ul

 2
01

8

{esther.galbrun, nikolaj.tatti}@aalto.fi
{peggy.cellier, alexandre.termier}@irisa.fr
bruno.cremilleux@unicaen.fr

2 Galbrun et al.

Periodic pattern mining algorithms [17] have been proposed to tackle this prob-
lem. These algorithms can discover periodic repetitions of sets or sequences of events
amidst unrelated events. They exhibit some resistance to noise, when it takes the
form of slight variations in the inter-occurrence delay [2] or of the recurrence being
limited to only a portion of the data [16]. However, such algorithms suffer from the
traditional plague of pattern mining algorithms: they output too many patterns (up
to several millions), even when relying on condensed representations [15].

Recent approaches have therefore focused on optimising the quality of the ex-
tracted pattern set as a whole [5], rather than finding individual high-quality pat-
terns. In this context, the adaptation of the Minimal Description Length (MDL) prin-
ciple [18,8] to pattern set mining has given rise to a fruitful line of work [21,4,20,3].
The MDL principle is a concept from information theory based on the insight that
any structure in the data can be exploited to compress the data, and aiming to strike
a balance between the complexity of the model and its ability to describe the data.

The most important structure of the data on which we focus here, i.e. of event
logs, is the periodic recurrence of some events. For a given event sequence, we there-
fore want to identify a set of patterns that captures the periodic structure present
in the data, and we devise a MDL criterion to evaluate candidate pattern sets for
this purpose. First, we consider a simple type of model, representing event sequences
with cycles over single events. Then, we extend this model so that cycles over distinct
events can be combined together. By simply letting our patterns combine not only
events but also patterns recursively, we obtain an expressive language of periodic
patterns. For instance, it allows us to express the following daily routine:

Starting Monday at 7:30 AM, wake up, then, 10 minutes later, prepare coffee,
repeat every 24 hours for 5 days, repeat this every 7 days for 3 months

as a pattern consisting of two nested cycles, respectively with 24 hours and 7 days
periods, over the events “waking up” and “preparing coffee”.

In short, we propose a novel approach for mining periodic patterns using a MDL
criterion. The main component of this approach—and our main contribution—is
the definition of an expressive pattern language and the associated encoding scheme
which allows to compute a MDL-based score for a given pattern collection and
sequence. We design an algorithm for putting this approach into practise and perform
an empirical evaluation on several event log datasets. We show that we are able to
extract sets of patterns that compress the input sequences and to identify meaningful
patterns.

We start by reviewing the main related work, in Section 2. In Section 3, we
introduce our problem setting and a simple model consisting of cycles over single
events, which we extend in Section 4. In Section 5, we look at how patterns can be
combined and compare costs. We present an algorithm for mining periodic patterns
that compress in Section 6 and evaluate our proposed approach over several event
log datasets in Section 7. We reach conclusions in Section 8.

This report extends our conference publication [6] with technical details, numer-
ous examples, and additional experiments.

Mining Periodic Patterns with a MDL Criterion 3

2 Related Work

The first approaches for mining periodic patterns [17,10,9] were designed to aug-
ment traditional itemset and sequence mining techniques with the capacity to iden-
tify events whose occurrences are regularly spaced in time. They used extremely
constrained definitions of the periodicity. In [17], all occurrences must be regularly
spaced; In [10,9], some missing occurrences are permitted but all occurrences must
follow the same regular spacing. As a result, these approaches are extremely sen-
sitive to even small amounts of noise in the data. Ma et al. [16] later proposed a
more robust approach, which can extract periodic patterns in the presence of gaps of
arbitrary size in the data: the recurrence can be interrupted and restarted, possibly
with a different spacing. Such perturbations are frequent in real data.

The above approaches require time to be discretized as a preprocessing (time
steps of hour or day length, for example), smoothing out small changes in inter-
occurrence delays and limiting the search for the correct period to a predetermined
range. These approaches might be too coarse grained, however, and are dependant
on the discretization. Several solutions have been proposed to directly discover can-
didate periods from raw timestamp data, using the Fast Fourier Transform [2] or
statistical models [14,22].

All of the above approaches are susceptible to producing a huge number of pat-
terns, making the exploitation of their results difficult. The use of a condensed rep-
resentation for periodic patterns [15] allows to significantly reduce the number of
patterns output, without loss of information, but falls short of satisfactorily ad-
dressing the problem.

Considering pattern mining more in general, to tackle this pervasive issue of
the overwhelming number of patterns extracted, research has focused on extracting
pattern sets [5]: finding a (small) set of patterns that together optimise some interest
criterion. One such criterion is based on the Minimum Description Length (MDL)
principle [7]. Simply put, it states that the best model is the one that compresses
the data best. Following this principle, the Krimp algorithm [21] was proposed,
to select a subset of frequent itemsets that yields the best lossless compression of
a transactional database. This algorithm was later improved [19] and the approach
extended to analyse event sequences [20,13,3]. Along a somewhat different approach,
Kiernan and Terzi proposed to use MDL to summarize event sequences [12].

To the best of our knowledge, the only existing method that combines periodic
pattern mining and a MDL criterion was proposed by Heierman et al. [11]. This
approach considers a single regular episode at a time and aims to select the best
occurrences for this pattern, independently of other patterns. Instead, we use a MDL
criterion in order to select a good collection of periodic patterns.

3 Preliminary Notation and Problem Definition

Next, we formally define the necessary concepts and formulate our problem, focusing
on simple cycles. But first, let us clarify some of the notation we use throughout.

4 Galbrun et al.

Lists are represented by enumerating their elements in order of occurrence, en-
closed between 〈 and 〉, as in 〈i1, i2, . . .〉 for instance, with 〈〉 denoting the empty
list. We use ⊕ to represent the concatenation of lists, as in

〈a, b, c〉 = 〈a〉 ⊕ 〈b, c〉 and 〈i1, i2, . . . , i9〉 =
⊕

k∈[1..9]

〈ik〉 .

Given a list L, L[k] returns the element at kth position (indexing starts at 1).
We also use a simplified notation for lists, especially when using them as indices.

Lists and single elements are then denoted respectively as upper-case and lower-case
letters or numbers, and concatenation is simply represented by concatenating the
corresponding letters. In this notation, we use 0 to represent the empty list. For
instance, the indices in B0, BX and BXy represent an empty list, a list X, and
element y concatenated to the list X, respectively.

All logarithms are to base 2.
Symbols used are listed on the last page of this report.

A timestamped event sequence as input data. Our input data is a collection
of timestamped occurrences of some events, which we call an event sequence. The
events come from an alphabet Ω and will be represented with lower case letters.
We assume that an event can occur only once per time step, so the data can be
represented as a list of timestamp–event pairs, such as

S1 = 〈(2, c), (3, c), (6, a), (7, a), (7, b), (19, a),

(30, a), (31, c), (32, a), (37, b), (42, a), (48, c), (54, a)〉 .

Whether timestamps represent days, hours, seconds, or something else depends on
the application, the only requirement is that they be expressed as positive integers.
We denote as S(α) the event sequence S restricted to event α, that is, the subset
obtained by keeping only occurrences of event α. For instance, we can represent

S
(a)
1 , the event sequence above restricted to event a, simply as a list of timestamps:

S
(a)
1 = 〈6, 7, 19, 30, 32, 42, 54〉 .

We denote as |S| the number of timestamp–event pairs contained in event sequence
S, i.e. its length, and ∆(S) the time spanned by it, i.e. its duration. That is, ∆(S) =
tend(S) − tstart(S), where tend(S) and tstart(S) represent the largest and smallest
timestamps in S, respectively. Observe that

∣∣S(α)
∣∣ equals the number of occurrences

of α in the original sequence, and that ∆(S(α)) ≤ ∆(S). In the example above we

have |S1| = 13,
∣∣∣S(a)

1

∣∣∣ = 7, ∆(S1) = 52 and ∆(S
(a)
1) = 48.

Cycles as periodic patterns. Given such an event sequence, our goal is to extract
a representative collection of cycles. A cycle is a periodic pattern that takes the form
of an ordered list of occurrences of an event, where successive occurrences appear at
the same distance from one another. We will not only consider perfect cycles, where
the inter-occurrence distance is constant, but will allow some variation.

A cycle is specified by indicating:

Mining Periodic Patterns with a MDL Criterion 5

– the repeating event, called the cycle event and denoted as α,
– the number of repetitions of the event, called the cycle length and denoted as r

,
– the inter-occurrence distance, called the cycle period and denoted as p, and
– the timestamp of the first occurrence, called the cycle starting point and denoted

as τ .
Cycle lengths, cycle periods and cycle starting points take positive integer values (we
choose to restrict periods to be integers for simplicity and interpretability). More
specifically, we require r > 1, p > 0 and τ ≥ 0.

In addition, since we allow some variation in the actual inter-occurrence dis-
tances, we need to indicate an offset for each occurrence in order to be able to
reconstruct the original subset of occurrences, that is, to recover the original times-
tamps. For a cycle of length r, this is represented as an ordered list of r − 1 signed
integer offsets, called the cycle shift corrections and denoted as E. Hence, a cycle is
a 5-tuple C = (α, r, p, τ, E).

Note that since the cycles we consider here involve one event each, we can process
the occurrences of each event separately. In other words, we can split the original
sequence S into subsequences S(α), one for each event α, and handle them separately.

A cycle’s cover. For a given cycle C = (α, r, p, τ, E), with E = 〈e1, . . . , er−1〉
we can recover the corresponding occurrences timestamps by reconstructing them
recursively, starting from τ : t1 = τ , tk = tk−1 + p+ ek−1. Note that this is different
from first reconstructing the occurrences while assuming perfect periodicity as τ, τ+
p, τ + 2p, . . . , τ + (r− 1)p, then applying the corrections, because in the former case
the corrections actually accumulate.

Then, we overload the notation and denote the time spanned by the cycle as
∆(C), that is

∆(C) = tr − t1
= (tr−1 + p+ er−1)− τ
=
(
(tr−2 + p+ er−2) + p+ er−1

)
− τ

= (r − 1)p+ e1 + · · ·+ er−1 .

Denoting as σ(E) the sum of the shift corrections in E, σ(E) =
∑
e∈E e, we have

∆(C) = (r − 1)p+ σ(E) .

Note that this assumes that the correction maintains the order of the occurrences.
This assumption is reasonable since an alternative cycle that maintains the order
can be constructed for any cycle that does not.

We denote as cover(C) the corresponding set of reconstructed timestamp–event
pairs

cover(C) = {(t1, α), (t2, α), . . . , (tr, α)} .

We say that a cycle covers an occurrence if the corresponding timestamp–event pair
belongs to the reconstructed subset cover(C).

Since we represent time in an absolute rather than relative manner and assume
that an event can only occur once at any given timestamp, we do not need to worry

6 Galbrun et al.

about overlapping cycles nor about an order between cycles. Given a collection of
cycles representing the data, the original list of occurrences can be reconstructed
by reconstructing the subset of occurrences associated with each cycle, regardless of
order, and taking the union. We overload the notation and denote as cover(C) the set
of reconstructed timestamp–event pairs for a collection C of cycles C = {C1, . . . , Cm},
that is

cover(C) =
⋃
C∈C

cover(C) .

For a sequence S and cycle collection C we call residual the timestamp–event
pairs not covered by any cycle in the collection:

residual(C, S) = S \ cover(C) .

We associate a cost to each individual timestamp–event pair o = (t, α) and each
cycle C, respectively denoted as L(o) and L(C), which we will define shortly. Then,
we can reformulate our problem of extracting a representative collection of cycles as
follows:

Problem 1. Given an event sequence S, find the collection of cycles C minimising
the cost

L(C, S) =
∑
C∈C

L(C) +
∑

o∈residual(C,S)

L(o) .

Code lengths as costs. This problem definition can be instantiated with different
choices of costs. Here, we propose a choice of costs motivated by the MDL principle.
Following this principle, we devise a scheme for encoding the input event sequence
using cycles and individual timestamp–event pairs. The cost of an element is then the
length of the code word assigned to it under this scheme, and the overall objective
of our problem becomes finding the collection of cycles that results in the shortest
encoding of the input sequence, i.e. finding the cycles that compress the data most.
In the rest of this section, we present our custom encoding scheme.

For each type of information, we need to determine the most appropriate way
to encode it, given the type of patterns we are interested in finding. The following
should always be kept in mind

In MDL we are NEVER concerned with actual encodings; we are only con-
cerned with code length functions. (Peter D. Grünwald 2004)

Outline of code systems. Given a collection of symbols Z that we might need to
transmit, such as, in our case the alphabet of events over which our data sequence
is expressed or the range of values that the periods might take, and a particular
symbol z, all we are interested is the length of the code assigned to z, which we
denote as L(z), not the actual code.

Different code systems can be used, but we focus on those that possess the prefix
property, meaning that there will not be any two code words in the system such that
one is a prefix of the other, making such code uniquely decodable.

Mining Periodic Patterns with a MDL Criterion 7

For a collection of symbols Z, where each symbol z is associated with an oc-
currence frequency fr(z), the optimal prefix code is such that L(z) = − log(fr(z)).
However, this requires that the receptors knows the occurrence frequencies.

Prequential coding allows to obtain a code that is almost optimal, without know-
ing the frequencies. Such a code will assign shorter codes to, and hence favour,
frequently occurring values.

Fixed-length codes, as the name indicates, assign codes of equal length to all
values, and hence do not favour any value. Each value is encoded with a code of
length log(|Z|).

Universal codes allow to encode non-negative integers, assigning shorter codes
to smaller numerical values. In particular, the code length assigned to z is lN(z) =
log∗(z) + log(c0), where c0 is a constant which must be adjusted to ensure that the
Kraft inequality is satisfied, i.e. such that∑

z∈N
2−lN(z) ≤ 1.

How much small values are favoured compared to larger ones can be adjusted. To
avoid wasting bits on unused values large values, c0 can be adjusted to ensure that
Kraft inequality is not only satisfied but holds with strict equality. That is, given
some upper bound v on the values to encode, we denote as lv the code length obtained
with an adjusted c0 so that ∑

z∈[1..v]

2−lv(z) = 1 .

Choosing the most appropriate encoding for cycles. For each cycle we need
to specify its event, length, period, starting point and shift corrections, that is

L(C) = L(α) + L(r) + L(p) + L(τ) + L(E) .

It is important to look more closely at the range in which each of these pieces of
information takes value, at what values—if any—should be favoured, and at how
the values of the different pieces depend on one another.

Clearly, a cycle over event α cannot have a length greater than
∣∣S(α)

∣∣. On the

other hand, if it has length r, it cannot have a period greater than ∆(S(α))/(r− 1).
Furthermore, once τ is known, the period is further restricted to (tend(S(α))−τ)/(r−
1). And vice-versa, if we first fix the period, it creates limitations on the values the
length can take, which in turn affects the values the starting point can take. So, we
see a clear dependency between these values. Also note that the maximum values for
the period and the starting point depend on the time span of the sequence, while the
maximum value for the length depends on the number of occurrences of the event.
To avoid wasting bits, it might be useful to normalise the time scale to the smallest
encountered time step.

Encoding with fixed-length codes. A somewhat naive approach to encode a cycle
is to use fixed-length codes for the event, length, period and starting point, and an
adjusted universal code for the shift corrections. The magnitude of an individual
shift correction can be anywhere between 0 and ∆(S). So if we let m = ∆(S) + 1,

8 Galbrun et al.

we can use a code word of length lm(|e| + 1) to indicate the absolute value of shift
correction e and add one bit to indicate its direction. Since we can easily determine
that the length of a cycle can be no larger than |S| and that, neglecting the shift
corrections, its period and starting point can take values no larger than ∆(S)/2 and
∆(S), respectively, we get

L(C) =L(α) + L(r) + L(p) + L(τ) + L(E)

= log(|Ω|) + log(|S|) + log(∆(S)/2) + log(∆(S))

+
∑
e∈E

(lm(|e|+ 1) + 1) .

Optimising the encoding. But we can do better, by exploiting the dependencies
between the pieces of information. To encode the cycles’ events, we can use either
fixed-length coding, as above, or codes based on the events’ frequency in the original
sequence. In the first case the length of the code word representing the event is
constant across all cycles, regardless of the event and only depends on the size of
the alphabet. In the second case, events that occur more frequently in the event
sequence will receive shorter code words:

L(α) = − log(fr(α)) = − log(

∣∣S(α)
∣∣

|S|
) .

This requires that we transmit the number of occurrences of each event in the origi-
nal event sequence. To optimise the overall code length, the length of the code word
associated to each event should actually depend on the frequency of the event in the
selected collection of cycles. However, this would require keeping track of these fre-
quencies and updating the code lengths dynamically. Instead, we use the frequencies
of the events in the input sequence as a simple proxy.

Once the cycle event α and its number of occurrences are known, we can encode
the cycle length with a code word of length

L(r) = log(
∣∣∣S(α)

∣∣∣) ,
resulting in the same code length for large numbers of repetitions as for small ones.

Recall that

∆(C) = (r − 1)p+ σ(E) .

Clearly, a cycle spans at most the time of the whole sequence, i.e. ∆(C) ≤ ∆(S).
Hence

p ≤
⌊∆(S)− σ(E)

r − 1

⌋
,

so that knowing the cycle length, the shift corrections, and the sequence time span,
we can encode the cycle period with a code word of length

L(p) = log
(⌊∆(S)− σ(E)

r − 1

⌋)
.

Mining Periodic Patterns with a MDL Criterion 9

Note that the code word for the period of a cycle will be shorter if the cycle has
greater length (since there are more repetitions, the period cannot be as long).

Next, knowing the cycle length and period as well as the sequence time span,
the starting point τ can take any value between tstart(S) and tend(S) − ∆(C) =
tend(S)−σ(E)− (r− 1)p. Hence, we can specify the value of the starting point with
a code word of length

L(τ) = log(∆(S)− σ(E)− (r − 1)p+ 1) .

Note that if the cycle spans a larger part of the sequence, the range of the starting
point is more restricted, and so it can be represented with a shorter code word.

Finally, we encode the shift corrections as follows: each correction e is represented
by |e| ones, prefixed by a single bit to indicate the direction of the shift, with each
correction separated from the previous one by a zero. For instance, E = 〈3,−2, 0, 4〉
would be encoded as 01110111000011110 with value digits, separating digits and
sign digits, in italics, bold and normal font, respectively (the sign bit for zero is
arbitrarily set to 0 in this case). As a result, the code length for a sequence of shift
corrections E is

L(E) = 2 |E|+
∑
e∈E
|e| .

Putting everything together, we can write the cost of a cycle C as

L(C) =L(α) + L(r) + L(p) + L(τ) + L(E)

= log(|S|) + log
(⌊∆(S)− σ(E)

r − 1

⌋)
+ log(∆(S)− σ(E)− (r − 1)p+ 1)

+ 2 |E|+
∑
e∈E
|e| .

On the other hand, the cost of an individual occurrence o = (t, α) is simply the
sum of the cost of the corresponding timestamp and event:

L(o) = L(t) + L(α) = log(∆(S) + 1)− log(

∣∣S(α)
∣∣

|S|
) .

Note that if our goal was to actually encode the input sequence, we would need
to transmit the smallest and largest timestamps (tstart(S) and tend(S)), the size of
the event alphabet (|Ω|), as well as the number of occurrences of each event (

∣∣S(α)
∣∣

for each event α) of the event sequence. We should also transmit the number of
cycles in the collection (|C|), which can be done, for instance with a code word of
length log(|S|). However, since our goal is to compare collections of cycles, we can
simply ignore this, as it represents a fixed cost that remains constant for any chosen
collection of cycles.

Finally, consider that we are given an ordered list of occurrences 〈t1, t2, . . . , tl〉
of event α, and we want to determine the best cycle with which to cover all these
occurrences at once. Some of the parameters of the cycle are determined, namely the

10 Galbrun et al.

repeating event α, the length r, and the timestamp of the first occurrence τ . All we
need to determine is the period p that yields the shortest code length for the cycle.
In particular, we want to find p that minimises L(E). The shift corrections are such
that Ek = (tk+1−tk)−p (cf. the definition of a cycle’s cover). If we consider the list of
inter-occurrence distances d1 = t2− t1, d2 = t3− t2, . . . , dl−1 = tl− tl−1, the problem
of finding p that minimises L(E) boils down to minimising

∑
di
|di − p| . This is

achieved by letting p equal the geometric median of the inter-occurrence distances,
which, in the one-dimensional case, is simply the median. Hence, for this choice of
encoding for the shift corrections, the optimal cycle covering a list of occurrences
can be determined by simply computing the inter-occurrences distances and taking
their median as the cycle period.

4 Defining Tree Patterns

So far, our pattern language is restricted to cycles over single events. In practise,
however, several events might recur regularly together and repetitions might be
nested with several levels of periodicity. To handle such cases, we now introduce
a more expressive pattern language, that consists of a hierarchy of cyclic blocks,
organised as a tree.

Instead of considering simple cycles specified as 5-tuples C = (α, r, p, τ, E) we
consider more general patterns specified as triples P = (T, τ, E), where T denotes
the tree representing the hierarchy of cyclic blocks, while τ and E respectively denote
the starting point and shift corrections of the pattern, as with cycles.

Pattern trees. Each leaf node in a pattern tree represents a simple block containing
one event. Each intermediate node represents a cycle in which the children nodes
repeat at a fixed time interval. In other words, each intermediate node represents
cyclic repetitions of a sequence of blocks. The root of a pattern tree is denoted as
B0. Using list indices, we denote the children of a node BX as BX1, BX2, etc. We
denote the ordered list of the children of node BX as Γ (BX), that is,

Γ (BX) = 〈BX1, BX2, . . .〉 .

All children of an intermediate node except the left-most child are associated to their
distance to the preceding child, called the inter-block distance. This distance for node
BXi is denoted as dXi, i.e. dXi represents the time that separates occurrences of
node BX(i−1) and node BXi. Inter-block distances take non-negative integer values.
Each intermediate node BX is associated with the period pX and length rX of
the corresponding cycle. Each leaf node BY is associated with the corresponding
occurring event αY .

An example of an abstract pattern tree is shown in Fig. 1. Some concrete pattern
trees that we will use as examples are shown in Fig. A.7–A.9. We call height and
width of the pattern tree—and by extension of the associated pattern—respectively
the number of edges along the longest branch from the root to a leaf node and the
number of leaf nodes in the tree.

