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Abstract. The outcome of interactions in many real-world systems can
be often explained by a hierarchy between the participants. Discovering
hierarchy from a given directed network can be formulated as follows:
partition vertices into levels such that, ideally, there are only forward
edges, that is, edges from upper levels to lower levels. In practice, the
ideal case is impossible, so instead we minimize some penalty function
on the backward edges. One practical option for such a penalty is agony,
where the penalty depends on the severity of the violation. In this paper
we extend the definition of agony to temporal networks. In this setup we
are given a directed network with time stamped edges, and we allow the
rank assignment to vary over time. We propose 2 strategies for control-
ling the variation of individual ranks. In our first variant, we penalize
the fluctuation of the rankings over time by adding a penalty directly
to the optimization function. In our second variant we allow the rank
change at most once. We show that the first variant can be solved ex-
actly in polynomial time while the second variant is NP-hard, and in
fact inapproximable. However, we develop an iterative method, where
we first fix the change point and optimize the ranks, and then fix the
ranks and optimize the change points, and reiterate until convergence.
We show empirically that the algorithms are reasonably fast in practice,
and that the obtained rankings are sensible.

1 Introduction

The outcome of interactions in many real-world systems can be often explained
by a hierarchy between the participants. Such rankings occur in diverse do-
mains, such as, hierarchies among athletes [3], animals [8, 14], social network
behaviour [11], and browsing behaviour [10].

Discovering a hierarchy in a directed network can be defined as follows: given
a directed graph G = (V,E), find an integer r(v), representing a rank of v, for
each vertex v ∈ V , such that ideally r(u) < r(v) for each edge (u, v) ∈ E. This is
possible only if G is a DAG, so in practice, we penalize each edge with a penalty
q(r(u), r(v)), and minimize the total penalty. One practical choice for a penalty
is agony [6, 15, 16], q(r(u), r(v)) = max(r(u)−r(v)+1, 0). If r(u) < r(v), an ideal
case, then the agony is 0. On the other hand, if r(u) = r(v), then we penalize
the edge by 1, and the penalty increases as the edge becomes more ’backward’.

http://arxiv.org/abs/1902.01873v1
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The major benefit of computing agony is that we can solve it in polynomial
time [6, 15, 16].

In this paper we extend the definition of agony to temporal networks: we are
given a directed network with time stamped edges3 and the idea is to allow the
rank assignment to vary over time; in such a case, the penalty of an edge with
a time stamp t depends only on the ranks of the adjacent vertices at time t.

We need to penalize or constrain the variation of the ranks, as otherwise
the optimization problem of discovering dynamic agony reduces to computing
the ranks over individual snapshots. In order to do so, we consider 2 variants.
In our first variant, we compute the fluctuation of the rankings over time, and
this fluctuation is added directly to the optimization function, multiplied by a
parameter λ. In our second variant we allow the rank to change at most once,
essentially dividing the time line of a single vertex into 2 segments.

We show that the first variant can be solved exactly in O
(

m2 logm
)

time.
On the other hand, we show that the second variant is NP-hard, and in fact
inapproximable. However, we develop a simple iterative method, where we first
fix the change points and optimize the ranks, and then fix the ranks and optimize
the change points, and reiterate until convergence. We show that the resulting
two subproblems can be solved exactly in O

(

m2 logm
)

time.

We show empirically that, despite the pessimistic theoretical running times,
the algorithms are reasonably fast in practice: we are able to compute the rank-
ings for a graph with over 350 000 edges in 5 minutes.

The remainder of the paper is organized as follows. We introduce the notation
and formalize the problem in Section 2. In Section 3 we review the technique for
solving static agony, and in Section 4 we will use this technique to solve the first
two variants of the dynamic agony. In Section 5, we present the iterative solution
for the last variant. Related work is given in Section 6. Section 7 is devoted to
experimental evaluation, and we conclude the paper with remarks in Section 8.
The proofs for non-trivial theorems are given in Appendix in supplementary
material.

2 Preliminaries and problem definition

We begin with establishing preliminary notation, and then continue by defining
the main problem.

The main input to our problem is a weighted temporal directed graph which
we will denote by G = (V,E), where V is the set of vertices and E is a set of
tuples of form e = (u, v, w, t), meaning an edge e from u to v at time t with a
weight w. We allow multiple edges to have the same time stamp, and we also
allow two vertices u and v to have multiple edges. If w is not provided we assume
that