For a given pattern, we can construct a tree of event occurrences by expanding
the pattern tree recursively, that is, by appending to each intermediate node the

Mining Periodic Patterns with a MDL Criterion 11

B0

B2 B3

B21 B22 B32

B1

B31

B212B211 B222B221 B223 B321

r0, p0

r2, p2 r3, p3

r21, p21 r22, p22 r32, p32

α1

α31

α212α211 α222α221 α223 α321

d2 d3

d22 d32

d212 d222 d223

Fig. 1. Abstract pattern tree.

corresponding number of copies of the associated subtree, recursively. We call this
expanded tree the expansion tree of the pattern, as opposed to the contracted pattern
tree that more concisely represents the pattern.

When a pattern tree is expanded, several copies of a node can be generated
as a result of repetitions in possibly nested cycles. Each node in an expansion is
identified with a pair (n,L), where n is the node of the pattern tree that generated
the expansion node, and L is a list indicating the specific combination of repetitions
of ancestors that produced it.

The expansion tree of the pattern tree of Fig. 1 is shown in Fig. 2. Node (B0, 〈〉) is
the root of the expansion tree, (B0, 〈1〉) is the node generated as the first repetition
of pattern node B0, and (B21, 〈2, 3〉) is the node generated from node B21 in the
third repetition of pattern node B2 nested within the second repetition of pattern
node B0.

The notation used to identify nodes in pattern trees and expansion trees allows
to easily navigate the trees. In particular, the left-most leaf among the descendants
of a given node BX can be obtained by going down the left-most branch, looking
at nodes BX1, BX11, etc. until reaching a leaf. We denote that node, the left-most
leaf descendant of BX as γL(BX). Similarly, we denote as γL((n,L)) the left-most
leaf descendant of node (n,L) in the expansion tree, which is such that γL((n,L)) =
(γL(n), L′), where L′ = L ⊕ 〈1, 1 . . .〉, that is, L′ is the list L trailing with ones.
That is, in addition to selecting always the left-most child, we always select the first
repetition of a node when travelling the expansion tree until reaching a leaf. Note
that γL(BX) = BX and γL((BX , L)) = (BX , L) if BX itself is a leaf node.

We use the recursive notation {r= rX , p= pX}
(
BX1 – dX2 – BX2 . . .

)
to repre-

sent a block BX . With this notation, T1 from Fig. A.7 is represented as

{r= 4, p= 2}
(
a
)

and T7 from Fig. A.9 as

{r= 3, p= 10}
(
b – 3 – {r= 4, p= 1}

(
a
)

– 1 – c
)
.

12 Galbrun et al.

(B0, 〈〉) (B0, 〈1〉)

(B
1
, 〈

1〉
)

(B2, 〈1〉)
(B3, 〈1〉)

(B0, 〈2〉)

(B
1
, 〈

2〉
)

(B2, 〈2〉)
(B3, 〈2〉)

(B2, 〈2, 1〉)

(B21, 〈2, 1〉)

(B22, 〈2, 1〉)(B2, 〈2, 2〉)

(B21, 〈2, 2〉)

(B22, 〈2, 2〉)(B2, 〈2, 3〉)

(B21, 〈2, 3〉) (B22, 〈2, 3〉)
(B21, 〈2, 3, 1〉)

(B
2
1
1
, 〈

2,
3,

1〉
)

(B
2
1
2
, 〈

2,
3,

1〉
)

(B21, 〈2, 3, 2〉)

(B
2
1
1
, 〈

2,
3,

2〉
)

(B
2
1
2
, 〈

2,
3,

2〉
)

(B22, 〈2, 3, 1〉)

(B
2
2
2
, 〈

2,
3,

1〉
)

(B
2
2
1
, 〈

2,
3,

1〉
)

(B
2
2
3
, 〈

2,
3,

1〉
)

(B22, 〈2, 3, 2〉)

(B
2
2
2
, 〈

2,
3,

2〉
)

(B
2
2
1
, 〈

2,
3,

2〉
)

(B
2
2
3
, 〈

2,
3,

2〉
)

(B0, 〈3〉)(B1, 〈3〉)

(B2, 〈3〉)
(B3, 〈3〉)

Fig. 2. Expansion of the pattern tree from Fig. 1.

Reconstructing a pattern’s cover. We can enumerate the event occurrences of
a pattern by traversing its expansion tree and recording the encountered leaf nodes.
The expansion tree is traversed in a depth-first left-to-right manner, first travelling
through all children in a repetition of a block before moving on to the next repetition.
For instance, the traversal of the expansion tree shown in Fig. 2, starts from the root
node (B0, 〈〉) and first reaches (B0, 〈1〉). Then, children nodes (B1, 〈1〉), (B2, 〈1〉) and
(B3, 〈1〉), and their descendants, should be traversed before travelling to the next
repetition of B0, (B0, 〈2〉). Simply put, pattern edges (represented as thin lines in
Fig. 2) take priority over repetition edges (represented as thick lines).

We define the following recursive function:

Θ(BX , l) =

〈BX , l〉 if BX is a leaf,⊕

k∈[1..rX]

⊕
BXi∈Γ (BX)Θ(BXi, l ⊕ 〈k − 1〉)

otherwise.

The list of leaf nodes encountered in the expansion tree during the traversal can be
obtained as Θ(T) = Θ(B0, 〈〉).

Using a similar recursive function, following the same traversal of the expansion
tree, we can construct the perfect event occurrences. That is, we can recursively
construct the list of uncorrected timestamps–events pairs produced by a pattern
tree T , which we denote as occs∗(T) = occs∗(B0).

Mining Periodic Patterns with a MDL Criterion 13

For this purpose, we first define a function shift(S, ts) that shifts a set of event
occurrences S by a specified value ts, that is,

shift(S, ts) = {(ti + ts, αi), ∀(ti, αi) ∈ S}.

For instance

shift(〈(2, c), (3, c), (6, a), (7, a)〉,−1)

=〈(1, c), (2, c), (5, a), (6, a)〉.

Overloading the notation, we let occs∗(BX) denote the list of occurrences asso-
ciated with BX . If BX is a leaf, occs∗(BX) is a one-element list

occs∗(BX) = 〈(0, αX)〉.

If BX is an intermediate node, we let O(BX) denote the concatenation of the lists of
occurrences of its children, each one shifted by the accumulated inter-block distances:

O(BX) =
⊕

BXi∈Γ (BX)

shift(occs∗(BXi),
∑

1<j≤i

dXj) .

Then the list of occurrences is obtained by concatenating rX copies of O(BX), shifted
according to the period pX :

occs∗(BX) =
⊕

k∈[1..rX]

shift(O(BX), (k − 1) · pX) .

Finally, if the starting point of pattern P is τ , we have occs∗(P) = shift(occs∗(T), τ).
The occurrences appear in the list in the order in which they are generated during

the expansion, which does not necessarily match the order of the timestamps. More
specifically, if the sequence of timestamps in occs∗(T) is not monotone, we say that
the pattern tree T (and the associated pattern P) is interleaved. If a pattern tree is
not interleaved, all events constituting a repetition of a block must occur at latest
when an event of the following repetition occurs. If several events occur at the same
time, we say that the pattern tree has overlaps. For example, pattern trees T3 and
T4 cover the same occurrences, but T4 is interleaved while T3 is not. Both patterns
T6 and T7 have overlaps, but T7 is interleaved while T6 is not.

We denote as oi the ith event occurrence generated by T , and let occs∗(oi) be the
corresponding timestamp–event pair and Θ(oi) be the corresponding expansion leaf
node, i.e. mapping oi to the elements at position i in occs∗(T) and Θ(T), respectively.

As for the simple cycles, we will not only consider perfect patterns but will allow
some variations. For this purpose, a list of shift corrections E is provided with the
pattern, which contains a correction for each occurrence except the first one, i.e.
|E| = |occs∗(P)| − 1.

By applying the shift corrections in E to the perfect occurrences in occs∗(P), we
can generate the list of corrected occurrences for pattern P , denoted as occs(P). The
corrections are listed in E in the same order as the leaf nodes are encountered in the
expansion tree. Therefore, the correction associated to occurrence oi is the element

14 Galbrun et al.

Algorithm 1 CoCo: Collect occurrence corrections.

Require: An occurrence o
Ensure: A set of occurrences whose corrections apply to o
1: if o = (B0, 〈〉) then . Root of pattern
2: ω ← ∅
3: if o = (BXy, Uv) then
4: ω ← {γL((BXy′ , Uv)), y′ < y} . Left-siblings
5: ω ← ω ∪ {γL((BX , Uv

′)), v′ < v} . Previous repetitions
6: ω ← ω ∪CoCo((BX , U)) . Recurse for parent

7: return ω

at position i−1 in E, i.e. E[i−1], which we also denote as E(oi) or E((n,L)), where
(n,L) is the corresponding expansion node. For ease of notation we let E(o1) = 0,
since the left most occurrence o1 has no correction.

However, as for simple cycles, corrections accumulate over successive occurrences,
and we cannot recover the list of corrected occurrences occs(P) by simply adding the
individual corrections to the elements of occs∗(P). Instead, we first have to compute
the accumulated corrections for each occurrence. In addition to its own correction,
the corrections that should be applied to an occurrence come from the offsets of its
left siblings in multi-events blocks and the offsets of previous repetitions in cycles
the occurrence belongs to.

Algorithm 1 shows the procedure—named CoCo—that can be used to collect
the occurrences whose individual corrections impact occurrence o (recall that γL()
returns the left-most leaf descendant of a node). Then, the correction to be applied
to the timestamp of o is

ε(o) = E(o) +
∑

ok∈CoCo(o)

E(ok) .

The corrected occurrence timestamps can thus be reconstructed by shifting the per-
fect timestamp by the corresponding correction, i.e. occs(oi) = occs∗(oi) + ε(oi).

Encoding the patterns. To transmit a pattern, we need to encode its pattern
tree, as well as its starting point and shift corrections. Furthermore, to encode the
pattern tree, we consider separately its event sequence, its cycle lengths, its top-level
period, and the other values, as explained below.

First we encode the event in the leaves of the pattern tree, traversing the tree
from left to right, depth-first, enclosing blocks between parenthesis. The string rep-
resenting the events in the pattern tree is defined recursively as follows:

ζ(BX) =

{
‘αX ’ if BX is a leaf,
‘(’⊕

(⊕
BY ∈Γ (BX) ζ(BY)

)
⊕ ‘)’ otherwise.

We denote as A the string ζ(B0) for the top-level block of the tree of a pattern,
representing its event sequence. We encode each symbol s in the string A using a
code of length L(s), where L(s) depends on the frequency of s, adjusted to take into
account the additional symbols ‘(’ and ‘)’, used to delimit blocks. In particular, we

Mining Periodic Patterns with a MDL Criterion 15

set the code length for the extended alphabet as

L(‘(’) = L(‘)’) = − log(
1

3
)

for the block delimiters, and

L(‘)’) = − log
(∣∣S(α)

∣∣
3 |S|

)
for the original events.

Next, we encode the cycle lengths, i.e. the values rX associated to each inter-
mediate node BX encountered while traversing the tree depth-first and from left
to right, as a sequence of values, and denote this sequence R. For a block BX the
number of repetitions of the block cannot be larger than the number of occurrences
of the least frequent event participating in the block. Formally, the cycle length rX
of a block BX , can take at most a value ρ(BX) defined recursively as follows:

ρ(BX) =

{∣∣S(αX)
∣∣ if BX is a leaf,

minBY ∈Γ (BX) ρ(BY) otherwise,

We can thus encode the sequence of cycle lengths R with code of length

L(R) =
∑
rX∈R

L(rX) =
∑
rX∈R

log
(
ρ(BX)

)
.

Knowing the cycle lengths R and the structure of the pattern tree from its event
sequence A, we can deduce the total number of events covered by the pattern, N(B0),
using the following formula

N(BX) =

{
1 if BX is a leaf,
rX ·

∑
BY ∈Γ (BX)N(BY) otherwise.

The shift corrections for the pattern consist of the correction to each event oc-
currence except the first one (assumed not to require correction). This ordered list
of N(B0) − 1 values can be transmitted using the same encoding as for the simple
cycles.

In simple cycles, we had a unique period characterising the distances between
occurrences. Instead, with these more complex patterns, we have a period pX for
each intermediate node BX , as well as an inter-block distance dX for each node BX
that is not the left-most child of its parent.

First, we transmit the period of the root node of the pattern tree, B0. In a
similar way as with simple cycles, we can deduce the largest possible value for p0
from r0 and E. Since we do not know when the events within the main cycle occur,
we assume what would lead to the largest possible value for p0, that is, we assume
that all the events within each repetition of the cycle happen at once, so that each
repetition spans no time at all. The corrections that must be taken into account are
those applying to the left-most leaf of each repetition of the main cycle. These are
exactly the corrections accumulated in ε(oza) where oza is the first occurrence of the
last repetition of the main cycle, i.e. oza = γL((B0, 〈r0〉)).

16 Galbrun et al.

(T8, 0,0)

b

0

a

3

a

4

a

5

a

6

c

8

b

10

a

13

a

14

a

15

a

16

c

18

b

20

a

23

a

24

a

25

a

26

c

28

b

33

p0

p1 p1

d12 d13

p12p12p12

d12 d13

p12p12p12

d12 d13

p12p12p12

p0

p1

d12

∆∗(B0)

∆∗max(B1) = δ∗max(B0)∆∗(B1) = δ∗(B0)

δ∗max(B1)δ∗(B1)∆∗max(B12)∆∗(B12)

Fig. 3. Pattern (T8, 0,0) partially shown on timeline (maximum time spans assume inter-
leaving is not allowed).

Thus we have

L(p0) = log
(⌊∆(S)− ε(oza)

r0 − 1

⌋)
.

Once the main period is known, we can use the same principle as for simple
cycles to transmit the starting point and we have

L(τ) = log(∆(S)− ε(oza)− (r0 − 1)p0 + 1) .

We denote as ∆∗(BX) the time spanned by the entire cycle of block BX , that
is, the time spanned by the rX repetitions of the block. We denote as δ∗(BX) the
time spanned by a single repetition of the block. Note that here we consider the
perfect occurrences of the block, before applying the corrections. In this case all
repetitions span the same time, which might no longer be true after correction. In
Fig. 3 we provide a timeline schema of the first occurrences of pattern (T8, 0,0), i.e.
the pattern consisting of the pattern tree T8 from Fig. A.9, with starting point 0
and no shift corrections. We indicate the time spanned by different blocks and their
maximum value assuming interleaving is not allowed.

Suppose we know ∆∗(BX). Then, in order for rX repetitions (equally long, but
potentially spanning no time at all) to happen within time ∆∗(BX), pX must satisfy
pX ≤ b∆∗(BX)/(rX−1)c and can therefore be represented with a code word of length

L(pX) = log
(⌊∆∗(BX)

rX − 1

⌋)
.

If we do not allow interleaving, each repetition can span at most b∆∗(BX)/rXc,
and also no longer than pX . On the other hand, if we do allow interleaving, each

Mining Periodic Patterns with a MDL Criterion 17

repetition can have a time span of at most ∆∗(BX)− rX + 1. Thus, the maximum
time span of a repetition is

δ∗max(BX) =

∆∗(BX)− rX + 1
if interleaving is allowed,

min(pX , b∆∗(BX)/rXc) otherwise.

Obviously, the sum of the distances between the children of the block cannot be
larger than the time span of a repetition. Therefore, we can represent the distances
between the children of BX with code words such that∑

BXi∈Γ (BX),i>1

L(dXi) = (|Γ (BX)| − 1) · log
(
δ∗max(BX) + 1

)
.

We can then determine the maximum span of each child of a block. If interleaving
is allowed, the child can span as much time as is left in the time span of its parent
after accounting for the distances of the left siblings:

∆∗max(BXi) = δ∗max(BX)−
∑

1≤j≤i

dXj .

Alternatively, if interleaving is not allowed, all events of the child must occur before
the first event of the next sibling:

∆∗max(BXi) =

δ∗max(BX)−

∑
j 6=i dXj

if BXi is the right-most child,
dX(i+1) otherwise.

Note that dX(i+1) is not defined if BXi is the right-most child of the block.
Applying the formulas above recursively allows to compute the length of the code

words needed to represent all the periods and inter-block distances in the tree, for
a known value δ∗(B0).

Looking at the last occurrence of the main cycle (B0, 〈r0〉), we have

τ + (r0 − 1)p0 + δ∗(B0) + ε(ozz) ≤ tend(S) ,

and hence
δ∗max(B0) = tend(S)− ε(ozz)− (r0 − 1)p0 − τ ,

where ε(ozz) denotes the accumulated corrections that apply to the event having the
largest uncorrected timestamp.

If interleaving is not allowed, that event is the right-most leaf node of the expan-
sion tree, i.e. the last element in the occurrence list. Besides, if interleaving is not
allowed, we also have δ∗(B0) ≤ p0.

On the other hand, if interleaving is allowed the event having the largest un-
corrected timestamp is not necessarily the last one in the list of occurrences (see
occs∗(T6) in Fig. A.8 for instance). Since it depends on periods and inter-block
distances within the block, which have not been specified at that point, we can-
not determine which event has the largest timestamp. Hence, we compute ε(oi) for

18 Galbrun et al.

all occurrences oi that correspond to the right most child of a block and take the
minimum (possibly a negative value) as ε(ozz).

To compute the periods and inter-block distances, we can use the actual value
δ∗(B0), which we first need to transmit explicitly after the value of τ , with a
code word of length log

(
δ∗max(B0) + 1

)
. Instead, we could use the upper-bound

on δ∗max(B0), which we do not need to transmit. It is probably more economical to
transmit the value explicitly.

We denote as D the collection of all the periods (except p0) and inter-block
distances in the tree (as well as δ∗(B0), if necessary), that need to be transmitted
to fully describe the pattern. The corresponding code length is

L(D) =
∑
v∈D

L(v) ,

where the code length of each element can be computed using the formulas presented
above.

To put everything together, the code used to represent a pattern P = (T, τ, E)
has length

L(P) = L((T, τ, E))

= L(A) + L(R) + L(p0) + L(D) + L(τ) + L(E) .

From simpler patterns to more complex ones. Let us have a look at what
happens to the encoding of a simple cycle, when using this more complex encod-
ing scheme to represent it. Consider a simple cycle C = (α, r, p, τ, E). Using the
more complex encoding it can be represented as P = (T, τ, E), where the cycle is
represented using a more general pattern formalism T = {r= r, p= p}

(
α
)
. Both en-

codings are very similar, with R = 〈r〉, p0 = p and D = 〈〉, A = ‘(α)’. The code word
representing the cycle length, L(r), depends only on the frequency of occurrence of
the event, which is fixed. The corrections accumulated for the first occurrence of
the last repetition of the main cycle are equal to the sum of the corrections in E,
hence ε(oza) = σ(E), so that the length of the code words representing the cycle
period and starting point also remain the same. The corrections are the same and
encoded the same way under both encodings. The only difference comes from the
different way to encode the event, which is longer under the more complex encoding,
to accommodate for the additional symbols which allow to represent (nested) event
sequences. That is, for any event α, its code length under the more complex pat-
tern encoding LP (α) is larger than its code length under the simpler cycle encoding,
LC(α), due to the over-head of having block delimiters.

Note that the actual value of τ does not impact the code length of a pattern. If
we consider two cycles

C1 = (α1, r1, p1, τ1, E1) and C2 = (α2, r2, p2, τ2, E2)

such that τ1 6= τ2 but all other values are equal, then L(C1) = L(C2). Simply put,
translation does not affect the cost of a cycle or pattern.

On the other hand, the values of the corrections, through ε(oza) impact the
length of the code words representing the starting point and the main period. For

Mining Periodic Patterns with a MDL Criterion 19

this reason, given two cycles with the same length and period but with different
corrections (i.e. such that r1 = r2 and p1 = p2, but E1 6= E2), the code words
representing their respective periods and starting points will differ (i.e. we will have
L(r1) = L(r2) but L(p1) 6= L(p2) and L(τ1) 6= L(τ2)).

5 Combining patterns and comparing costs

Recall that for a given input sequence S, our goal is to find a collection of patterns
C that minimises the cost

L(C, S) =
∑
P∈C

L(P) +
∑

o∈residual(C,S)

L(o) .

It is useful to compare the cost of different patterns, or sets of patterns, on a
subset of the data, i.e. compare L(C′, S′) for different sets of patterns C′ and some
subsequence S′ ⊆ S. In particular, we might compare the cost of a pattern P to the
cost of representing the same occurrences separately. This means comparing

L({P}, cover(P)) = L(P) and L(∅, cover(P)) =
∑

o∈cover(P)

L(o) .

If L({P}, cover(P)) < L(∅, cover(P)), we say that pattern P is cost-effective. In
addition, we compare patterns in terms of their cost-per-occurrence ratio defined,
for a pattern P , as

L(P)

|cover(P)|
,

and say that a pattern is more efficient when this ratio is smaller.
Furthermore, in order to reduce the number of candidate patterns considered and

to retain only the most promising ones, we use a procedure called FilterCandidates
that takes as input a collection of patterns K together with some integer k and re-
turns only those patterns from K that are among the top-k most efficient ones for
some occurrence they cover.

A natural way to build patterns is to start with the simplest patterns, i.e. cycles
over single events, and combine them together into more complex, possibly multi-
level multi-event patterns. Therefore, we now look at how the cost of patterns relates
to the cost of the building blocks they are constructed from. We start by looking
at the cost of covering k occurrences (k ≥ 3) with a simple cycle as compared to
representing them separately. In other words, we look in more details at what it
takes for a cycle to be cost-effective.

Simple cycles vs. residuals. Assume we have a candidate cycle C of length k ≥ 3,
covering k occurrences of event α, and we want to check whether this cycle is cost-
effective, i.e. compare the cost of representing this k-subsequence with C to the cost
of representing it with individual occurrences

L({C}, cover(C)) = L(C) and L(∅, cover(C)) =
∑

o∈cover(C)

L(o) .

20 Galbrun et al.

The cost of representing the individual occurrences separately is

L(∅, cover(C)) = k · (L(t) + L(α)) = k
(

log(∆(S) + 1)− log(

∣∣S(α)
∣∣

|S|
)
)

and the cost for representing the same occurrences with cycle C is

L(C) = L(α) + β + L(r) + L(p) + L(τ) + L(E) ,

where β denotes the length of the code for one pair of block delimiters. The cost of
corrections in the cycle is

L(E) = 2(k − 1) +
∑
e∈E
|e|

and the code length of the period and starting point of a cycle satisfy, respectively,

L(p) < log(
∆(S) + 1

k − 1
) and L(τ) < L(t),

so that

L(C) < L(α) + β + L(r) + log
(∆(S) + 1

k − 1

)
+ L(t) + 2k − 2 +

∑
e∈E
|e| .

If we let

W (k) = (k − 1)(L(t) + L(α))− β − L(r)− log
(∆(S) + 1

k − 1

)
− 2k + 2

= (k − 2) log(∆(S) + 1) + (k − 1)L(α)− β − log(
∣∣∣S(α)

∣∣∣) + log(k − 1)− 2k + 2 ,

we have ∑
e∈E
|e| < W (k) =⇒ L({C}, cover(C)) < L(∅, cover(C)) .

In other words, if the sum of the absolute shift corrections in a cycle C of length k
is less than W (k), then the cost of representing the occurrences with C is smaller
than the cost of representing them separately.

Furthermore, we can state the following:

Lemma 1. Given a sequence S, if C is a cycle of length k over event α with cor-
rections E satisfying

∑
e∈E |e| < W (k), and if extending C to cover one further

occurrence of event α does not increase the sum of the absolute corrections by more
than log(∆(S) + 1) − 2, then the cost of representing the k + 1 occurrences with
the extended cycle is smaller than the cost of representing them separately, i.e. the
extended cycle remains cost-effective.

Proof. Assume we have a cycle C with corrections E, satisfying
∑
e∈E |e| < W (k).

Let C ′ be the cycle obtained by extending C to cover one further occurrence, i.e. C ′

is a cycle of length k + 1, and let E′ be the associated corrections. Since

W (k+ 1)−W (k) = log(∆(S) + 1) + L(α) + log(k/(k− 1))− 2 > log(∆(S) + 1)− 2 ,

Mining Periodic Patterns with a MDL Criterion 21

we have ∑
e∈E′

|e| −
∑
e∈E
|e| ≤ log(∆(S) + 1)− 2

=⇒
∑
e∈E′

|e| −
∑
e∈E
|e| < W (k + 1)−W (k)

=⇒
∑
e∈E′

|e| < W (k + 1)−W (k) +
∑
e∈E
|e|

=⇒
∑
e∈E′

|e| < W (k + 1)

=⇒ L({C ′}, cover(C ′)) < L(∅, cover(C ′)) .

For a simple criterion to decide whether to extend a cycle we compare the mag-
nitude of the new correction to log(∆(S) + 1)− 2.

Vertical combination: Nesting cycles. First, let us consider a practical example.
Imagine that the following sequence is part of the input:

S2 = 〈(2, a), (5, a), (7, a), (8, a), (13, a), (15, a),

(20, a), (21, a), (26, a), (29, a), (32, a), (33, a)〉 .

We can represent this sequence with simple cycles, using three patterns over
pattern tree T1 from Fig. A.7 with starting points 2, 13, and 26, respectively.

Using this notation, the first option is to represent the sequence with the collec-
tion

C1 = {P1,1, P1,2, P1,3}
= {(T1, 2, 〈1, 0,−1〉), (T1, 13, 〈0, 3,−1〉), (T1, 26, 〈1, 1,−1〉)} .

Alternatively, we can represent the sequence using four patterns over pattern
tree T2 from Fig. A.7 with starting points 2, 5, 7 and 8, respectively:

C2 = {P2,1, P2,2, P2,3, P2,4}
= {(T2, 2, 〈−2, 0〉), (T2, 5, 〈−3, 1〉),

(T2, 7, 〈0,−1〉), (T2, 8, 〈0,−1〉)} .

But it can also be represented as a single pattern containing two nested cycles,
namely as patterns over pattern trees T3 or T4 from Fig. A.7, respectively, depending
whether the inner cycle is T1 or T2. So, we can represent the sequence with a single
pattern, with either

C3 = {P3,1} = {(T3, 2, 〈1, 0,−1,−2, 0, 3,−1, 0, 1, 1,−1〉)}, or

C4 = {P4,1} = {(T4, 2, 〈−2, 0, 1,−3, 1, 0, 0,−1,−1, 0,−1〉)} .

Note that with this type of pattern combining two nested cycles over the same
event, the list of corrections for the combined pattern is a simple combination of
corrections for the basic cycles:

E3,1 = E1,1 ⊕ 〈E2,1[1]〉 ⊕ E1,2 ⊕ 〈E2,1[2]〉 ⊕ E1,3

22 Galbrun et al.

a) GrowHorizontally:

r = 6, p = 7
τ = 2

b

r = 5, p = 7
τ = 4

a

r = 5, p = 7
τ = 5

r = 3
p = 2

b

−→

r = 5, p = 7
τ = 2

r = 3
p = 2ab

b

d = 2 d = 1

b) GrowVertically:

r = 3, p = 2
τ = 3

c ed = 1

r = 3, p = 2
τ = 12

c ed = 1

. . .

r = 3, p = 2
τ = 102

c ed = 1

−→

r = 12, p = 7
τ = 3

p = 2
r = 3

c ed = 1

Fig. 4. Examples of growing patterns through combinations.

where Ex,y is the list of shift corrections for pattern Px,y and Ex,y[i] is the correction
at position i in that list.

Let us look at the code lengths for these different patterns. For this example, we
have

tstart(S2)= 0, tend(S2)= 34, ∆(S2)= 34,

and
∣∣∣S(a)

2

∣∣∣= 12 .

We list the code lengths for the different elements in Tables A.2–A.4. In Fig. A.10 we
provide a timeline schema of the occurrences of P3,1 as well as of the occurrences of
(T3, 0,0) and (T4, 0,0), i.e. the occurrences of pattern trees T3 and T4 with starting
point 0 and no corrections.

Now, let us turn to the general case. Assume that we have a pattern tree TI
which occurs multiple times in the event sequence. In particular, assume that it
occurs at starting points τ1, τ2, . . . , τrJ (where the starting points are ordered) and
that this sequence of starting points itself can be represented as a cycle of length rJ
and period pJ . In other words, if we denote as α the left-most event of TI , i.e. the
event associated to the starting point of TI , the sequence consisting of the starting
points of the different occurrences of TI can be represented by a pattern (TJ , τ1, EJ)
where TJ = {r= rJ , p= pJ}

(
α
)

is a cycle of length rJ and period pJ over event α,
with shift corrections

EJ = 〈(τi − τi−1)− pJ for i ∈ [2, rJ]〉 .

In such a case, the occurrences of TI might be combined together and represented
as a nested pattern tree TN = {r= rJ , p= pJ}

(
TI
)
. We refer to such a combination

Mining Periodic Patterns with a MDL Criterion 23

as vertical combination, since it produces patterns of greater depth than the original
ones. GrowVertically is the procedure which takes as input a collection CI of
patterns over a tree TI , i.e. CI = {(TI , τ1, EI,1), . . . (TI , τrJ , EI,rJ)} and returns the
nested pattern, covering the same timestamp–event pairs, obtained by combining
them together as depicted in Fig. 4(b).

This situation is illustrated in Fig. A.12.

Lemma 2. Let CI = {(TI , τ1, EI,1), . . . (TI , τrJ , EI,rJ)} be a collection of patterns
consisting of rJ occurrences of the same pattern tree TI and PN = GrowVertically(CI)
be the nested pattern obtained by combining the patterns in CI . If the cycle PJ over
the starting points of the patterns in CI satisfies

L(PJ) < (rJ − 1) · L((TI , τ1, 〈〉)) ,

then

L({PN}, cover(CI)) < L(CI , cover(CI)) .

Proof. The code length of the event sequence in TN , i.e. AN = ‘(TI)’ equals the code
length to encode the event sequence in TI plus the code length for one pair of block
delimiters and satisfies

L(AN) < L(AI,rJ) + L(AJ).

Once nested, the time spans in T can only become more constrained, so that
L(DN) ≤ L(DI,rJ). The shift corrections for the nested pattern can be written
as

EN = EI,1 ⊕ 〈EJ [1]〉 ⊕ EI,2 ⊕ 〈EJ [2]〉 . . . 〈EJ [rJ − 1]〉 ⊕ EI,rJ ,

so that

L(EN) = L(EJ) +
∑

i∈[1,rJ]

L(EI,i) .

For the remaining elements, we have

L(RN) = L(RI,rJ) + L(RJ)

L(p0N) = L(p0J)

L(τN) = L(τJ)

Hence, the following holds for the code length of the nested pattern PN when
compared to the code length for the inner patterns PI,i and the outer pattern PJ :

L(PN) < L(PJ) + L(AI,rJ) + L(RI,rJ) + L(DI,rJ) +
∑

i∈[1,rJ]

L(EI,i) .

24 Galbrun et al.

We can then compare the code length of the outer pattern to the code length of
the structure of all but one of the inner patterns PJ , that is

L(PJ) < (rJ − 1) · L((TI , τ1, 〈〉))

=⇒ L(PJ) + L(AI,rJ) + L(RI,rJ) + L(DI,rJ) +
∑

i∈[1,rJ]

L(EI,i)

< (rJ − 1) · L((TI , τ1, 〈〉)) + L(AI,rJ) + L(RI,rJ) + L(DI,rJ) +
∑

i∈[1,rJ]

L(EI,i)

=⇒ L(PN) = L({PN}, cover(CI)) <
∑

i∈[1,rJ]

(TI,i, τI,i, EI,i) = L(CI , cover(CI)) .

Horizontal combination: Concatenating cycles. Again, let us first consider a
practical example. Imagine that the following sequence is part of the input:

S3 = 〈(2, b), (5, a), (7, c), (13, b), (18, a), (21, c),

(26, b), (30, a), (31, c)〉 .

We can represent this sequence with single cycles of length 3 and period 13, over
events b, a, and c and with starting points 2, 5, and 7, respectively. The cycle over
a corresponds to pattern tree T2 from Fig. A.7, the other two cycles correspond to
similar pattern trees but over event b and c, so we denote them respectively as T2b
and T2c. This corresponds to the following collection:

C5 = {P5,1, P5,2, P5,3}
= {(T2b, 2, 〈−2, 0〉), (T2, 5, 〈0,−1〉), (T2c, 7, 〈1,−3〉)} .

We can also use a more complex pattern tree, concatenating the three events.
This corresponds to using pattern tree T5 from Fig. A.8:

C6 = {P6,1}
= {(T5, 2, 〈0, 1,−2, 2, 2, 0, 1, 0〉)} .

Let us look at the code lengths for these different patterns. For this example, we
have

tstart(S3)= 0, tend(S3)= 34, ∆(S3)= 34,

and
∣∣∣S(a)

3

∣∣∣ =
∣∣∣S(b)

3

∣∣∣ =
∣∣∣S(c)

3

∣∣∣= 3 .

We list the code lengths for the different elements in Tables A.5–A.6. In Fig. A.11
we provide a timeline schema of the occurrences of P6,1 as well as of the occurrences
of (T5, 0,0).

Given a collection of patterns that occur close to one another and share similar
periods, we might want to combine them together into a concatenated pattern by
merging the roots of their respective trees. We refer to such a combination as hor-
izontal combination, since it produces patterns of greater width than the original
ones.

Mining Periodic Patterns with a MDL Criterion 25

To understand what this means in terms of cost, we focus on the basic case
where we have two patterns PI and PJ , such that TI = {r= r, p= pI}

(
T
)

and

TJ = {r= r, p= pJ}
(
T ′
)
, both patterns have top-level blocks of the same length

r, and with starting points τI ≤ τJ . We compare the cost of these two patterns
to the code length for the pattern that concatenates them, that is, pattern PN
with TN = {r= r, p= pN}

(
T – dN –T ′

)
covering the same event occurrences in the

original sequence. ` and `′ denote the number of occurrence in one repetition of
the top-level block of patterns PI and PJ respectively, that is |occs∗(T)| = ` and
|occs∗(T ′)| = `′. This situation is illustrated in Fig. A.13.

Since the shift corrections are applied relatively within a block, concatenating
T and T ′ only impacts the first event occurrence of each repetition of the top-level
block in either pattern, i.e. the left-most leaf in T and in T ′. We must look at
the timestamps of occurrences of the first event in T and in T ′, let’s denote the
timestamp of the ith occurrence of these events as t(oi,1) and t(o′i,1) respectively.

Looking at the position at which these occurrences are produced by the different
patterns, we have

EI(oi,1) = EI [(i− 1)`] EJ(o′i,1) = EJ [(i− 1)`′]

EN (oi,1) = EN [(i− 1)(`+ `′)] EN (o′i,1) = EN [i`+ (i− 1)`′] .

Per (TI , τI , EI) we have

t(o1,1) = τI , (1)

t(o2,1) = τI + pI + EI(o2,1) , (2)

t(o3,1) = τI + 2pI + EI(o3,1) + EI(o2,1) , (3)

and per (TN , τN , EN)

t(o1,1) = τN , (4)

t(o2,1) = τN + pN + EN (o2,1) , (5)

t(o3,1) = τN + 2pN + EN (o3,1) + EN (o2,1) . (6)

Hence, from eq. 1 and eq. 4 we get

τN = τI .

And generalising from eq. 2 and eq. 5 we get

EN (oi,1) = (pI − pN) + EI(oi,1).

And therefore, we let pN = pI so that EN (oi,j) = EI(oi,j) for all event occurrences
of PI .

Furthermore, we have per (TJ , τJ , EJ)

t(o′1,1) = τJ , (7)

t(o′2,1) = τJ + pJ + EJ(o′i,2) , (8)

t(o′3,1) = τJ + 2pJ + EJ(o′i,3) + EJ(o′i,2) , (9)

26 Galbrun et al.

and per (TN , τN , EN)

t(o′1,1) = τN + dN + EN (o′1,1) , (10)

t(o′2,1) = t(o2,1) + dN + EN (o′2,1) , (11)

t(o′3,1) = t(o3,1) + dN + EN (o′3,1) . (12)

Hence, from eq. 7 and eq. 10 we get

dN = (τJ − τI)− EN (o′1,1) .

and therefore we let dN = (τJ − τI). From eq. 8 and eq. 11 we get

τJ+pJ + EJ(o′2,1)

= τN + pN + EN (o2,1) + dN + EN (o′2,1) ,

= τN + pN + EN (o2,1) + (τJ − τI)− EN (o′1,1) + EN (o′2,1) ,

and hence

(pJ − pN) + EJ(o′2,1) = EN (o′2,1)− EN (o′1,1) + EN (o2,1) .

More generally, we have

(pJ − pN) + EJ(o′i,1) = EN (o′i,1)− EN (o′(i−1),1) + EN (oi,1) ,

and using pN = pI and EN (oi,1) = EI(oi,1):

EN (o′i,1) = (pJ − pI) + EI(oi,1)− EJ(o′i,1) + EN (o′(i−1),1) .

In the best case, the patterns are well aligned, in the sense that EI(oi,1) =
EJ(o′i,1), so then, summing up the shift corrections above, which are the only ones
that differ between the old patterns and the new one, we get∑

i∈[1,r−1]

∣∣EN (o′i,1)
∣∣ =

r(r − 1)

2
|pJ − pI | .

We use this as a filter for patterns to concatenate requiring that∑
i∈[1,r−1]

∣∣EN (o′i,1)
∣∣ ≤ ∑

i∈[1,r−1]

∣∣EJ(o′i,1)
∣∣ ,

i.e.

|pJ − pI | ≤
2

r(r − 1)

∑
i∈[1,r−1]

∣∣EJ(o′i,1)
∣∣ .

This can be interpreted as requiring that the difference in period between the two
concatenated patterns does not produce shift corrections larger than in the original
patterns.

GrowHorizontally is the procedure which takes as input a collection of pat-
terns and returns the pattern obtained by concatenating them together in order of

Mining Periodic Patterns with a MDL Criterion 27

Algorithm 2 Mining periodic patterns that compress.

Require: A multi-event sequence S, a number k of top candidates to keep
Ensure: A collection of patterns P
1: I ← ExtractCycles(S, k)
2: C ← ∅;V ← I;H ← I
3: while H 6= ∅ or V 6= ∅ do
4: V ′ ← CombineVertically(H,P, S, k)
5: H′ ← CombineHorizontally(V,P, S, k)
6: C ← C ∪H ∪ V;V ← V ′;H ← H′

7: P ← GreedyCover(C, S)
8: return P

increasing starting points as depicted in Fig. 4(a). More specifically, let the input
collection be {Pi}, where each pattern is a cycle of length ri and period pi over a
pattern tree Ti (possibly a single event) with starting point τi, and assume that the
patterns in the collection are indexed in order of increasing starting points, i.e. in
the order in which they occur in the data. The resulting pattern tree TN is a cycle
of length rN = min(ri) and period pN = p1 over the concatenation of T1, T2, . . . ,
where the distance between Ti−1 and Ti is set to di = τi − τi−1, and with τN = τ1.

6 Algorithm for Mining Periodic Patterns that Compress

We are now ready to present our main algorithm for mining a collection of periodic
patterns that compresses the input sequence. As outlined in Algorithm 2, our pro-
posed algorithm consists of three stages: (i) extracting cycles (line 1), (ii) building
tree patterns from cycles (lines 2–6) and (iii) selecting the final pattern collection
(line 7). We now present each stage in turn.

Extracting cycles. The first stage of the algorithm consists in extracting cycles
(line 1). The algorithm used for the initial mining of cycles is given as Algorithm 3.
Considering each event in turn, we use two different routines to mine cycles from
the sequence of timestamps obtained by restricting the input sequence to the event
of interest, combine and filter their outputs to generate the set I of initial candidate
patterns.

The first routine, ExtractCyclesDP (line 4), uses dynamic programming.
Indeed, if we allow neither gaps in the cycles nor overlaps between them, finding the
best set of cycles for a given sequence corresponds to finding an optimal segmentation
of the sequence, and since our cost is additive over individual cycles, we can use
dynamic programming to solve it optimally [1].

The second routine, ExtractCyclesTri (line 5), extracts cycles using a heuris-
tic which allows for gaps and overlappings. It collects triples (t0, t1, t2) such that
||t2 − t1| − |t1 − t0|| ≤ `, where ` is set so that the triple can be beneficial when
used to construct longer cycles. Triples are then chained into longer cycles. A triple
(t−1, t0, t+1), can be seen as an elementary cycle with a single shift correction
e = |(t0 − t−1)− (t+1 − t0)|. Since we are looking for triples that could produce
cost-effective cycles, we only keep triples for which e < log(∆(S) + 1)− 2, following

28 Galbrun et al.

Algorithm 3 ExtractCycles: Mines simple cycles from the data sequence.

Require: A sequence S
Ensure: A collection of cycles C
1: C ← ∅
2: lmax ← log(∆(S) + 1)− 2
3: for each event α ∈ ω do
4: C ← C ∪ ExtractCyclesDP(S(α))
5: C ← C ∪ ExtractCyclesTri(S(α), lmax)

6: FilterCandidates(C, S, k)
7: return C

Lemma 1. Triples (t−1, t0, t+1) and (t′−1, t
′
0, t
′
+1) are chained together if t0 = t′−1 and

t+1 = t′0, producing (t−1, t0, t+1, t
′
+1), and so on.

Finally, the set C of cost-effective cycles obtained by merging the output of the
two routines is filtered with FilterCandidates, to keep only the k most efficient
patterns for each occurrence (line 6) for a user-specified k, and returned.

Building tree patterns from cycles. The second stage of the algorithm builds
tree patterns, starting from the cycles produced in the previous stage. That is, while
there are new candidate patterns, the algorithm performs combination rounds, trying
to generate more complex patterns through vertical and horizontal combinations. If
desired, this stage can be skipped, thereby restricting the pattern language to simple
cycles.

In a round of vertical combinations performed by CombineVertically (line 4),
each distinct pattern tree represented among the new candidates in H is considered
in turn. Patterns over that tree are collected and ExtractCyclesTri is used
to mine cycles from the corresponding sequence of starting points. This time, the
threshold used to mine the cycles is derived from the cost of the considered pattern
tree, in accordance with Lemma 2. For each obtained cycle, a nested pattern is
produced by combining the corresponding candidates using GrowVertically (see
Fig. 4(b)). The set of candidates produced through these vertical combinations is
filtered, and returned as V ′. The procedure CombineVertically for generating
candidate patterns by means of vertical combinations is shown in Algorithms 4.

In a round of horizontal combinations performed by CombineHorizontally
(line 5), pairs of candidates such that (i) at least one of the two patterns was
produced in the previous round, and (ii) their starting points are closer than the pe-
riod of the earliest occurring of the two patterns are considered for concatenation. A
graph G is constructed, with vertices representing candidate patterns and with edges
connecting pairs of candidates K = {PI , PJ} for which the concatenated pattern
PN = GrowHorizontally(K) satisfies L({PN}, cover(K)) < L(K, cover(K)). A
new pattern is then produced for each clique of G, by applying GrowHorizontally
to the corresponding set of candidate patterns. The set H′ of new patterns is then
filtered and returned. The procedure CombineHorizontally for generating can-
didate patterns by means of horizontal combinations is shown in Algorithms 5.

To limit the number of concatenations generated and evaluated when testing
pairs of patterns, we require that the periods of two patterns be similar enough not

Mining Periodic Patterns with a MDL Criterion 29

Algorithm 4 CombineVertically: Combine patterns vertically.

Require: A collection of new candidate patterns H, and other candidate patterns C, a
sequence S, a number k of top candidates to keep

Ensure: A collection of patterns resulting from vertical combinations V ′
1: V ′ ← ∅
2: for each distinct Tc ∈ H do
3: C ← {(Tx, τx, Ex) ∈ H ∪ C, such that Tx = Tc}
4: lmax ← L((T1, τ1, 〈〉))
5: for each cycle (r, p,O) ∈ ExtractCyclesTri({τx ∈ C}, lmax) do
6: K ← {(Ty, τy, Ey) ∈ C, such that τy ∈ O}
7: K ← GrowVertically(K)
8: if L({K}, cover(K)) < L(K, cover(K)) then
9: V ′ ← V ′ ∪ {K}

10: V ′ ← FilterCandidates(V ′, S, k)
11: return V ′

Algorithm 5 CombineHorizontally: Combine patterns horizontally.

Require: A collection of new candidate patterns V, and other candidate patterns C, a
sequence S, a number k of top candidates to keep

Ensure: A collection of patterns resulting from horizontal combinations H′
1: H′ ← ∅;G← ∅
2: C ← pattern pairs (Pa, Pb) ∈ (V ∪ C)2, such that (Pa ∈ V or Pb ∈ V) and τb ≤ τa + p0a
3: for each pair of patterns K = (Pa, Pb) ∈ C do
4: K ← GrowHorizontally(K)
5: if L({K}, cover(K)) < L(K, cover(K)) then
6: H′ ← H′ ∪ {K}
7: G← G ∪ {(a, b)}
8: H′ ← H′ ∪ {GrowHorizontally(K) for each clique K in the graph G}
9: H′ ← FilterCandidates(H′, S, k)

10: return H′

to produce shift corrections larger than in the patterns of the pair, as discussed in
Section 5.

Note that if we obtain, as a result from a horizontal combination, a pattern a
the following shape

{r= r0, p= p0}
(
{r= r1, p= p1}

(
Ta
)

– d – {r= r1, p= p1}
(
Tb
))

we will factorise it into

{r= r0, p= p0}
(
{r= r1, p= p1}

(
Ta – d –Tb

))
,

if it results in shorter code length, as is often the case.

Selecting the final pattern collection. Selecting the final set of patterns to
output among the candidates in C is very similar to solving a weighted set cover
problem. Each candidate pattern can be seen as a set containing the occurrences
it covers and associated to a weight representing its code length. A singleton set

30 Galbrun et al.

is associated to each occurrence whose weight is the cost of encoding that occur-
rence as a residual. Therefore, the selection is done using a simple variant of the
greedy algorithm for this problem, denoted as GreedyCover (line 7), that works
as follows. Initially, the set P of selected patterns is empty. Let O be the set of
event occurrences covered so far, also initially empty. In each round, the pattern
P with smallest value of L(P)/ |occs(P) \ O| among remaining candidates, i.e. the
most efficient when considering only uncovered occurrences, is selected. If P is cost-
effective for the remaining uncovered occurrences, it is added to P, O is updated
and the selection proceeds to the next round. Otherwise the selection stops and P
is returned.

7 Experiments

In this section, we evaluate the ability of our algorithm to find patterns that com-
press the input event sequences. We make the code and the prepared datasets pub-
licly available.5 To the best of our knowledge, no existing algorithm carries out an
equivalent task and we are therefore unable to perform a comparative evaluation
against competitors. To better understand the behaviour of our algorithm, we first
performed experiments on synthetic sequences. We then applied our algorithm to
real-world sequences including process execution traces, smartphone applications ac-
tivity, and life-tracking. We evaluate our algorithm’s ability to compress the input
sequences and present some examples of extracted patterns.

For a given event sequence, the main objective of our algorithm is to mine and
select a good collection of periodic patterns, in the sense that the collection should
allow to compress the input sequence as much as possible. Therefore, the main mea-
sure that we consider in our experiments is the compression ratio, defined as the ratio
between the length of the code representing the input sequence with the considered
collection of patterns and the length of the code representing the input sequence with
an empty collection of patterns, i.e. using only individual event occurrences, given
as a percentage. For a given sequence S and collection of patterns C the compression
ratio is defined as

%L = 100 · L(C, S)/L(∅, S) ,

with smaller values associated to better pattern collections.

7.1 Mining synthetic sequences

We begin by probing the behaviour of our algorithm on synthetic sequences contain-
ing planted periodic patterns.

First we generate sequences that contain a single pattern. Each pattern consists
of a basis of one to three events, repeated in a cycle, in two nested cycles or in three
nested cycles, that is building pattern trees of depth 1, 2 and 3 respectively. The
simplest basis consists of event a, with the period of the inner cycle being either
greater than five (specifically, in [5, 9]) or greater than 10 (specifically, in [10, 24]).

5 https://github.com/nurblageij/periodic-patterns-mdl

https://github.com/nurblageij/periodic-patterns-mdl

Mining Periodic Patterns with a MDL Criterion 31

To build more complex patterns, we use event a followed by event b at distance 4,
i.e.
(
a – 4 – b

)
, as well as event a followed by event c at distance 1, followed by event

d at distance 2, i.e.
(
a – 1 – c – 2 – d

)
.

Each resulting perfect synthetic sequence can then be perturbed with shift noise,
i.e. by displacing the occurrences by a few time steps either forward or backward, or
with additive noise, i.e. by adding sporadic occurrences. Displacement noise is pa-
rameterised, on one hand, by the maximum absolute shift by which the occurrences
might be displaced and, on the other hand, by the fraction of occurrences that are
displaced. We refer to these two parameters as the level and the density of the noise,
respectively. For additive noise, we insert occurrences of event a at random times-
tamps. This type of noise has a single parameter, density, fixing the number of of
sporadic occurrences as compared to the number of occurrences of the event in the
unperturbed sequence. The generated sequences contain from about fifty up to over
two thousand occurrences.

In each round, we mine each generated sequence in turn for periodic patterns,
check whether the planted pattern was recovered exactly and compare the length
of the code for encoding the perturbed sequence using either the planted pattern,
denoted as LH , or those that have been selected by the algorithm, denoted as LF .
The first round of experiments is run on sequences with only shift noise. The second
and third rounds of experiments are run on sequences with additive noise of density
0.1 and density 0.5 respectively. The fourth round is run on sequences with only
shift noise, but letting the occurrences of the planted pattern interleave, unlike in
the three previous rounds.

In Fig. A.14–A.17, we plot the compression ratio achieved by the planted pattern
versus the compression ratio achieved by the pattern collection selected by the algo-
rithm for each of the twenty sequences generated with each considered combination
of parameters, for the four rounds respectively. A different take on the same results is
presented in Fig. A.18–A.21, where we show the distribution of %LF −%LH among
the twenty sequences generated with each combination of parameters as boxplots, for
the four rounds respectively. A value of %LF −%LH = 0 means that the patterns
selected by our algorithm achieve the same compression as the planted patterns,
while positive (resp. negative) values of %LF −%LH correspond to selected patterns
achieving longer (resp. shorter) code length than with planted patterns. On the left
next to each boxplot, we indicate the number of sequences for which the planted
pattern was recovered exactly.

Next, we consider sequences containing multiple planted patterns. For this pur-
pose, we consider the pool of sequences generated in each of the four rounds with
single patterns above and generate new sequences by selecting between two and five
sequences from the pool and combining them together. The patterns can be com-
bined either with or without overlap, that is, either letting a sequence start before
or after the preceding sequence ends. The results for the runs over these synthetic
sequences containing multiple planted patterns are presented in Fig. A.23.

We see from Fig. A.18 that when no spurious occurrences are inserted the planted
pattern is recovered exactly in most cases for simple patterns of depth one, while the
performance deteriorates and fewer planted patterns are recovered for more complex
patterns and greater depths, as also visible from Fig. A.14. This is expected since

32 Galbrun et al.

recovering multi-event patterns requires that the corresponding cycles are properly
recovered in the first stage of the algorithm for each of the events that make up
the pattern. Even in the absence of noise, the algorithm might miss the planted
pattern, e.g. because it merges successive nested repetition of a cycle that appear
close to each other. When the sequences involve interleaving (Fig. A.17 and A.21)
the algorithm behaves in a similar way, except for the more complex basis with
depths two and three, which are expectedly impacted more strongly by interleaving,
resulting in more degraded performances.

Spurious occurrences break the planted patterns which are no longer recovered by
the algorithm. With low density of additive noise the algorithm often selects patterns
very similar to the planted one but covering also the spurious occurrences, using
shift corrections to accommodate them (Fig. A.19). This is typical of the dynamic
programming cycle mining, which is able to find cycles with many repetitions but
does not allow to skip any occurrence, which are thus incorporated at the cost of
increased corrections. When the density of noise becomes fairly large, the inserted
occurrences might actually generate new patterns that can result in shorter code
length than the planted pattern, as can be observed in Fig. A.20. Indeed, except
for the patterns over single event a with long periods, the difference in compression
ratios is negative in the majority of cases.

When several planted patterns are combined without overlap, the algorithm is
able to recover them all exactly in roughly half of the cases for patterns taken from
pools with no additive noise, with or without interleaving (44 and 51%, respectively,
see Fig. A.23). In most cases the patterns selected by the algorithm yield a longer
code length than the planted patterns, except in the presence of dense additive noise.

Note that the requirement that the planted pattern(s) should be recovered ex-
actly is very strict, as it means that the pattern(s) selected by the algorithm should
cover the exact same occurrences as the planted ones, with the exact same pattern
tree. Closer inspection of the results reveals that the algorithm is able to recover
large fragments of the planted patterns in most cases. More specifically, in cases
where it fails to recover planted patterns with height greater than one, the algo-
rithm is in general able to identify cycles that constitute large fragments of different
repetitions of the inner cycle of the pattern, but merely omitting a few occurrences
in these fragment prevents the algorithm from combining them into vertical pat-
terns of greater height. Designing a procedure that is able to build on the extracted
fragments from different repetitions to recover the omitted occurrences could make
the retrieval of this type of patterns more robust, but is clearly not trivial.

7.2 Mining real-world sequences

Next, we apply our algorithm to real-world datasets.

Datasets. Our first two datasets come from a collaboration with STMicroelectron-
ics and are execution traces of a set-top box based on the STiH418 SoC6 running
STLinux. Both traces are a log of system actions (interruptions, context switches and

6 STiH418 description: http://www.st.com/resource/en/data_brief/stih314.pdf

http://www.st.com/resource/en/data_brief/stih314.pdf

Mining Periodic Patterns with a MDL Criterion 33

system calls) taken by the KPTrace instrumentation system developed at STMicro-
electronics. The 3zap dataset corresponds to 3 successive changes of channel (“zap”),
while the bugzilla dataset corresponds to logging a display blackout bug into the
bug tracking system of ST. Each dataset contains two traces, one for either of the two
cores of the box, named respectively 3zap-0 and 3zap-1, on one hand, bugzilla-0
and bugzilla-1, on the other hand. For our analysis of these traces, we do not
consider timestamps, only the succession of events.

The ubiqLog dataset was obtained from the UCI Machine learning repository.7

It contains traces collected from the smartphones of users over the course of two
months. For each of 31 users (we excluded those whose data was not encoded using
Hindu-Arabic numerals), we obtain a sequence recording what applications are run
on that user’s smartphone. We either consider absolute timestamps with a granu-
larity of one minute or only the succession of events, and denote the corresponding
collections of sequences respectively as ubiqLog-abs and ubiqLog-rel.

The samba dataset consists of a single sequence recording the emails identifying
the authors of commits on the git repository of the samba network file system8 from
1996 to 2016. We consider timestamps with a granularity of one day. User commits
are instantaneous. We aggregated together users that appeared fewer than 10 times
as “other”.

The sacha dataset contains records from the quantified awesome life log9 record-
ing the daily activities of its author between November 2011 and January 2017. The
daily activities are associated to start and end timestamps, and are divided between
categories organised into a hierarchy. Categories with fewer than 200 occurrences
were aggregated to their parent category. Each resulting category is represented by
an event. Adjacent occurrences of the same event were merged together. We either
consider absolute timestamps with a granularity of one minute or only the succes-
sion of events, and denote the corresponding sequences respectively as sacha-abs

and sacha-rel. Further, we investigate what happens when we coarsen the time
granularity, from the original one minute to 15 minutes, 30 minutes, 1 hour, half
a day and a full day. The corresponding sequences are denoted sacha-abs-G15,
sacha-abs-G30, sacha-abs-G60, sacha-abs-G720 and sacha-abs-G1440, respec-
tively.

When considering absolute timestamps for occurrences involving non-instant pro-
cesses (e.g. daily activities, running applications), each process might be associated
with three different events representing its start, its end, and the process happening
for a duration smaller than the time granularity respectively. When considering only
the succession of events or, in other words, focusing on the order in which things
happen rather than the specific times, we only consider the starting time of the
process and each process is hence associated with only one event.

Tables A.7–A.10 present the statistics of the sequences used in our experiments.
We indicate the length (|S|) and duration (∆(S)) of each sequence, the size of its
alphabet (|Ω|), as well as the median and maximum length of the event subsequences
(
∣∣S(α)

∣∣). We also indicate the code length of the sequence when encoded with an

7 https://archive.ics.uci.edu/ml/datasets/UbiqLog+(smartphone+lifelogging)
8 https://git.samba.org/
9 http://quantifiedawesome.com/records

https://archive.ics.uci.edu/ml/datasets/UbiqLog+(smartphone+lifelogging)
https://git.samba.org/
http://quantifiedawesome.com/records

34 Galbrun et al.

empty collection of patterns (L(∅, S)), as well as the running time of the algorithm
(RT, in seconds) for mining and selecting the patterns, as well as for the first stage
of mining cycles for each separate event.

Measures. Beside the code length and the compression ratio achieved with the
selected pattern collections, we consider several other characteristics. For a given
pattern collection C, we denote the set of residuals residual(C, S) simply as R and
look at what fraction of the code length is spent on them, denoted as L : R =∑
o∈R L(o)/L(C, S). Note that when the pattern collection is empty L :R = 1, since

only residuals are used, and hence the code length results entirely from residuals. |R|
and |C| are the number of residuals (individual event occurrences) and the number
of patterns in the collection, respectively. We also look at the number of patterns of
different types in C, specifically, (i) simple cycles, i.e. patterns with both width and
height equal to 1, (ii) vertical patterns, having a width of 1 and a height strictly
greater than 1, (iii) horizontal patterns, having a height of 1 and a width strictly
greater than 1, and (iv) proper two-dimensional patterns, with both height and
width greater than 1. Finally, we look at the fraction of patterns in C that cover
strictly more than three occurrences, i.e.

c>3 = |{P ∈ C, |cover(P)| > 3}| / |C| ,

where cover(P) denotes the set of timestamp–event pairs covered by a pattern P ,
and the median and maximum cover size of patterns in C.

Results. To better understand the role of the pattern combinations, in addition to
looking at the final collection of patterns returned by the algorithm (denoted as CF),
we also consider intermediate collections of patterns, namely a collection selected
among simple cycles mined during the initial phase of the algorithm (denoted as
CS), a collection selected among simple cycles and patterns resulting from the first
round of horizontal combinations (denoted as CH), from the first round of vertical
combinations (denoted as CV) and from both, or in other words among the candidate
patterns obtain at the end of the first round of combinations (denoted as CV+H).

Table A.11 shows the results for application trace log sequences 3zap-0, 3zap-1,
bugzilla-0, bugzilla-1 and samba. Table A.12 shows the results for sacha se-
quences when considering timestamps with different time granularities, as well as
when considering only the event succession. Tables A.13–A.17 show the results for
the sequences from the ubiqLog-abs dataset, while tables A.18–A.22 show the re-
sults for the sequences from the ubiqLog-rel dataset.

For each sequence and pattern collection we indicate the compression ratio (%L),
the code length (LC), the fraction of code used for residual (L :R), the number of
residuals (|R|) and of patterns (|C|), the number of simple, vertical, horizontal and
two-dimensional patterns (s, v, h, and m, respectively), the fraction of patterns
covering more than three occurrences (c>3) as well as the median (cM) and the
maximum (c+) cover size of patterns in the collection.

Table 1 shows aggregated results for the ubiqLog-abs and ubiqLog-rel datasets,
where we indicate the range of values taken for the different sequences in each subset.
Fig. A.24–A.27 show the compression ratios achieved for sequences from the different
datasets.

Mining Periodic Patterns with a MDL Criterion 35

Table 1. Aggregated results for ubiqLog sequences.

%L L :R s / v / h / m c+

ubiqLog-abs (31)

CS [40.18, 85.52] [0.22, 0.60] [41, 9468]/ [0, 0] / [0, 0] / [0, 0] [17, 388]
CV [40.17, 85.52] [0.23, 0.60] [41, 9445]/[0, 57]/ [0, 0] / [0, 0] [17, 388]
CH [30.08, 84.33] [0.24, 0.60] [31, 3113]/ [0, 0] /[5, 2256]/ [0, 0] [17, 2328]
CV+H [30.08, 84.33] [0.24, 0.60] [31, 3107]/ [0, 4] /[5, 2252]/ [0, 0] [17, 2328]
CF [30.06, 84.33] [0.24, 0.60] [31, 3102]/ [0, 2] /[5, 2233]/[0, 11] [17, 2328]

ubiqLog-rel (31)

CS [26.05, 64.94] [0.12, 0.45] [9, 2567] / [0, 0] / [0, 0] / [0, 0] [158, 8500]
CV [26.05, 64.94] [0.12, 0.45] [9, 2567] / [0, 2] / [0, 0] / [0, 0] [158, 8500]
CH [25.91, 63.48] [0.12, 0.41] [9, 2083] / [0, 0] / [0, 339] / [0, 0] [158, 35300]
CV+H [25.91, 63.48] [0.12, 0.41] [9, 2083] / [0, 2] / [0, 334] / [0, 0] [158, 35300]
CF [25.91, 63.48] [0.12, 0.41] [9, 2083] / [0, 2] / [0, 334] / [0, 1] [158, 35300]

0 50000 100000 150000
|S|

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

R
T
 (

h
)

0 10000 20000 30000 40000
|S|

 0

 10

 20

 30

 40

 50

 60

R
T
 (

m
in

)

0 5000 10000 15000 20000
|S|

0

200

400

600

800

1000

1200

R
T
 (

s)

0 5000 10000 15000 20000
0

200
400
600
800

1000
1200

0 10 20 30 40 50 60 70 80 90 100
%L

10 102 103 104

c +

0 5000 10000 15000 20000
0

200
400
600
800

1000
1200

0 10 20 30 40 50 60 70 80 90 100
%L

10 102 103 104

c +

Fig. 5. Running times for sequences from the different datasets, in hours (left) and zoomed-
in in minutes (middle) and seconds (right).

We see that the algorithm is able to find sets of patterns that compress the input
event sequences. The compression ratio varies widely depending on the considered
sequence, from a modest 84% for some sequences from ubiqLog-abs to a reduction of
more than two thirds, for instance for samba. To an extent, the achieved compression
can be interpreted as an indicator of how much periodic structure is present in the
sequence (at least of the type that can be exploited by our proposed encoding and
detected by our algorithm). In some cases, as with samba, the compression is achieved
almost exclusively with simple cycles, but in many cases the final selection contains a
large fraction of horizontal patterns (sometimes even about two thirds), which bring
a noticeable improvement in the compression ratio (as can be seen in Fig. A.26,
for instance). Vertical patterns, on the other hand, are much more rare, and proper
two-dimensional patterns are almost completely absent. The bugzilla sequences
feature such patterns, and even more so the 3zap sequences. This agrees with the
intuition that recursive periodic structure is more likely to be found in execution
logs tracing multiple recurrent automated processes.

36 Galbrun et al.

In most cases, a large proportion of the selected patterns cover more than the
minimum three timestamp–event pairs. Some of the largest patterns cover several
hundreds or a few thousand occurrences, depending on the length of the input se-
quence, obviously, as well as the strength of its periodic structure). Obviously, the
more occurrences a pattern covers, the more efficient it is, assuming it can be rep-
resented concisely.

From Table A.12 we can see that the chosen time granularity has a strong im-
pact on the extracted patterns. With the finest time granularity, i.e. 1 minute time
step (sacha-abs-G1), few patterns are found because the activities need to reoccur
with minute regularity and any deviation must be accounted in the shift correc-
tions. Therefore periodic patterns are not very efficient and only little compression
is achieved. When increasing the time granularity to 15 minutes, 30 minutes and to
1 hour (respectively sacha-abs-G15, sacha-abs-G30 and sacha-abs-G60) allows
to be more forgiving of small deviations the exact times when activities happen,
resulting in more efficient patterns found. This is evidenced by a sharp decrease in
the fraction of simple cycles (s/ |C|) and increase in the fraction of patterns cover-
ing more than three occurrences (c>3) and the maximum cover size (c+). Further
coarsening the time granularity, to a half day and a full day (sacha-abs-G720 and
sacha-abs-G1440) the fraction of simple cycles among the selected pattern increases
again, but this time each one covers a large number of occurrences. At such level
of granularity, the time and order in which the activities are carried out during the
day no longer matter, only which activities are performed on any given day. Finally,
with type of data considering the succession of activities rather than absolute times-
tamps (sacha-rel) might allow to identify fairly different patterns, since activities
in a pattern are no longer separated by a time span but by the number of other
activities performed in between. However, in this context, this can result in patterns
that are difficult to understand, since they cannot be easily mapped back to time
points and hence calendar dates and hours of the days cannot be used when inter-
preting the patterns. Hence, the choice of using succession or absolute timestamps,
and, in the latter case, of choosing the granularity of the time step, has to be made
by the analyst in consideration of the context and the time scale that is of interest.

In some cases (e.g. bugzilla-0 in Table A.11, sacha-abs-G60 in Table A.12
and several ubiqLog sequences), the collection of patterns selected from the final
set of candidates, CF , achieves worse compression than collections selected from
intermediate sets of candidates, despite the fact that the intermediate candidate sets
are subsets of the final one. This is due to the fact that the pattern selection, which is
in essence a weighted set cover problem is solved greedily (see Section 6), and a local
decision of choosing a more efficient pattern produced in later combination rounds,
might eventually result in degraded compression. However, the degradation is fairly
limited and one might simply decide to replace the final solution by an intermediate
one, when the candidates produced later on do not appear to contribute to shortening
the code length.

Fig. 5 shows the running times for sequences from the different datasets. Circles
and squares, coloured according to achieved compression ratio, indicate the run-
ning time of the algorithm for sequences from the ubiqLog dataset and from other
datasets, respectively. Each such marker is connected to a triangle indicating the

Mining Periodic Patterns with a MDL Criterion 37

r = 7
p = 10 d

τ = 2017-01-09 18:15
dinner]

[clean ktch.

clean ktch.]

0 min

30 min

d)

r = 14
p = 7 d

τ = 2015-01-08 08:45
[subway

subway]

[consulting

45 min

0 min

e)

r = 4
p = 221

τ = 151772

6:C

2395:X
r1 = 4, p1 = 2

2

f)

r = 291
p = 2 h 30

τ = 2016-03-16 11:45

[childcare

childcare]
1 h30 min

a)

r = 76
p = 1 d

τ = 2014-12-18 00:15

[sleep

sleep]
8 h30 min

b)

r = 48
p = 1 d 15 min

τ = 2015-12-16 00:00

[sleep

c)

Fig. 6. Example patterns from sacha-abs-G15 (a–e) and 3zap-0 (f).

running time for the combination rounds. Larger triangles correspond to sequences
for which more simple cycles are extracted during the initialisation phase. Darker
triangles correspond to sequences for which the maximum cover size among these
simple cycles is larger. The running times vary greatly, from only a few seconds to
several hours. Naturally, mining longer sequences tends to require longer running
times. However, directly observable characteristics of the sequence, such as its size,
the size of its alphabet, relative frequencies of the events, etc. are not the only fac-
tors impacting the running time. The number and length of the cycles extracted in
the first stage have a major effect on the time required by the combination rounds,
i.e. the second stage, which take the bulk of the overall running time. Indeed, if the
initial candidates contain many long cycles, many more tests will be needed when
trying to combine them into more complex patterns.

Example patterns. Finally, we present some examples of patterns obtained from
the sacha-abs-G15 and 3zap-0 sequences, in Fig. 6. The start and end of an activity
A are denoted as “[A” and “A]” respectively. The patterns from the sacha-abs-G15

sequence are simple and rather obvious, but they make sense when considering ev-
eryday activities. The fact that we are able to find them is a clear sign that the
method is working. The 3zap-0 pattern is a typical system case: the repetition of a
context switch (6:C) followed by several activations of a process (2395:X). Further
examples can be found in Tables A.23 and A.24. In 3zap-0 patterns, event names
consist of a numerical part, indicating the process id, and one or two letter indi-
cating the action. Upper and lower case letters represent the start and end of an
action, respectively. The most common actions are interruption (I), context switch
(C), system call (X), user function call (U).

Most of the discovered patterns are fairly simple. We suspect that this is due to
the nature of the data: there are no significantly complex patterns in these event log
sequences. In any case, the expressivity of our proposed pattern language comes at
no detriment to the simpler, more common patterns, but brings the potential benefit
of identifying sequences containing exceptionally regular structure.

38 Galbrun et al.

8 Conclusion

In this paper, we propose a novel approach for mining periodic patterns with a
MDL criterion, and an algorithm to put it into practise. Through our experimental
evaluation, we show that we are able to extract sets of patterns that compress the
input event sequences and to identify meaningful patterns.

An analyst parsing a log might have some intuition about what periods are more
meaningful, as well as relations and dependencies between events, depending on the
generating process. For instance, we expect days and weeks to strongly structure
life tracking logs, while patterns with periods of, say, 21 hours or 17 days would
be considered less intuitive. How to take such prior knowledge into account is an
interesting question to explore.

Making the algorithm more robust to noise and making it more scalable using for
instance parallelisation, are some pragmatic directions for future work, as is adding a
visualisation tool to support the analysis and interpretation of the extracted patterns
in the context of the event log sequence.

Acknowledgements. The authors thank Hiroki Arimura and Jilles Vreeken for
valuable discussions. This work has been supported by Grenoble Alpes Metropole
through the Nano2017 Itrami project, by the QCM-BioChem project (CNRS Mastodons)
and by the Academy of Finland projects “Nestor” (286211) and “Agra” (313927).

References

1. R. Bellman. On the approximation of curves by line segments using dynamic program-
ming. Communications of the ACM, 4(6), 1961.

2. C. Berberidis, I. P. Vlahavas, W. G. Aref, M. J. Atallah, and A. K. Elmagarmid. On
the discovery of weak periodicities in large time series. In PKDD’02, pages 51–61, 2002.

3. A. Bhattacharyya and J. Vreeken. Efficiently summarising event sequences with rich
interleaving patterns. In SDM’17, pages 795–803. SIAM, 2017.

4. F. Bonchi, M. van Leeuwen, and A. Ukkonen. Characterizing uncertain data using
compression. In SDM’11, pages 534–545. SIAM, 2011.

5. L. De Raedt and A. Zimmermann. Constraint-based pattern set mining. In SDM’07,
pages 237–248. SIAM, 2007.

6. E. Galbrun, P. Cellier, N. Tatti, A. Termier, and B. Crémilleux. Mining periodic
patterns with a MDL criterion. In ECML-PKDD’18, 2018.

7. P. Grünwald. Model selection based on minimum description length. Journal of Math-
ematical Psychology, 44(1):133–152, 2000.

8. P. Grünwald. The Minimum Description Length Principle. MIT Press, 2007.
9. J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time

series database. In ICDE’99, pages 106–115, 1999.
10. J. Han, W. Gong, and Y. Yin. Mining segment-wise periodic patterns in time-related

databases. In KDD’98, pages 214–218, 1998.
11. E. O. Heierman, III and D. J. Cook. Improving home automation by discovering

regularly occurring device usage patterns. In ICDM’03, pages 537–540, 2003.
12. J. Kiernan and E. Terzi. Constructing comprehensive summaries of large event se-

quences. ACM Trans. Knowl. Discov. Data, 3(4):21:1–21:31, 2009.
13. H. T. Lam, F. Moerchen, D. Fradkin, and T. Calders. Mining compressing sequential

patterns. In SDM’12, pages 319–330. SIAM, 2012.

Mining Periodic Patterns with a MDL Criterion 39

14. Z. Li, J. Wang, and J. Han. Mining event periodicity from incomplete observations. In
KDD’12, pages 444–452. ACM, 2012.

15. P. Lopez-Cueva, A. Bertaux, A. Termier, J.-F. Méhaut, and M. Santana. Debugging
embedded multimedia application traces through periodic pattern mining. In Int. Conf.
on Embedded Software, EMSOFT’12, 2012.

16. S. Ma and J. L. Hellerstein. Mining partially periodic event patterns with unknown
periods. In ICDE’01, pages 205–214. IEEE Computer Society, 2001.

17. B. Özden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In ICDE’98,
pages 412–421. IEEE Computer Society, 1998.

18. J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.
19. K. Smets and J. Vreeken. Slim: Directly mining descriptive patterns. In SDM’12, pages

236–247. SIAM, 2012.
20. N. Tatti and J. Vreeken. The long and the short of it: Summarising event sequences

with serial episodes. In KDD’12, pages 462–470. ACM, 2012.
21. J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: Mining itemsets that compress.

Data Min Knowl Discov, 23(1):169–214, 2011.
22. Q. Yuan, W. Zhang, C. Zhang, X. Geng, G. Cong, and J. Han. Pred: Periodic region

detection for mobility modeling of social media users. In WSDM’17, pages 263–272.
ACM, 2017.

40 Galbrun et al.

T1 {r= 4, p= 2}
(
a
)

T2 {r= 3, p= 13}
(
a
)

B0

B1

4, 2

a

a
a

a
a

B0

B1

3, 13

a

a
a

a

Θ(T1) = 〈(B1, 〈1〉), (B1, 〈2〉), (B1, 〈3〉),
(B1, 〈4〉)〉

Θ(T2) = 〈(B1, 〈1〉), (B1, 〈2〉), (B1, 〈3〉)〉

occs∗(T1) = 〈(0, a), (2, a), (4, a), (6, a)〉 occs∗(T2) = 〈(0, a), (13, a), (26, a)〉

T3 {r= 3, p= 13}
(
{r= 4, p= 2}

(
a
))

B0

B1

B11

3, 13

4, 2

a

a
a

a
a

a
a

a
a

a
a

a
a

Θ(T3) = 〈(B11, 〈1, 1〉), (B11, 〈1, 2〉), (B11, 〈1, 3〉), (B11, 〈2, 1〉), (B11, 〈2, 2〉), (B11, 〈2, 3〉), (B11, 〈3, 1〉),
(B11, 〈3, 2〉), (B11, 〈3, 3〉)〉

occs∗(T3) = 〈(0, a), (2, a), (4, a), (6, a), (13, a), (15, a), (17, a), (19, a), (26, a), (28, a), (30, a), (32, a)〉

T4 {r= 4, p= 2}
(
{r= 3, p= 13}

(
a
))

B0

B1

B11

4, 2

3, 13

a

a
a

a
a

a
a

a
a

a
a

a
a

Θ(T4) = 〈(B11, 〈1, 1〉), (B11, 〈1, 2〉), (B11, 〈1, 3〉), (B11, 〈2, 1〉), (B11, 〈2, 2〉), (B11, 〈2, 3〉), (B11, 〈3, 1〉),
(B11, 〈3, 2〉), (B11, 〈3, 3〉)〉

occs∗(T4) = 〈(0, a), (13, a), (26, a), (2, a), (15, a), (28, a), (4, a), (17, a), (30, a), (6, a), (19, a), (32, a)〉

Fig.A.7. Pattern trees T1–T4: Pattern and expansion trees, lists of leaf nodes and of perfect occurrences.

Mining Periodic Patterns with a MDL Criterion 41

T5 {r= 3, p= 13}
(
b – 3 – a – 1 – c

)
B0

B1 B2 B3

3, 13

b a c

3 1 b a c
b a c

b a c

Θ(T5) = 〈(B1, 〈1〉), (B2, 〈1〉), (B3, 〈1〉), (B1, 〈2〉), (B2, 〈2〉), (B3, 〈2〉), (B1, 〈3〉), (B2, 〈3〉), (B3, 〈3〉)〉
occs∗(T5) = 〈(0, b), (3, a), (4, c), (13, b), (16, a), (17, c), (26, b), (29, a), (30, c)〉

T6 {r= 5, p= 4}
(
b – 3 – a – 1 – c

)
B0

B1 B2 B3

5, 4

b a c

3 1

b a c
b a c

b a c
b a c

b a c

Θ(T6) = 〈(B1, 〈1〉), (B2, 〈1〉), (B3, 〈1〉), (B1, 〈2〉), (B2, 〈2〉), (B3, 〈2〉), (B1, 〈3〉), (B2, 〈3〉), (B3, 〈3〉),
(B1, 〈4〉), (B2, 〈4〉), (B3, 〈4〉), (B1, 〈5〉), (B2, 〈5〉), (B3, 〈5〉)〉

occs∗(T6) = 〈(0, b), (3, a), (4, c), (4, b), (7, a), (8, c), (8, b), (11, a), (12, c), (12, b), (15, a), (16, c), (16, b),
(19, a), (20, c)〉

Fig.A.8. Pattern trees T5–T6: Pattern and expansion trees, lists of leaf nodes and of perfect occurrences.

42 Galbrun et al.

T7 {r= 3, p= 10}
(
b – 3 – {r= 4, p= 1}

(
a
)

– 1 – c
)

B0

B2B1 B3

B21

3, 10

4, 1b c

a

3 1

b c

a
a

a
a

b c

a
a

a
a

b c

a
a

a
a

Θ(T7) = 〈(B1, 〈1〉), (B21, 〈1, 1〉), (B21, 〈1, 2〉), (B21, 〈1, 3〉), (B21, 〈1, 4〉), (B3, 〈1〉), (B1, 〈2〉), (B21, 〈2, 1〉),
(B21, 〈2, 2〉), (B21, 〈2, 3〉), (B21, 〈2, 4〉), (B3, 〈2〉), (B1, 〈3〉), (B21, 〈3, 1〉), (B21, 〈3, 2〉),
(B21, 〈3, 3〉), (B21, 〈3, 4〉), (B3, 〈3〉)〉

occs∗(T7) = 〈(0, b), (3, a), (4, a), (5, a), (6, a), (4, c), (10, b), (13, a), (14, a), (15, a), (16, a), (14, c), (20, b),
(23, a), (24, a), (25, a), (26, a), (24, c)〉

T8 {r= 2, p= 33}
(
{r= 3, p= 10}

(
b – 3 – {r= 4, p= 1}

(
a
)

– 5 – c
))

B0

B1

B12B11 B13

B121

2, 33

3, 10

4, 1b c

a

3 5

b c

a
a

a
a

b c

a
a

a
a

b c

a
a

a
a

b c

a
a

a
a

b c

a
a

a
a

b c

a
a

a
a

Θ(T8) = 〈(B11, 〈1, 1〉), (B121, 〈1, 1, 1〉), (B121, 〈1, 1, 2〉), (B121, 〈1, 1, 3〉), (B121, 〈1, 1, 4〉), (B13, 〈1, 1〉),
(B11, 〈1, 2〉), (B121, 〈1, 2, 1〉), (B121, 〈1, 2, 2〉), (B121, 〈1, 2, 3〉), (B121, 〈1, 2, 4〉), (B13, 〈1, 2〉),
(B11, 〈1, 3〉), (B121, 〈1, 3, 1〉), (B121, 〈1, 3, 2〉), (B121, 〈1, 3, 3〉), (B121, 〈1, 3, 4〉), (B13, 〈1, 3〉),
(B11, 〈2, 1〉), (B121, 〈2, 1, 1〉), (B121, 〈2, 1, 2〉), (B121, 〈2, 1, 3〉), (B121, 〈2, 1, 4〉), (B13, 〈2, 1〉),
(B11, 〈2, 2〉), (B121, 〈2, 2, 1〉), (B121, 〈2, 2, 2〉), (B121, 〈2, 2, 3〉), (B121, 〈2, 2, 4〉), (B13, 〈2, 2〉),
(B11, 〈2, 3〉), (B121, 〈2, 3, 1〉), (B121, 〈2, 3, 2〉), (B121, 〈2, 3, 3〉), (B121, 〈2, 3, 4〉), (B13, 〈2, 3〉)〉

occs∗(T8) = 〈(0, b), (3, a), (4, a), (5, a), (6, a), (8, c), (10, b), (13, a), (14, a), (15, a), (16, a), (18, c), (20, b),
(23, a), (24, a), (25, a), (26, a), (28, c), (33, b), (36, a), (37, a), (38, a), (39, a), (41, c), (43, b),
(46, a), (47, a), (48, a), (49, a), (51, c), (53, b), (56, a), (57, a), (58, a), (59, a), (61, c)〉

Fig.A.9. Pattern trees T7–T8: Pattern and expansion trees, lists of leaf nodes and of perfect occurrences.

Mining Periodic Patterns with a MDL Criterion 43

P3,1

a

2

a

5

a

7

a

8

a

13

a

15

a

20

a

21

a

26

a

29

a

32

a

33

τ
p0 + e4 p0 + e8

p1 + e1 p1 + e2 p1 + e3 p1 + e5 p1 + e6 p1 + e7 p1 + e9 p1 + e10 p1 + e11

∆((B0, 〈〉))

δ((B0, 〈1〉)) δ((B0, 〈2〉)) δ((B0, 〈3〉))

(T3, 0,0)

a

0

a

2

a

4

a

6

a

13

a

15

a

17

a

19

a

26

a

28

a

30

a

32

p0 p0

p1 p1 p1 p1 p1 p1 p1 p1 p1

∆∗(B0)

δ∗(B0) δ∗(B0) δ∗(B0)

(T4, 0,0)

a

0

a

2

a

4

a

6

a

13

a

15

a

17

a

19

a

26

a

28

a

30

a

32

p0 p0 p0

p1

p1

p1
p1p1

p1

p1

p1

∆∗(B0)

δ∗(B0)δ∗(B0)δ∗(B0)δ∗(B0)

Fig.A.10. Patterns P3,1, (T3, 0,0) and (T4, 0,0) shown on timelines.

44 Galbrun et al.

P6,1

b

2

a

5

c

7

b

13

a

18

c

21

b

26

a

30

c

31

τ
p0 + e3 p0 + e6

d12 + e1 d13 + e2 d12 + e4 d13 + e5 d12 + e7 d13 + e8

∆((B0, 〈〉))

δ((B0, 〈1〉)) δ((B0, 〈2〉)) δ((B0, 〈3〉))

(T5, 0,0)

b

0

a

3

c

4

b

13

a

16

c

17

b

26

a

29

c

30

p0 p0

d12 d13 d12 d13 d12 d13

∆∗(B0)

δ∗(B0) δ∗(B0) δ∗(B0)

Fig.A.11. Pattern P6,1 and (T5, 0,0) shown on timeline.

Mining Periodic Patterns with a MDL Criterion 45

Table A.2. Code lengths for the example pattern collection C1.

C1 76.681

P1,1 24.657 P1,2 26.417 P1,3 25.607

A (a) 4.755 (a) 4.755 (a) 4.755
E 〈1, 0,−1〉 8.000 〈0, 3,−1〉 10.000 〈1, 1,−1〉 9.000
r0 4 log(12) = 3.585 4 log(12) = 3.585 4 log(12) = 3.585
p0 2 log(11) = 3.459 2 log(10) = 3.322 2 log(11) = 3.459
τ 2 log(29) = 4.858 13 log(27) = 4.755 26 log(28) = 4.807

Table A.3. Code lengths for the example pattern collection C2.

C2 87.437

P2,1 21.969 P2,2 23.969 P2,3 20.749 P2,4 20.749

A (a) 4.755 (a) 4.755 (a) 4.755 (a) 4.755
E 〈−2, 0〉 6.000 〈−3, 1〉 8.000 〈0,−1〉 5.000 〈0,−1〉 5.000
r0 3 log(12) = 3.585 3 log(12) = 3.585 3 log(12) = 3.585 3 log(12) = 3.585
p0 13 log(18) = 4.170 13 log(18) = 4.170 13 log(17) = 4.087 13 log(17) = 4.087
τ 2 log(11) = 3.459 5 log(11) = 3.459 7 log(10) = 3.322 8 log(10) = 3.322

Table A.4. Code lengths for the example pattern collections C3 and C4.

C3 59.724 C4 63.920

P3,1 59.724 P4,1 63.920

A ((a)) 7.925 ((a)) 7.925
E 〈1, 0, . . .〉 33.000 〈−2, 0, . . .〉 32.000
r0 3 log(12) = 3.585 4 log(12) = 3.585
r1 4 log(12) = 3.585 3 log(12) = 3.585
p0 13 log(18) = 4.170 2 log(11) = 3.459
τ 2 log(11) = 3.459 2 log(29) = 4.858
δ∗ 6 log(8) = 3.000 26 log(28) = 4.807
p1 2 log(2) = 1.000 13 log(13) = 3.700

46 Galbrun et al.

Table A.5. Code lengths for the example pattern collection C5.

C5 65.443

P5,1 21.554 P5,2 20.334 P5,3 23.554

A (b) 6.340 (a) 6.340 (c) 6.340
E 〈−2, 0〉 6.000 〈0,−1〉 5.000 〈1,−3〉 8.000
r0 3 log(3) = 1.585 3 log(3) = 1.585 3 log(3) = 1.585
p0 13 log(18) = 4.170 13 log(17) = 4.087 13 log(18) = 4.170
τ 2 log(11) = 3.459 5 log(10) = 3.322 7 log(11) = 3.459

Table A.6. Code lengths for the example pattern collection C6.

C6 53.538

P6,1 53.538

A (b a c) 12.680
E 〈0, 1, . . .〉 24.000
r0 3 log(3) = 1.585
p0 13 log(18) = 4.170
τ 2 log(11) = 3.459
d12 3 log(4) = 2.000
d13 1 log(4) = 2.000
δ∗ 4 log(8) = 3.000

Mining Periodic Patterns with a MDL Criterion 47

.

.

.
.
.
.

.

.

.
.
.
.

. . .

. . .

. . .

. . .

o1,1 o1,2 o1,3 o1,`

o2,1 o2,2 o2,3 o2,`

orJ ,1 orJ ,2 orJ ,3 orJ ,`

.

.

.
.
.
.

.

.

.
.
.
.

. . .

. . .

. . .

. . .

PI,1 τ1

PI,2 τ2

PI,rJ τrJ

EI,1[1]EI,1[1]

EI,2[1]EI,2[1]

EI,rJ
[1]EI,rJ
[1]

EI,1[2]EI,1[2]

EI,2[2]EI,2[2]

EI,rJ
[2]EI,rJ
[2]

EI,1[`− 1]EI,1[`− 1]

EI,2[`− 1]EI,2[`− 1]

EI,rJ
[`− 1]EI,rJ
[`− 1]

.

.

.
.
.
.

.

.

.
.
.
.

. . .

. . .

. . .

. . .

PJ

τ1

EJ [1]EJ [1]

EJ [rJ−1]EJ [rJ−1]

.

.

.
.
.
.

.

.

.
.
.
.

. . .

. . .

. . .

. . .

PN

τ1 EN [1]EN [1] EN [2]EN [2] EN [`− 1]EN [`− 1]

EN [`]EN [`] EN [`+ 1]EN [`+ 1] EN [`+ 2]EN [`+ 2] EN [2`− 1]EN [2`− 1]

EN [rJ`− 1]EN [rJ`− 1]
EN

[(rJ
−1)`

]

EN
[(rJ
−1)`

]

EN
[(rJ
−1)`

+ 1]

EN
[(rJ
−1)`

+ 1]

EN
[(rJ
−1)`

+ 2]

EN
[(rJ
−1)`

+ 2]

Fig.A.12. Vertical combination: Combining patterns PI,1, . . . , PI,rJ into nested pattern PN . Rounded rectangles
represent event occurrences. Each colored rectangle represents a pattern and encloses the occurrence covered by the
pattern. Arrows link occurrences to the preceding occurrences relative to which their timestamp is computed.

48 Galbrun et al.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

o1,1 o1,2 o1,3 o1,`

o2,1 o2,2 o2,3 o2,`

or,1 or,2 or,3 or,`

o′1,1 o′1,2 o′1,`′

o′2,1 o′2,2 o′2,`′

o′r,1 o′r,2 o′r,`′

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

PI

τI EI [1]EI [1] EI [2]EI [2] EI [`− 1]EI [`− 1]

EI [`]EI [`] EI [`+ 1]EI [`+ 1] EI [`+ 2]EI [`+ 2] EI [2`− 1]EI [2`− 1]

EI [r`− 1]EI [r`− 1]
EI[(

r−1
)`]

EI[(
r−1

)`]

EI[(
r−1

)`+
1]

EI[(
r−1

)`+
1]

EI[(
r−1

)`+
2]

EI[(
r−1

)`+
2]

PJ

τJ EJ [1]EJ [1] EJ [`
′ − 1]EJ [`
′ − 1]

EJ [`
′]EJ [`
′] EJ [`

′ + 1]EJ [`
′ + 1] EJ [2`

′ − 1]EJ [2`
′ − 1]

EJ [r`
′ − 1]EJ [r`
′ − 1]

EJ
[(r−

1)`
′]

EJ
[(r−

1)`
′]

EJ
[(r−

1)`
′ + 1]

EJ
[(r−

1)`
′ + 1]

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

PN

τN EN [1]EN [1] EN [2]EN [2] EN [`− 1]EN [`− 1] EN [`]EN [`] EN [`+ 1]EN [`+ 1]

EN
[(r
− 1)(

`+
`
′)]

EN
[(r
− 1)(

`+
`
′)]

EN
[(r
− 1)(

`+
`
′) +

1]

EN
[(r
− 1)(

`+
`
′) +

1]

EN
[(r
− 1)(

`+
`
′) +

2]

EN
[(r
− 1)(

`+
`
′) +

2]

EN
[`+

`
′ + 1]

EN
[`+

`
′ + 1]

EN
[`+

`
′ + 2]

EN
[`+

`
′ + 2]

EN
[2`

+ `
′ − 1]

EN
[2`

+ `
′ − 1]

EN
[r`

+ (r −
1)`

′ − 1]

EN
[r`

+ (r −
1)`

′ − 1]

EN
[`+

`
′]

EN
[`+

`
′]

EN
[r`

+ (r −
1)`

′]

EN
[r`

+ (r −
1)`

′]

EN
[r`

+ (r −
1)`

′ + 1]

EN
[r`

+ (r −
1)`

′ + 1]

EN
[`+

`
′ − 1]

EN
[`+

`
′ − 1]

EN
[2`

+ `
′]

EN
[2`

+ `
′]

EN
[2`

+ `
′ + 1]

EN
[2`

+ `
′ + 1]

EN
[2(`

+ `
′)− 1]

EN
[2(`

+ `
′)− 1]

EN
[r(`

+ `
′)− 1]

EN
[r(`

+ `
′)− 1]

Fig.A.13. Horizontal combination: Concatenating patterns PI and PJ into new pattern PN . Rounded rectangles
represent event occurrences. Each colored rectangle represents a pattern and encloses the occurrence covered by the
pattern. Arrows link occurrences to the preceding occurrences relative to which their timestamp is computed.

Mining Periodic Patterns with a MDL Criterion 49

Fig.A.14. Compression ratios for planted and extracted pattern collections (%LH and %LF , respectively) on syn-
thetic sequences perturbed only by shift noise.

20

30

40

50

60

70
{p>5} (a)

shift noise density: 0.0 0.1 0.2 0.3

{p>10} (a) {p>10} (a −4− b)

h
e
ig

h
t=

1

{p>10} (a −1− c −2− d)

20

30

40

50

60

70

h
e
ig

h
t=

2

20 25 30

20

30

40

50

60

70

18 22 26 14 16 18 13 15 17 19

h
e
ig

h
t=

3

%
L
F

%LH

Fig.A.15. Compression ratios for planted and extracted pattern collections (%LH and %LF , respectively) on syn-
thetic sequences perturbed by additive noise (a, 0.1).

30

40

50

60

70
{p>5} (a)

shift noise density: 0.0 0.1 0.2 0.3

{p>10} (a) {p>10} (a −4− b)

h
e
ig

h
t=

1

{p>10} (a −1− c −2− d)

30

40

50

60

70

h
e
ig

h
t=

2

25 30 35 40

30

40

50

60

70

24 28 32 22 24 26 28 20 22 24

h
e
ig

h
t=

3

%
L
F

%LH

50 Galbrun et al.

Fig.A.16. Compression ratios for planted and extracted pattern collections (%LH and %LF , respectively) on syn-
thetic sequences perturbed by additive noise (a, 0.5).

30

40

50

60

70

80

{p>5} (a)

shift noise density: 0.0 0.1 0.2 0.3

{p>10} (a) {p>10} (a −4− b)

h
e
ig

h
t=

1

{p>10} (a −1− c −2− d)

30

40

50

60

70

80

h
e
ig

h
t=

2

42 46 50 54

30

40

50

60

70

80

42 46 50 40 42 44 39 41 43

h
e
ig

h
t=

3

%
L
F

%LH

Fig.A.17. Compression ratios for planted and extracted pattern collections (%LH and %LF , respectively) on syn-
thetic sequences containing interleaving.

20
30
40
50
60
70
80

{p>5} (a)

shift noise density: 0.0 0.1 0.2 0.3

{p>10} (a) {p>10} (a −4− b)

h
e
ig

h
t=

1

{p>10} (a −1− c −2− d)

20
30
40
50
60
70
80

h
e
ig

h
t=

2

20 25 30 35

20
30
40
50
60
70
80

20 25 30 14 18 22 14 18 22

h
e
ig

h
t=

3

%
L
F

%LH

Mining Periodic Patterns with a MDL Criterion 51

Fig.A.18. Differences in compression ratios for planted and extracted pattern collections (%LH and %LF , respec-
tively) on synthetic sequences perturbed only by shift noise.

0.1 0.0 0.1 0.2 0.3 0.4 0.5

%LF −%LH

0.0 12/20
0.1 12/20
0.2 10/20
0.3 13/20
0.1 8/20

0.2 13/20
0.3 11/20

0.0 18/20
0.1 17/20
0.2 18/20
0.3 18/20
0.1 18/20
0.2 20/20
0.3 17/20
0.1 19/20
0.2 18/20
0.3 20/20

0.0 13/20
0.1 13/20

0.0 12/20
0.1 12/20

N
o
is

e
 d

e
n
si

ty

{p>5} (a)

{p>10} (a)

{p>10} (a −4− b)

{p>10} (a −1− c −2− d)

height=1

shift noise level: 0 1 2 3

0.1 0.0 0.1 0.2 0.3 0.4 0.5

%LF −%LH

15/20
13/20
11/20
13/20
10/20
10/20

9/20

16/20
15/20
15/20
11/20
13/20
12/20
10/20
15/20
10/20
10/20

9/20
11/20

14/20
7/20

{p>5} (a)

{p>10} (a)

{p>10} (a −4− b)

{p>10} (a −1− c −2− d)

height=2

0.1 0.0 0.1 0.2 0.3 0.4 0.5

%LF −%LH

15/20
12/20

7/20
6/20
8/20

11/20
5/20

11/20
13/20

6/20
5/20

12/20
8/20
5/20
7/20
3/20
6/20

12/20
8/20

16/20
5/20

{p>5} (a)

{p>10} (a)

{p>10} (a −4− b)

{p>10} (a −1− c −2− d)

height=3

Fig.A.19. Differences in compression ratios for planted and extracted pattern collections (%LH and %LF , respec-
tively) on synthetic sequences perturbed by additive noise (a, 0.1).

0.1 0.0 0.1 0.2 0.3 0.4

%LF −%LH

0.0 0/20
0.1 0/20
0.2 0/20
0.3 0/20
0.1 0/20
0.2 0/20
0.3 0/20

0.0 0/20
0.1 0/20
0.2 0/20
0.3 0/20
0.1 0/20
0.2 0/20
0.3 0/20
0.1 0/20
0.2 0/20
0.3 0/20

0.0 0/20
0.1 0/20

0.0 0/20
0.1 0/20

N
o
is

e
 d

e
n
si

ty

{p>5} (a)

{p>10} (a)

{p>10} (a −4− b)

{p>10} (a −1− c −2− d)

height=1

shift noise level: 0 1 2 3

0.1 0.0 0.1 0.2 0.3 0.4

%LF −%LH

0/20
0/20
0/20
0/20
0/20
0/20
0/20

0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20

0/20
0/20

0/20
0/20

{p>5} (a)

{p>10} (a)

{p>10} (a −4− b)

{p>10} (a −1− c −2− d)

height=2

0.1 0.0 0.1 0.2 0.3 0.4

%LF −%LH

0/20
0/20
0/20
0/20
0/20
0/20
0/20

2/20
0/20
0/20
1/20
1/20
0/20
0/20
0/20
0/20
0/20

0/20
0/20

0/20
0/20

{p>5} (a)

{p>10} (a)

{p>10} (a −4− b)

{p>10} (a −1− c −2− d)

height=3

52 Galbrun et al.

Fig.A.20. Differences in compression ratios for planted and extracted pattern collections (%LH and %LF , respec-
tively) on synthetic sequences perturbed by additive noise (a, 0.5).

0.2 0.1 0.0 0.1 0.2 0.3 0.4

%LF −%LH

0.0 0/20
0.1 0/20
0.2 0/20
0.3 0/20
0.1 0/20
0.2 0/20
0.3 0/20

0.0 0/20
0.1 0/20
0.2 0/20
0.3 0/20
0.1 0/20
0.2 0/20
0.3 0/20
0.1 0/20
0.2 0/20
0.3 0/20

0.0 0/20
0.1 0/20

0.0 0/20
0.1 0/20

N
o
is

e
 d

e
n
si

ty

{p>5} (a)

{p>10} (a)

{p>10} (a −4− b)

{p>10} (a −1− c −2− d)

height=1

shift noise level: 0 1 2 3

0.2 0.1 0.0 0.1 0.2 0.3 0.4

%LF −%LH

0/20
0/20
0/20
0/20
0/20
0/20
0/20

0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20

0/20
0/20

0/20
0/20

{p>5} (a)

{p>10} (a)

{p>10} (a −4− b)

{p>10} (a −1− c −2− d)

height=2

0.2 0.1 0.0 0.1 0.2 0.3 0.4

%LF −%LH

0/20
0/20
0/20
0/20
0/20
0/20
0/20

0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20

0/20
0/20

0/20
0/20

{p>5} (a)

{p>10} (a)

{p>10} (a −4− b)

{p>10} (a −1− c −2− d)

height=3

Fig.A.21. Differences in compression ratios for planted and extracted pattern collections (%LH and %LF , respec-
tively) on synthetic sequences containing interleaving.

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

%LF −%LH

0.0 13/20
0.1 15/20
0.2 15/20
0.3 11/20
0.1 14/20
0.2 16/20
0.3 7/20

0.0 15/20
0.1 18/20
0.2 20/20
0.3 17/20
0.1 17/20
0.2 18/20
0.3 19/20
0.1 15/20
0.2 20/20
0.3 17/20

0.0 15/20
0.1 11/20

0.0 15/20
0.1 7/20

N
o
is

e
 d

e
n
si

ty

{p>5} (a)

{p>10} (a)

{p>10} (a −4− b)

{p>10} (a −1− c −2− d)

height=1

shift noise level: 0 1 2 3

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

%LF −%LH

2/20
0/20
1/20
0/20
0/20
0/20
0/20

0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20

0/20
0/20

0/20
0/20

{p>5} (a)

{p>10} (a)

{p>10} (a −4− b)

{p>10} (a −1− c −2− d)

height=2

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

%LF −%LH

0/20
0/20
0/20
0/20
0/20
0/20
0/20

0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20
0/20

0/20
0/20

0/20
0/20

{p>5} (a)

{p>10} (a)

{p>10} (a −4− b)

{p>10} (a −1− c −2− d)

height=3

Mining Periodic Patterns with a MDL Criterion 53

Fig.A.22. Compression ratios for planted and extracted pattern collections (%LH and %LF , respectively) on syn-
thetic sequences with multiple planted patterns.

20 40 60

%LH

20

30

40

50

60

%
L
F

No additive noise

no overlap overlap

20 40 60

%LH

Additive noise (a, .1)

20 40 60

%LH

Additive noise (a, .5)

20 40 60

%LH

Interleaving

Fig.A.23. Differences in compression ratios for planted and extracted pattern collections (%LH and %LF , respec-
tively) on synthetic sequences with multiple planted patterns.

0.4 0.2 0.0 0.2 0.4
%LF −%LH

overlap 0/100

no ov. 45/100

overlap 0/100

no ov. 0/100

overlap 0/100

no ov. 0/100

overlap 0/100

no ov. 40/100

No additive noise

Additive noise (a, .1)

Additive noise (a, .5)

Interleaving

54 Galbrun et al.

Table A.7. Statistics for application log trace sequences.

|S| ∆(S) |Ω|
∣∣∣S(α)

∣∣∣ L(∅, S) RT (s)

med max cycles overall

3zap-0 181644 181643 443 22 36697 4154277 2094 35048
3zap-1 129532 129531 214 57 29376 2849285 1697 32125
bugzilla-0 16775 16774 91 6 3332 303352 112 522
bugzilla-1 15418 15417 61 24 3551 276298 116 504
samba 28751 7461 119 44 2905 520443 214 2787

Table A.8. Statistics for sacha sequences.

|S| ∆(S) |Ω|
∣∣∣S(α)

∣∣∣ L(∅, S) RT (s)

med max cycles overall

sacha-abs-G1 72516 3321680 94 523 5531 1987678 700 8734
sacha-abs-G15 65977 221445 141 231 4389 1573140 2963 14377
sacha-abs-G30 58447 110722 141 254 3033 1343757 980 9125
sacha-abs-G60 47880 55361 141 154 4270 1045284 598 5310
sacha-abs-G720 26380 4613 69 174 3547 450453 212 2287
sacha-abs-G1440 22261 2306 55 306 2287 359005 153 1533
sacha-rel 36258 36257 47 523 5531 721270 373 22252

Mining Periodic Patterns with a MDL Criterion 55

Table A.9. Statistics for ubiqLog-abs sequences.

|S| ∆(S) |Ω|
∣∣∣S(α)

∣∣∣ L(∅, S) RT (s)

med max cycles overall

25-F 413 11391 10 23 211 6599 1 1
10-M 1290 21116 17 28 194 23110 14 18
9-M 1483 29499 25 26 365 27362 6 10
21-F 5506 92897 85 38 479 121869 33 51
23-F 8262 7389217 50 63 699 227374 68 154
14-F 9682 100684 49 47 1818 199781 76 150
1-M 10529 42774 89 32 1215 214629 92 246
30-F 11567 42653 69 67 1136 234214 98 310
13-F 13328 78490 73 42 2183 279248 122 334
20-M 15449 98993 118 39 2159 339895 168 420
29-F 16460 88050 80 41 1093 352049 152 1020
8-M 17648 83771 59 52 1719 365481 251 990
6-M 17652 87591 132 26 1425 382647 156 605
15-F 19782 44587 80 38 1344 400786 170 714
2-F 19842 546993 107 54 1079 485405 172 814
26-F 23859 68872 61 48 2240 486633 276 865
12-M 24138 79753 103 80 1153 528938 202 1352
17-F 25024 80935 79 58 2351 524069 510 1754
27-F 25034 79156 156 48 919 560681 232 1962
5-F 26215 17900307 100 65 2629 769981 254 1464
16-F 28809 90751 75 52 2131 611065 439 2785
11-F 35579 92393 86 94 2240 766086 511 3290
31-F 40564 1596375 92 49 3975 1027350 355 1380
28-F 42832 103996 111 79 4967 934544 423 3543
7-F 43657 81890 87 83 4707 916811 521 2674
35-F 57443 184647 122 129 4389 1309032 638 6082
22-M 59374 70461 121 58 2547 1281232 1564 18264
24-F 73921 72563 136 41 4567 1566364 1372 9390
33-F 83954 94870 160 68 4047 1845429 2297 16730
19-F 113885 164231 175 59 5361 2572126 2098 16988
18-F 167863 90623 241 68 6101 3733349 1812 28973

56 Galbrun et al.

Table A.10. Statistics for ubiqLog-rel sequences.

|S| ∆(S) |Ω|
∣∣∣S(α)

∣∣∣ L(∅, S) RT (s)

med max cycles overall

25-F 372 371 6 33 211 3896 1 3
10-M 905 904 7 101 334 10899 7 15
9-M 973 972 18 25 365 12693 5 8
21-F 4234 4233 51 51 806 71351 29 49
23-F 5274 5273 23 83 991 83287 36 160
14-F 6676 6675 29 29 2670 104860 48 103
1-M 8686 8685 56 34 1635 148938 56 417
30-F 8983 8982 40 65 1759 151815 57 937
20-M 10891 10890 64 58 3234 193871 73 597
13-F 11029 11028 46 69 2742 190835 84 856
6-M 11425 11424 62 45 1797 201859 84 339
29-F 11974 11973 43 31 1655 206150 90 665
8-M 12463 12462 31 65 3375 207949 98 1918
15-F 13680 13679 46 36 2163 235866 97 1273
2-F 13907 13906 49 80 1891 249331 113 1102
26-F 13995 13994 27 68 2975 235133 99 1954
17-F 15790 15789 38 78 3415 273659 114 3171
27-F 18406 18405 109 56 1289 361470 143 493
12-M 18807 18806 69 73 1600 356307 148 402
5-F 21185 21184 67 83 4781 400094 207 638
16-F 21417 21416 49 34 3610 382984 156 1990
31-F 25032 25031 57 45 5332 457534 183 2795
11-F 26512 26511 49 108 4160 496154 223 1055
35-F 38794 38793 52 129 6842 743513 294 15822
28-F 39162 39161 79 99 5002 782479 373 1714
7-F 39216 39215 54 136 5551 752947 381 1388
22-M 44533 44532 61 58 3872 870531 364 11686
24-F 51636 51635 67 48 7069 998823 447 14480
33-F 62824 62823 95 80 6620 1266835 545 20740
19-F 74421 74420 101 59 8513 1500824 675 36644
18-F 103681 103680 142 55 8640 2203689 739 16320

Mining Periodic Patterns with a MDL Criterion 57

Table A.11. Detailed results for application log trace sequences.

%L L(C, S) L :R |R| |C| s / v / h / m c>3 c
M c+

3zap-0

CS 56.32 2339741 0.41 37048 11852 11852 / 0 / 0 / 0 0.94 5 2325
CV 55.14 2290523 0.40 35270 11162 10581 / 581 / 0 / 0 0.93 5 2325
CH 47.84 1987311 0.35 26773 8371 3459 / 0 / 4912 / 0 0.97 8 2325
CV+H 47.40 1969139 0.34 26261 8220 3499 / 419 / 4302 / 0 0.97 8 2325
CF 46.99 1952299 0.34 25982 8012 3499 / 91 / 4154 / 268 0.96 8 2325

3zap-1

CS 54.21 1544589 0.40 25280 8604 8604 / 0 / 0 / 0 0.96 5 4653
CV 53.21 1516077 0.41 24984 7927 7471 / 456 / 0 / 0 0.95 5 4653
CH 48.41 1379470 0.35 19980 6326 3492 / 0 / 2834 / 0 0.97 8 4653
CV+H 48.10 1370402 0.36 19969 6118 3286 / 329 / 2503 / 0 0.98 8 4653
CF 47.49 1353263 0.36 19662 5856 3181 / 83 / 2368 / 224 0.97 7 4653

bugzilla-0

CS 48.58 147374 0.12 773 262 262 / 0 / 0 / 0 0.98 7 1652
CV 48.56 147321 0.12 773 260 259 / 1 / 0 / 0 0.98 7 1652
CH 42.43 128712 0.12 722 203 133 / 0 / 70 / 0 0.98 9 1652
CV+H 42.39 128599 0.12 711 203 130 / 1 / 72 / 0 0.98 9 1652
CF 42.41 128656 0.13 734 197 124 / 1 / 70 / 2 0.98 9 1652

bugzilla-1

CS 46.05 127230 0.16 1005 411 411 / 0 / 0 / 0 0.97 6 869
CV 45.68 126202 0.16 989 385 361 / 24 / 0 / 0 0.96 6 869
CH 43.56 120362 0.15 889 331 208 / 0 / 123 / 0 0.99 8 869
CV+H 43.48 120143 0.15 868 336 216 / 8 / 112 / 0 0.99 8 869
CF 43.32 119698 0.15 863 327 213 / 3 / 99 / 12 0.98 8 869

samba

CS 28.42 147889 0.14 956 429 429 / 0 / 0 / 0 0.94 10 2657
CV 28.42 147889 0.14 956 429 429 / 0 / 0 / 0 0.94 10 2657
CH 28.37 147638 0.13 937 426 409 / 0 / 17 / 0 0.95 10 2657
CV+H 28.37 147638 0.13 937 426 409 / 0 / 17 / 0 0.95 10 2657
CF 28.37 147638 0.13 937 426 409 / 0 / 17 / 0 0.95 10 2657

58 Galbrun et al.

Table A.12. Detailed results for sacha.

%L L(C, S) L :R |R| |C| s / v / h / m c>3 c
M c+

sacha-abs-G1

CS 86.24 1714241 0.44 27295 13134 13134 / 0 / 0 / 0 0.37 3 10
CV 86.24 1714241 0.44 27295 13134 13134 / 0 / 0 / 0 0.37 3 10
CH 84.19 1673502 0.44 26754 11327 9321 / 0 / 2006 / 0 0.47 3 28
CV+H 84.19 1673502 0.44 26754 11327 9321 / 0 / 2006 / 0 0.47 3 28
CF 84.19 1673502 0.44 26754 11327 9321 / 0 / 2006 / 0 0.47 3 28

sacha-abs-G15

CS 74.34 1169517 0.37 17586 9602 9602 / 0 / 0 / 0 0.71 4 304
CV 74.34 1169511 0.37 17583 9602 9601 / 1 / 0 / 0 0.71 4 304
CH 68.64 1079861 0.35 15605 6953 3957 / 0 / 2996 / 0 0.82 6 582
CV+H 68.64 1079861 0.35 15605 6953 3957 / 0 / 2996 / 0 0.82 6 582
CF 68.64 1079861 0.35 15605 6953 3957 / 0 / 2996 / 0 0.82 6 582

sacha-abs-G30

CS 70.42 946325 0.32 12647 7969 7969 / 0 / 0 / 0 0.72 4 328
CV 70.42 946328 0.32 12638 7971 7969 / 2 / 0 / 0 0.72 4 328
CH 64.22 862899 0.30 11085 5513 2952 / 0 / 2561 / 0 0.84 6 468
CV+H 64.22 862899 0.30 11085 5513 2952 / 0 / 2561 / 0 0.84 6 468
CF 64.22 862899 0.30 11085 5513 2952 / 0 / 2561 / 0 0.84 6 468

sacha-abs-G60

CS 64.61 675374 0.34 9977 5100 5100 / 0 / 0 / 0 0.75 4 1150
CV 64.62 675488 0.34 9971 5101 5098 / 3 / 0 / 0 0.75 4 1150
CH 60.03 627462 0.31 8477 3746 2197 / 0 / 1549 / 0 0.88 6 1150
CV+H 60.03 627460 0.31 8460 3754 2207 / 3 / 1544 / 0 0.88 6 1150
CF 60.11 628321 0.31 8600 3746 2206 / 2 / 1537 / 1 0.88 6 1150

sacha-abs-G720

CS 30.45 137162 0.14 958 384 384 / 0 / 0 / 0 0.99 14 3540
CV 30.45 137162 0.14 958 384 384 / 0 / 0 / 0 0.99 14 3540
CH 30.23 136169 0.12 863 382 351 / 0 / 31 / 0 1.00 15 3540
CV+H 30.23 136169 0.12 863 382 351 / 0 / 31 / 0 1.00 15 3540
CF 30.23 136169 0.12 863 382 351 / 0 / 31 / 0 1.00 15 3540

sacha-abs-G1440

CS 24.87 89270 0.07 343 208 208 / 0 / 0 / 0 1.00 24 2260
CV 24.87 89270 0.07 343 208 208 / 0 / 0 / 0 1.00 24 2260
CH 24.85 89199 0.07 332 209 205 / 0 / 4 / 0 1.00 24 2260
CV+H 24.85 89199 0.07 332 209 205 / 0 / 4 / 0 1.00 24 2260
CF 24.85 89199 0.07 332 209 205 / 0 / 4 / 0 1.00 24 2260

sacha-rel

CS 56.31 406137 0.29 5624 2446 2446 / 0 / 0 / 0 0.93 5 4629
CV 56.28 405895 0.29 5602 2445 2442 / 3 / 0 / 0 0.93 5 4629
CH 55.94 403458 0.29 5611 2231 1951 / 0 / 280 / 0 0.93 5 4629
CV+H 55.91 403244 0.29 5613 2231 1955 / 3 / 273 / 0 0.93 5 4629
CF 55.91 403261 0.29 5616 2228 1954 / 1 / 271 / 2 0.93 5 4629

Mining Periodic Patterns with a MDL Criterion 59

Table A.13. Detailed results for ubiqLog-abs sequences (1/5).

%L L(C, S) L :R |R| |C| s / v / h / m c>3 c
M c+

25-F

CS 85.52 5643 0.57 193 41 41 / 0 / 0 / 0 0.88 5 17
CV 85.52 5643 0.57 193 41 41 / 0 / 0 / 0 0.88 5 17
CH 84.33 5564 0.58 194 36 31 / 0 / 5 / 0 0.86 5 17
CV+H 84.33 5564 0.58 194 36 31 / 0 / 5 / 0 0.86 5 17
CF 84.33 5564 0.58 194 36 31 / 0 / 5 / 0 0.86 5 17

10-M

CS 73.17 16908 0.33 297 147 147 / 0 / 0 / 0 0.73 5 25
CV 73.17 16908 0.33 297 147 147 / 0 / 0 / 0 0.73 5 25
CH 68.92 15927 0.37 315 118 66 / 0 / 52 / 0 0.85 6 30
CV+H 68.92 15927 0.37 315 118 66 / 0 / 52 / 0 0.85 6 30
CF 68.92 15927 0.37 315 118 66 / 0 / 52 / 0 0.85 6 30

9-M

CS 55.01 15052 0.60 445 84 84 / 0 / 0 / 0 0.68 5 62
CV 55.01 15052 0.60 445 84 84 / 0 / 0 / 0 0.68 5 62
CH 52.50 14366 0.60 425 65 38 / 0 / 27 / 0 0.68 5 124
CV+H 52.50 14366 0.60 425 65 38 / 0 / 27 / 0 0.68 5 124
CF 52.50 14366 0.60 425 65 38 / 0 / 27 / 0 0.68 5 124

21-F

CS 80.87 98556 0.55 2394 707 707 / 0 / 0 / 0 0.43 3 80
CV 80.87 98556 0.55 2394 707 707 / 0 / 0 / 0 0.43 3 80
CH 76.80 93601 0.56 2289 545 363 / 0 / 182 / 0 0.56 4 80
CV+H 76.80 93601 0.56 2289 545 363 / 0 / 182 / 0 0.56 4 80
CF 76.80 93601 0.56 2289 545 363 / 0 / 182 / 0 0.56 4 80

23-F

CS 55.91 127122 0.31 1357 737 737 / 0 / 0 / 0 0.67 4 85
CV 55.91 127122 0.31 1357 737 737 / 0 / 0 / 0 0.67 4 85
CH 38.77 88153 0.32 981 393 147 / 0 / 246 / 0 0.85 9 510
CV+H 38.77 88153 0.32 981 393 147 / 0 / 246 / 0 0.85 9 510
CF 38.77 88153 0.32 981 393 147 / 0 / 246 / 0 0.85 9 510

14-F

CS 51.23 102348 0.40 1857 821 821 / 0 / 0 / 0 0.73 4 120
CV 51.23 102348 0.40 1857 821 821 / 0 / 0 / 0 0.73 4 120
CH 49.05 97984 0.39 1766 682 507 / 0 / 175 / 0 0.75 5 240
CV+H 49.05 97984 0.39 1766 682 507 / 0 / 175 / 0 0.75 5 240
CF 49.09 98070 0.39 1766 682 507 / 0 / 174 / 1 0.75 5 240

1-M

CS 75.39 161808 0.44 3310 1397 1397 / 0 / 0 / 0 0.76 4 36
CV 75.39 161808 0.44 3310 1397 1397 / 0 / 0 / 0 0.76 4 36
CH 61.34 131647 0.42 2520 820 379 / 0 / 441 / 0 0.80 8 108
CV+H 61.34 131647 0.42 2520 820 379 / 0 / 441 / 0 0.80 8 108
CF 61.34 131647 0.42 2520 820 379 / 0 / 441 / 0 0.80 8 108

60 Galbrun et al.

Table A.14. Detailed results for ubiqLog-abs sequences (2/5).

%L L(C, S) L :R |R| |C| s / v / h / m c>3 c
M c+

30-F

CS 73.52 172191 0.40 3305 1497 1497 / 0 / 0 / 0 0.75 4 54
CV 73.52 172185 0.40 3307 1492 1487 / 5 / 0 / 0 0.75 4 54
CH 54.91 128612 0.36 2101 796 261 / 0 / 535 / 0 0.79 12 138
CV+H 54.91 128612 0.36 2101 796 261 / 0 / 535 / 0 0.79 12 138
CF 54.91 128612 0.36 2101 796 261 / 0 / 535 / 0 0.79 12 138

13-F

CS 76.38 213301 0.44 4297 1651 1651 / 0 / 0 / 0 0.72 4 59
CV 76.38 213301 0.44 4297 1651 1651 / 0 / 0 / 0 0.72 4 59
CH 71.40 199390 0.43 3860 1323 818 / 0 / 505 / 0 0.80 6 59
CV+H 71.40 199390 0.43 3860 1323 818 / 0 / 505 / 0 0.80 6 59
CF 71.43 199456 0.42 3847 1319 812 / 0 / 506 / 1 0.81 6 59

20-M

CS 70.67 240215 0.44 4568 1779 1779 / 0 / 0 / 0 0.75 4 69
CV 70.65 240145 0.44 4585 1771 1768 / 3 / 0 / 0 0.75 4 69
CH 64.62 219625 0.44 4195 1332 824 / 0 / 508 / 0 0.80 6 128
CV+H 64.62 219625 0.44 4195 1332 824 / 0 / 508 / 0 0.80 6 128
CF 64.60 219562 0.44 4186 1334 826 / 0 / 507 / 1 0.80 6 128

29-F

CS 74.64 262784 0.36 4299 2389 2389 / 0 / 0 / 0 0.73 4 24
CV 74.64 262784 0.36 4299 2389 2389 / 0 / 0 / 0 0.73 4 24
CH 50.60 178132 0.37 2919 970 358 / 0 / 612 / 0 0.81 12 120
CV+H 50.60 178132 0.37 2919 970 358 / 0 / 612 / 0 0.81 12 120
CF 50.64 178260 0.37 2932 963 349 / 0 / 614 / 0 0.82 12 120

8-M

CS 73.77 269623 0.35 4426 2405 2405 / 0 / 0 / 0 0.83 4 43
CV 73.81 269774 0.35 4445 2402 2398 / 4 / 0 / 0 0.83 4 43
CH 57.18 208993 0.33 3142 1318 398 / 0 / 920 / 0 0.88 8 120
CV+H 57.18 208993 0.33 3142 1318 398 / 0 / 920 / 0 0.88 8 120
CF 57.18 208993 0.33 3142 1318 398 / 0 / 920 / 0 0.88 8 120

6-M

CS 70.27 268896 0.39 4553 2223 2223 / 0 / 0 / 0 0.71 4 46
CV 70.30 269015 0.39 4604 2209 2206 / 3 / 0 / 0 0.71 4 46
CH 54.14 207147 0.39 3397 1205 474 / 0 / 731 / 0 0.78 8 222
CV+H 54.14 207147 0.39 3397 1205 474 / 0 / 731 / 0 0.78 8 222
CF 54.17 207261 0.39 3406 1204 473 / 0 / 731 / 0 0.78 8 222

15-F

CS 64.73 259438 0.29 3497 1919 1919 / 0 / 0 / 0 0.89 5 68
CV 64.81 259751 0.29 3516 1924 1920 / 4 / 0 / 0 0.88 5 68
CH 44.53 178482 0.29 2390 948 411 / 0 / 537 / 0 0.86 12 325
CV+H 44.53 178482 0.29 2390 948 411 / 0 / 537 / 0 0.86 12 325
CF 44.55 178552 0.29 2376 949 411 / 0 / 537 / 1 0.86 12 325

Mining Periodic Patterns with a MDL Criterion 61

Table A.15. Detailed results for ubiqLog-abs sequences (3/5).

%L L(C, S) L :R |R| |C| s / v / h / m c>3 c
M c+

2-F

CS 66.44 322518 0.32 4061 2325 2325 / 0 / 0 / 0 0.80 5 60
CV 66.40 322299 0.32 4054 2327 2321 / 6 / 0 / 0 0.80 5 60
CH 46.42 225305 0.34 2928 1135 458 / 0 / 677 / 0 0.81 8 315
CV+H 46.42 225305 0.34 2928 1135 458 / 0 / 677 / 0 0.81 8 315
CF 46.42 225345 0.34 2931 1134 457 / 0 / 676 / 1 0.81 8 315

26-F

CS 63.59 309454 0.27 3871 2206 2206 / 0 / 0 / 0 0.87 5 73
CV 63.59 309454 0.27 3871 2206 2206 / 0 / 0 / 0 0.87 5 73
CH 40.65 197816 0.26 2317 982 296 / 0 / 686 / 0 0.87 15 336
CV+H 40.65 197816 0.26 2317 982 296 / 0 / 686 / 0 0.87 15 336
CF 40.65 197816 0.26 2317 982 296 / 0 / 686 / 0 0.87 15 336

12-M

CS 70.66 373721 0.34 5604 3068 3068 / 0 / 0 / 0 0.71 4 58
CV 70.65 373711 0.34 5603 3068 3067 / 1 / 0 / 0 0.71 4 58
CH 51.75 273712 0.36 4228 1537 702 / 0 / 835 / 0 0.78 7 215
CV+H 51.76 273753 0.36 4225 1542 705 / 1 / 836 / 0 0.78 7 215
CF 51.75 273725 0.36 4224 1542 705 / 1 / 835 / 1 0.78 7 215

17-F

CS 68.54 359182 0.34 5561 3114 3114 / 0 / 0 / 0 0.80 5 40
CV 68.56 359324 0.34 5564 3120 3112 / 8 / 0 / 0 0.80 5 40
CH 49.51 259470 0.30 3427 1605 470 / 0 / 1135 / 0 0.83 12 240
CV+H 49.51 259470 0.30 3427 1605 470 / 0 / 1135 / 0 0.83 12 240
CF 49.52 259531 0.30 3450 1602 477 / 0 / 1122 / 3 0.82 12 240

27-F

CS 78.26 438767 0.40 7516 4194 4194 / 0 / 0 / 0 0.61 4 29
CV 78.06 437645 0.40 7450 4162 4134 / 28 / 0 / 0 0.61 4 29
CH 58.13 325913 0.42 5832 1787 731 / 0 / 1056 / 0 0.73 6 174
CV+H 58.13 325926 0.42 5846 1782 726 / 1 / 1055 / 0 0.73 6 174
CF 58.10 325774 0.42 5845 1789 732 / 0 / 1053 / 4 0.73 6 174

5-F

CS 62.19 478816 0.32 5016 3069 3069 / 0 / 0 / 0 0.74 4 88
CV 62.19 478816 0.32 5016 3069 3069 / 0 / 0 / 0 0.74 4 88
CH 56.86 437799 0.32 4608 2307 1265 / 0 / 1042 / 0 0.86 6 176
CV+H 56.86 437799 0.32 4608 2307 1265 / 0 / 1042 / 0 0.86 6 176
CF 56.86 437799 0.32 4608 2307 1265 / 0 / 1042 / 0 0.86 6 176

16-F

CS 67.74 413913 0.30 5687 3739 3739 / 0 / 0 / 0 0.88 5 38
CV 67.74 413913 0.30 5687 3739 3739 / 0 / 0 / 0 0.88 5 38
CH 47.69 291440 0.29 3654 1798 770 / 0 / 1028 / 0 0.86 10 168
CV+H 47.69 291440 0.29 3654 1798 770 / 0 / 1028 / 0 0.86 10 168
CF 47.69 291415 0.29 3658 1798 771 / 0 / 1027 / 0 0.85 10 168

62 Galbrun et al.

Table A.16. Detailed results for ubiqLog-abs sequences (4/5).

%L L(C, S) L :R |R| |C| s / v / h / m c>3 c
M c+

11-F

CS 66.37 508461 0.31 7047 4382 4382 / 0 / 0 / 0 0.82 4 96
CV 66.41 508739 0.31 7095 4379 4373 / 6 / 0 / 0 0.82 4 96
CH 51.53 394797 0.29 5016 2615 1279 / 0 / 1336 / 0 0.83 6 294
CV+H 51.56 395014 0.29 5057 2610 1270 / 1 / 1339 / 0 0.83 6 294
CF 51.58 395154 0.29 5062 2613 1282 / 0 / 1329 / 2 0.82 6 294

31-F

CS 40.18 412820 0.26 3943 2402 2402 / 0 / 0 / 0 0.81 5 388
CV 40.17 412719 0.27 3948 2396 2392 / 4 / 0 / 0 0.81 5 388
CH 31.89 327613 0.27 3101 1474 555 / 0 / 919 / 0 0.87 8 2328
CV+H 31.89 327630 0.27 3106 1471 551 / 4 / 916 / 0 0.87 8 2328
CF 31.88 327552 0.27 3106 1470 551 / 2 / 916 / 1 0.87 8 2328

28-F

CS 58.81 549595 0.34 8104 4261 4261 / 0 / 0 / 0 0.74 4 177
CV 58.81 549623 0.34 8113 4255 4250 / 5 / 0 / 0 0.74 4 177
CH 56.57 528707 0.34 7655 3542 2609 / 0 / 933 / 0 0.81 6 177
CV+H 56.57 528715 0.34 7655 3543 2612 / 1 / 930 / 0 0.81 6 177
CF 56.57 528684 0.34 7654 3540 2607 / 0 / 932 / 1 0.81 6 177

7-F

CS 60.62 555786 0.28 6842 3538 3538 / 0 / 0 / 0 0.79 5 149
CV 60.62 555782 0.28 6860 3530 3526 / 4 / 0 / 0 0.79 5 149
CH 46.32 424663 0.28 5208 2195 1118 / 0 / 1077 / 0 0.85 8 447
CV+H 46.32 424663 0.28 5208 2195 1118 / 0 / 1077 / 0 0.85 8 447
CF 46.32 424689 0.28 5210 2194 1116 / 0 / 1077 / 1 0.84 8 447

35-F

CS 63.97 837346 0.32 11397 6857 6857 / 0 / 0 / 0 0.79 5 97
CV 64.02 838065 0.32 11482 6818 6761 / 57 / 0 / 0 0.79 5 97
CH 50.80 664994 0.33 9268 3777 1521 / 0 / 2256 / 0 0.87 8 356
CV+H 50.79 664905 0.33 9249 3781 1526 / 3 / 2252 / 0 0.87 8 356
CF 50.79 664865 0.33 9206 3788 1542 / 2 / 2233 / 11 0.87 8 356

22-M

CS 65.78 842835 0.30 11427 7211 7211 / 0 / 0 / 0 0.93 5 66
CV 65.82 843367 0.30 11330 7211 7193 / 18 / 0 / 0 0.93 5 66
CH 44.82 574219 0.29 7389 3196 1561 / 0 / 1635 / 0 0.91 8 390
CV+H 44.81 574166 0.29 7390 3194 1558 / 1 / 1635 / 0 0.91 8 390
CF 44.78 573759 0.29 7430 3182 1569 / 1 / 1610 / 2 0.91 8 390

24-F

CS 53.69 841052 0.22 8285 5313 5313 / 0 / 0 / 0 0.89 5 142
CV 53.71 841242 0.23 8315 5312 5306 / 6 / 0 / 0 0.89 5 142
CH 35.69 558998 0.24 5796 2647 1308 / 0 / 1339 / 0 0.88 9 546
CV+H 35.69 558998 0.24 5796 2647 1308 / 0 / 1339 / 0 0.88 9 546
CF 35.73 559639 0.24 5825 2647 1309 / 0 / 1338 / 0 0.88 9 546

Mining Periodic Patterns with a MDL Criterion 63

Table A.17. Detailed results for ubiqLog-abs sequences (5/5).

%L L(C, S) L :R |R| |C| s / v / h / m c>3 c
M c+

33-F

CS 59.41 1096442 0.27 12832 7861 7861 / 0 / 0 / 0 0.85 5 94
CV 59.41 1096403 0.27 12832 7862 7861 / 1 / 0 / 0 0.85 5 94
CH 37.54 692736 0.32 9270 3213 1683 / 0 / 1530 / 0 0.81 6 581
CV+H 37.54 692736 0.32 9270 3213 1683 / 0 / 1530 / 0 0.81 6 581
CF 37.54 692736 0.32 9270 3213 1683 / 0 / 1530 / 0 0.81 6 581

19-F

CS 47.34 1217567 0.23 11314 6620 6620 / 0 / 0 / 0 0.85 6 150
CV 47.33 1217493 0.23 11314 6617 6615 / 2 / 0 / 0 0.85 6 150
CH 30.76 791271 0.26 7995 3211 1644 / 0 / 1567 / 0 0.83 8 1043
CV+H 30.76 791230 0.26 7995 3210 1643 / 1 / 1566 / 0 0.83 8 1043
CF 30.76 791263 0.26 7997 3208 1641 / 1 / 1565 / 1 0.83 8 1043

18-F

CS 41.62 1553796 0.23 14769 9468 9468 / 0 / 0 / 0 0.85 5 180
CV 41.62 1553727 0.23 14767 9457 9445 / 12 / 0 / 0 0.85 5 180
CH 30.08 1122920 0.26 11580 5086 3113 / 0 / 1973 / 0 0.85 6 1260
CV+H 30.08 1122886 0.26 11586 5082 3107 / 2 / 1973 / 0 0.85 6 1260
CF 30.06 1122253 0.26 11589 5073 3102 / 0 / 1967 / 4 0.85 6 1260

64 Galbrun et al.

Table A.18. Detailed results for ubiqLog-rel sequences (1/5).

%L L(C, S) L :R |R| |C| s / v / h / m c>3 c
M c+

25-F

CS 46.22 1800 0.24 34 9 9 / 0 / 0 / 0 1.00 12 211
CV 46.22 1800 0.24 34 9 9 / 0 / 0 / 0 1.00 12 211
CH 46.22 1800 0.24 34 9 9 / 0 / 0 / 0 1.00 12 211
CV+H 46.22 1800 0.24 34 9 9 / 0 / 0 / 0 1.00 12 211
CF 46.22 1800 0.24 34 9 9 / 0 / 0 / 0 1.00 12 211

10-M

CS 39.04 4255 0.12 34 15 15 / 0 / 0 / 0 1.00 8 334
CV 39.04 4255 0.12 34 15 15 / 0 / 0 / 0 1.00 8 334
CH 39.04 4255 0.12 34 15 15 / 0 / 0 / 0 1.00 8 334
CV+H 39.04 4255 0.12 34 15 15 / 0 / 0 / 0 1.00 8 334
CF 39.04 4255 0.12 34 15 15 / 0 / 0 / 0 1.00 8 334

9-M

CS 48.02 6095 0.40 161 42 42 / 0 / 0 / 0 0.98 7 178
CV 48.02 6095 0.40 161 42 42 / 0 / 0 / 0 0.98 7 178
CH 47.91 6081 0.40 159 41 39 / 0 / 2 / 0 0.98 8 178
CV+H 47.91 6081 0.40 159 41 39 / 0 / 2 / 0 0.98 8 178
CF 47.91 6081 0.40 159 41 39 / 0 / 2 / 0 0.98 8 178

21-F

CS 64.94 46336 0.45 1149 329 329 / 0 / 0 / 0 0.93 5 158
CV 64.94 46336 0.45 1149 329 329 / 0 / 0 / 0 0.93 5 158
CH 63.48 45295 0.41 1031 321 264 / 0 / 57 / 0 0.94 6 158
CV+H 63.48 45295 0.41 1031 321 264 / 0 / 57 / 0 0.94 6 158
CF 63.48 45295 0.41 1031 321 264 / 0 / 57 / 0 0.94 6 158

23-F

CS 38.47 32044 0.29 500 143 143 / 0 / 0 / 0 0.93 6 980
CV 38.47 32044 0.29 500 143 143 / 0 / 0 / 0 0.93 6 980
CH 36.21 30155 0.29 471 139 127 / 0 / 12 / 0 0.95 6 2940
CV+H 36.21 30155 0.29 471 139 127 / 0 / 12 / 0 0.95 6 2940
CF 36.21 30155 0.29 471 139 127 / 0 / 12 / 0 0.95 6 2940

14-F

CS 40.74 42719 0.31 711 180 180 / 0 / 0 / 0 0.99 7 594
CV 40.74 42719 0.31 711 180 180 / 0 / 0 / 0 0.99 7 594
CH 40.49 42460 0.30 677 180 164 / 0 / 16 / 0 1.00 8 594
CV+H 40.49 42460 0.30 677 180 164 / 0 / 16 / 0 1.00 8 594
CF 40.49 42460 0.30 677 180 164 / 0 / 16 / 0 1.00 8 594

1-M

CS 44.45 66206 0.41 1329 267 267 / 0 / 0 / 0 0.91 5 1620
CV 44.43 66166 0.41 1330 265 264 / 1 / 0 / 0 0.92 5 1620
CH 43.56 64871 0.40 1274 260 228 / 0 / 32 / 0 0.91 5 3240
CV+H 43.52 64824 0.40 1271 260 228 / 1 / 31 / 0 0.91 5 3240
CF 43.52 64824 0.40 1271 260 228 / 1 / 31 / 0 0.91 5 3240

Mining Periodic Patterns with a MDL Criterion 65

Table A.19. Detailed results for ubiqLog-rel sequences (2/5).

%L L(C, S) L :R |R| |C| s / v / h / m c>3 c
M c+

30-F

CS 45.39 68909 0.37 1274 332 332 / 0 / 0 / 0 0.92 5 1759
CV 45.31 68792 0.36 1264 332 331 / 1 / 0 / 0 0.92 5 1759
CH 44.48 67520 0.35 1189 305 238 / 0 / 67 / 0 0.93 6 1759
CV+H 44.45 67483 0.35 1194 302 237 / 1 / 64 / 0 0.93 6 1759
CF 44.45 67483 0.35 1194 302 237 / 1 / 64 / 0 0.93 6 1759

20-M

CS 49.55 96071 0.41 1934 456 456 / 0 / 0 / 0 0.99 6 2346
CV 49.58 96112 0.41 1937 455 454 / 1 / 0 / 0 0.99 6 2346
CH 49.06 95108 0.39 1836 450 403 / 0 / 47 / 0 1.00 6 2346
CV+H 49.08 95149 0.39 1839 449 401 / 1 / 47 / 0 1.00 6 2346
CF 49.08 95152 0.39 1841 448 400 / 0 / 47 / 1 1.00 6 2346

13-F

CS 52.75 100663 0.39 1981 531 531 / 0 / 0 / 0 0.98 5 2275
CV 52.75 100663 0.39 1981 531 531 / 0 / 0 / 0 0.98 5 2275
CH 52.09 99398 0.37 1849 499 416 / 0 / 83 / 0 0.99 6 2275
CV+H 52.09 99398 0.37 1849 499 416 / 0 / 83 / 0 0.99 6 2275
CF 52.09 99398 0.37 1849 499 416 / 0 / 83 / 0 0.99 6 2275

6-M

CS 45.93 92705 0.32 1463 514 514 / 0 / 0 / 0 0.83 5 1111
CV 45.93 92705 0.32 1463 514 514 / 0 / 0 / 0 0.83 5 1111
CH 43.29 87375 0.33 1392 475 409 / 0 / 66 / 0 0.87 5 2222
CV+H 43.29 87375 0.33 1392 475 409 / 0 / 66 / 0 0.87 5 2222
CF 43.29 87375 0.33 1392 475 409 / 0 / 66 / 0 0.87 5 2222

29-F

CS 35.04 72233 0.28 956 287 287 / 0 / 0 / 0 0.80 5 1655
CV 35.04 72233 0.28 956 287 287 / 0 / 0 / 0 0.80 5 1655
CH 31.22 64368 0.30 921 282 262 / 0 / 20 / 0 0.83 5 8275
CV+H 31.22 64368 0.30 921 282 262 / 0 / 20 / 0 0.83 5 8275
CF 31.22 64368 0.30 921 282 262 / 0 / 20 / 0 0.83 5 8275

8-M

CS 38.16 79350 0.31 1226 344 344 / 0 / 0 / 0 0.99 5 3375
CV 38.16 79350 0.31 1226 344 344 / 0 / 0 / 0 0.99 5 3375
CH 37.74 78475 0.29 1161 329 287 / 0 / 42 / 0 0.99 6 3375
CV+H 37.74 78475 0.29 1161 329 287 / 0 / 42 / 0 0.99 6 3375
CF 37.74 78475 0.29 1161 329 287 / 0 / 42 / 0 0.99 6 3375

15-F

CS 33.23 78369 0.29 1079 249 249 / 0 / 0 / 0 0.90 5 2163
CV 33.23 78369 0.29 1079 249 249 / 0 / 0 / 0 0.90 5 2163
CH 31.84 75091 0.29 1024 244 214 / 0 / 30 / 0 0.95 6 4326
CV+H 31.84 75091 0.29 1024 244 214 / 0 / 30 / 0 0.95 6 4326
CF 31.84 75091 0.29 1024 244 214 / 0 / 30 / 0 0.95 6 4326

66 Galbrun et al.

Table A.20. Detailed results for ubiqLog-rel sequences (3/5).

%L L(C, S) L :R |R| |C| s / v / h / m c>3 c
M c+

2-F

CS 44.31 110476 0.33 1749 584 584 / 0 / 0 / 0 0.76 5 1891
CV 44.31 110476 0.33 1749 584 584 / 0 / 0 / 0 0.76 5 1891
CH 41.61 103753 0.32 1616 552 469 / 0 / 83 / 0 0.82 5 5673
CV+H 41.61 103753 0.32 1616 552 469 / 0 / 83 / 0 0.82 5 5673
CF 41.61 103753 0.32 1616 552 469 / 0 / 83 / 0 0.82 5 5673

26-F

CS 26.05 61256 0.26 761 171 171 / 0 / 0 / 0 0.91 5 2975
CV 26.05 61256 0.26 761 171 171 / 0 / 0 / 0 0.91 5 2975
CH 25.91 60913 0.25 730 167 154 / 0 / 13 / 0 0.93 6 2975
CV+H 25.91 60913 0.25 730 167 154 / 0 / 13 / 0 0.93 6 2975
CF 25.91 60913 0.25 730 167 154 / 0 / 13 / 0 0.93 6 2975

17-F

CS 37.23 101886 0.32 1564 424 424 / 0 / 0 / 0 0.96 5 3415
CV 37.23 101886 0.32 1564 424 424 / 0 / 0 / 0 0.96 5 3415
CH 36.62 100223 0.30 1442 410 343 / 0 / 67 / 0 0.98 6 3415
CV+H 36.62 100223 0.30 1442 410 343 / 0 / 67 / 0 0.98 6 3415
CF 36.62 100223 0.30 1442 410 343 / 0 / 67 / 0 0.98 6 3415

27-F

CS 63.51 229552 0.34 3700 1781 1781 / 0 / 0 / 0 0.74 4 253
CV 63.49 229499 0.34 3700 1779 1778 / 1 / 0 / 0 0.74 4 253
CH 56.41 203920 0.38 3681 1416 1077 / 0 / 339 / 0 0.79 5 1030
CV+H 56.41 203901 0.38 3679 1420 1085 / 1 / 334 / 0 0.79 5 1030
CF 56.41 203901 0.38 3679 1420 1085 / 1 / 334 / 0 0.79 5 1030

12-M

CS 53.55 190797 0.27 2417 1139 1139 / 0 / 0 / 0 0.78 5 312
CV 53.55 190797 0.27 2417 1139 1139 / 0 / 0 / 0 0.78 5 312
CH 47.85 170502 0.29 2376 991 817 / 0 / 174 / 0 0.83 5 1560
CV+H 47.85 170502 0.29 2376 991 817 / 0 / 174 / 0 0.83 5 1560
CF 47.85 170502 0.29 2376 991 817 / 0 / 174 / 0 0.83 5 1560

5-F

CS 57.05 228234 0.41 4499 1343 1343 / 0 / 0 / 0 0.96 5 1232
CV 57.05 228234 0.41 4499 1343 1343 / 0 / 0 / 0 0.96 5 1232
CH 56.34 225400 0.39 4301 1259 1070 / 0 / 189 / 0 0.98 6 1232
CV+H 56.34 225400 0.39 4301 1259 1070 / 0 / 189 / 0 0.98 6 1232
CF 56.34 225400 0.39 4301 1259 1070 / 0 / 189 / 0 0.98 6 1232

16-F

CS 33.19 127122 0.28 1657 507 507 / 0 / 0 / 0 0.90 6 3610
CV 33.22 127244 0.28 1669 507 505 / 2 / 0 / 0 0.89 6 3610
CH 31.07 118994 0.29 1598 504 480 / 0 / 24 / 0 0.91 6 10830
CV+H 31.10 119116 0.29 1610 504 478 / 2 / 24 / 0 0.91 6 10830
CF 31.10 119116 0.29 1610 504 478 / 2 / 24 / 0 0.91 6 10830

Mining Periodic Patterns with a MDL Criterion 67

Table A.21. Detailed results for ubiqLog-rel sequences (4/5).

%L L(C, S) L :R |R| |C| s / v / h / m c>3 c
M c+

31-F

CS 28.01 128149 0.29 1661 439 439 / 0 / 0 / 0 0.98 7 5196
CV 28.01 128149 0.29 1661 439 439 / 0 / 0 / 0 0.98 7 5196
CH 27.52 125919 0.29 1597 433 396 / 0 / 37 / 0 0.98 8 10392
CV+H 27.52 125919 0.29 1597 433 396 / 0 / 37 / 0 0.98 8 10392
CF 27.52 125919 0.29 1597 433 396 / 0 / 37 / 0 0.98 8 10392

11-F

CS 45.81 227300 0.28 3001 1186 1186 / 0 / 0 / 0 0.84 5 1409
CV 45.81 227300 0.28 3001 1186 1186 / 0 / 0 / 0 0.84 5 1409
CH 44.05 218542 0.28 2924 1074 915 / 0 / 159 / 0 0.89 6 2816
CV+H 44.05 218542 0.28 2924 1074 915 / 0 / 159 / 0 0.89 6 2816
CF 44.05 218542 0.28 2924 1074 915 / 0 / 159 / 0 0.89 6 2816

35-F

CS 38.44 285802 0.24 3039 1310 1310 / 0 / 0 / 0 0.92 6 6388
CV 38.44 285831 0.24 3046 1307 1305 / 2 / 0 / 0 0.92 6 6388
CH 37.45 278445 0.23 2892 1190 1022 / 0 / 168 / 0 0.93 6 6388
CV+H 37.45 278449 0.23 2894 1188 1018 / 2 / 168 / 0 0.93 6 6388
CF 37.45 278449 0.23 2894 1188 1018 / 2 / 168 / 0 0.93 6 6388

28-F

CS 54.35 425270 0.30 5810 2537 2537 / 0 / 0 / 0 0.88 5 998
CV 54.35 425270 0.30 5810 2537 2537 / 0 / 0 / 0 0.88 5 998
CH 53.92 421935 0.30 5689 2320 2012 / 0 / 308 / 0 0.90 5 998
CV+H 53.92 421935 0.30 5689 2320 2012 / 0 / 308 / 0 0.90 5 998
CF 53.92 421935 0.30 5689 2320 2012 / 0 / 308 / 0 0.90 5 998

7-F

CS 36.23 272826 0.25 3002 1266 1266 / 0 / 0 / 0 0.88 5 1511
CV 36.23 272826 0.25 3002 1266 1266 / 0 / 0 / 0 0.88 5 1511
CH 35.27 265532 0.24 2876 1213 1084 / 0 / 129 / 0 0.89 6 2738
CV+H 35.27 265532 0.24 2876 1213 1084 / 0 / 129 / 0 0.89 6 2738
CF 35.27 265532 0.24 2876 1213 1084 / 0 / 129 / 0 0.89 6 2738

22-M

CS 26.77 233065 0.22 2225 926 926 / 0 / 0 / 0 0.76 5 3860
CV 26.77 233065 0.22 2225 926 926 / 0 / 0 / 0 0.76 5 3860
CH 26.15 227630 0.22 2214 860 766 / 0 / 94 / 0 0.81 5 7720
CV+H 26.15 227630 0.22 2214 860 766 / 0 / 94 / 0 0.81 5 7720
CF 26.15 227630 0.22 2214 860 766 / 0 / 94 / 0 0.81 5 7720

24-F

CS 31.22 311878 0.21 2781 1113 1113 / 0 / 0 / 0 0.86 5 7060
CV 31.22 311812 0.21 2761 1119 1117 / 2 / 0 / 0 0.86 5 7060
CH 28.51 284786 0.22 2696 1086 1021 / 0 / 65 / 0 0.88 6 35300
CV+H 28.51 284736 0.22 2688 1088 1021 / 2 / 65 / 0 0.88 6 35300
CF 28.51 284736 0.22 2688 1088 1021 / 2 / 65 / 0 0.88 6 35300

68 Galbrun et al.

Table A.22. Detailed results for ubiqLog-rel sequences (5/5).

%L L(C, S) L :R |R| |C| s / v / h / m c>3 c
M c+

33-F

CS 33.75 427496 0.28 4911 1801 1801 / 0 / 0 / 0 0.72 4 6620
CV 33.74 427439 0.28 4912 1799 1798 / 1 / 0 / 0 0.72 4 6620
CH 31.40 397794 0.29 4720 1685 1504 / 0 / 181 / 0 0.78 5 26476
CV+H 31.39 397687 0.29 4715 1683 1499 / 1 / 183 / 0 0.78 5 26476
CF 31.39 397687 0.29 4715 1683 1499 / 1 / 183 / 0 0.78 5 26476

19-F

CS 33.32 500108 0.25 5101 1726 1726 / 0 / 0 / 0 0.72 4 8500
CV 33.32 500108 0.25 5101 1726 1726 / 0 / 0 / 0 0.72 4 8500
CH 30.41 456446 0.26 4864 1564 1313 / 0 / 251 / 0 0.79 5 34000
CV+H 30.41 456446 0.26 4864 1564 1313 / 0 / 251 / 0 0.79 5 34000
CF 30.41 456446 0.26 4864 1564 1313 / 0 / 251 / 0 0.79 5 34000

18-F

CS 30.75 677622 0.26 6767 2567 2567 / 0 / 0 / 0 0.70 4 4417
CV 30.75 677622 0.26 6767 2567 2567 / 0 / 0 / 0 0.70 4 4417
CH 28.60 630330 0.27 6659 2365 2083 / 0 / 282 / 0 0.75 5 16292
CV+H 28.60 630330 0.27 6659 2365 2083 / 0 / 282 / 0 0.75 5 16292
CF 28.60 630330 0.27 6659 2365 2083 / 0 / 282 / 0 0.75 5 16292

Mining Periodic Patterns with a MDL Criterion 69

Fig.A.24. Compression ratios for 3zap, bugzilla and samba sequences.

0 20 40 60 80 100
%L

samba

bugzilla-1

bugzilla-0

3zap-1

3zap-0

CS
CV
CH
CV+H

CF

Fig.A.25. Compression ratios for sacha sequences with various time granularities.

0 20 40 60 80 100
%L

rel
G1440

G720
G60
G30
G15

G1

CS
CF

70 Galbrun et al.

Fig.A.26. Compression ratios for the sequences from the ubiqLog-abs dataset.

0 20 40 60 80 100
%L

18-F
19-F
33-F
24-F
22-M
35-F
7-F

28-F
31-F
11-F
16-F
5-F

27-F
17-F
12-M
26-F
2-F

15-F
6-M
8-M

29-F
20-M
13-F
30-F
1-M

14-F
23-F
21-F
9-M

10-M
25-F

CS
CF

Fig.A.27. Compression ratios for the sequences from the ubiqLog-rel dataset.

0 20 40 60 80 100
%L

18-F
19-F
33-F
24-F
22-M

7-F
28-F
35-F
11-F
31-F
16-F
5-F

12-M
27-F
17-F
26-F
2-F

15-F
8-M

29-F
6-M

13-F
20-M
30-F
1-M

14-F
23-F
21-F
9-M

10-M
25-F

CS
CF

Mining Periodic Patterns with a MDL Criterion 71

Table A.23. Example patterns from sacha sequences with different time granularities.

τ T
∑
|E| |occs|

sacha-abs-G1

a) 2017-09-10 12:09 {r= 7, p= 1 d}
(
[Sleep – 6 h 36 – Sleep] 28 28

– 0 min – [Childcare – 17 h 24 – Childcare]
)

b) 2011-12-12 17:07 {r= 3, p= 1 d 2 min}
(
Work] – 0 min – [Walk – 6 min – Walk] 13 21

– 0 min – [Subway – 17 min – Subway]
– 0 min – [Walk – 11 min – Walk]

)
c) 2012-03-06 07:40 {r= 4, p= 1 d}

(
[Subway – 0 min – Routines] – 50 min – [Consulting-E

)
7 12

d) 2011-11-29 08:51 {r= 3, p= 23 h 51}
(
[Walk – 9 min – [Subway – 17 min – Subway] 22 18

– 0 min – [Walk – 5 min – Walk] – 0 min – [Work
)

e) 2012-05-28 16:10 {r= 3, p= 1 d 3 min}
(
Consulting-E] – 0 min – [Bike – 15 min – Bike] 14 12

– 0 min – [Consulting
)

sacha-abs-G15

f) 2015-01-08 08:45 {r= 14, p= 7 d}
(
[Subway – 45 min – Subway] – 0 min – [Consulting-E

)
26 42

g) 2016-01-18 17:45 {r= 17, p= 1 d}
(
[Dinner – 30 min – Dinner]

)
54 34

h) 2014-12-18 00:15 {r= 76, p= 1 d}
(
[Sleep – 8 h 30 – Sleep]

)
517 152

i) 2012-03-29 16:45 {r= 7, p= 217 d}
(
Consulting-E] – 0 min – [Subway

)
12 14

sacha-abs-G60

j) 2011-11-27 21:30 {r= 968, p= 1 d}
(
[Sleep

)
2157 968

k) 2011-11-28 08:30 {r= 4, p= 11 h}
(
{r= 4, p= 7 d}

(
Walk

))
8 16

l) 2015-10-24 23:30 {r= 22, p= 1 d}
(
[VideoGame-B2 – 1 h – VideoGame-B2]

)
137 44

sacha-rel

m) 23200 {r= 3460, p= 3}
(
Childcare

)
5879 3460

n) 862 {r= 237, p= 12}
(
Sleep

)
775 237

o) 33140 {r= 3, p= 155}
(
{r= 4, p= 1}

(
Consulting-E

))
1 12

p) 7091 {r= 3, p= 14207}
(
Emacs – 445 – {r= 5, p= 2}

(
Coding

))
29 18

Table A.24. Example patterns from the 3zap-0 sequences.

τ T
∑
|E| |occs|

a) 36060 {r= 110, p= 2}
(
1561:X – 1 – 1561:E

)
80 220

b) 33415 {r= 20, p= 8}
(
1561:I – 1 – 1561:i – 1 – 1561:Ix – 1 – 1561:C – 1 – 53:C

)
63 100

c) 11680 {r= 3, p= 5116}
(
{r= 8, p= 1}

(
2429:U – 3 – 2429:u

))
40 48

d) 7908 {r= 3, p= 17729}
(
{r= 5, p= 2}

(
2400:E – 1 – 2400:X

)
74 60

– 91 – {r= 5, p= 2}
(
2400:E – 1 – 2400:X

))
e) 84347 {r= 3, p= 10563}

(
2399:U – 1 – {r= 4, p= 2}

(
2399:C – 1 – 2427:C

))
3 27

f) 85889 {r= 7, p= 248}
(
{r= 4, p= 2}

(
2400:X

)
– 7 – 2400:C

)
48 35

g) 104793 {r= 3, p= 17790}
(
{r= 5, p= 6}

(
2445:C

)
– 3 – {r= 4, p= 8}

(
2447:C

))
15 27

h) 126101 {r= 5, p= 253}
(
2426:C – 3 – 18:C – 3 – 2445:U – 1 – 2445:u – 1 – 2445:C 15 35

– 3 – 2447:C – 21 – 2447:C
)

i) 151772 {r= 4, p= 221}
(
6:C – 2 – {r= 4, p= 2}

(
2395:X

))
15 20

j) 12071 {r= 3, p= 2235}
(
{r= 4, p= 2}

(
2395:X – 1 – 2395:E

)
– 7 – {r= 4, p= 6}

(
2395:C

))
76 36

72 Galbrun et al.

List of Symbols

Ω event alphabet p. 4
α an event p. 4
S an event sequence p. 4
S(α) projection of sequence S on event α p. 4
|S| length of sequence S, number of timestamp–event pairs in S p. 4
tstart(S) smallest timestamp in S p. 4
tend(S) largest timestamp in S p. 4
∆(S) duration of sequence S, time spanned by S p. 4
C an event cycle p. 5
α cycle event p. 5
r cycle length p. 5
p cycle period p. 5
τ cycle starting point p. 5
E cycle shift corrections p. 5
∆(C) duration of cycle C, time spanned by C p. 5
σ(E) sum of the shift corrections in E p. 5
cover(C) cover of cycle C, set of timestamp–event pairs reconstructed from C p. 5
C a collection of cycles p. 6
residual(C, S) set of residuals, timestamp–event pairs of sequence S not covered by any cycle

in the collection of cycles C
p. 6

L cost, code length p. 6
P a periodic pattern p.10
T pattern tree p.10
BX a bock in a periodic pattern p.10
Γ (BX) ordered list of children of block BX p.10
dXi inter-block distance, time separating occurences of blocks BX(i−1) and BXi p.10
γL(X) left-most leaf descendant of block/node X p.11
shift(S, ts) function that shifts sequence S forward by ts p.13
occs∗(P) list of timestamp–event pairs reconstructed from the pattern tree of P prior

to correction, a.k.a. perfect occurences
p.13

occs(P) list of timestamp–event pairs reconstructed from the pattern tree of P after
correction, a.k.a. corrected occurences

p.13

ε(o) the cumulated time correction to be applied to timestamp–event pair o p.14
A the string representing the event sequence of a block/node p.14
∆∗(BX) time spanned by the entire cycle of block BX p.16
δ∗(BX) time spanned by a single repetition of block BX p.16
∆∗max(BX) maximum time span of the entire cycle of block BX p.17
δ∗max(BX) maximum time span of a repetition of block BX p.17
D collection of all the periods (except of the top block) and inter-block distances

in the pattern tree, as well as δ∗max of top block, if necessary
p.18

%L compression ratio, ratio of the sequence code length using the considered col-
lection of patterns vs. using an empty collection of patterns

p.30

R set of residuals p.34
L :R fraction of the code length spent on residuals p.34

	Mining Periodic Patterns with a MDL Criterion

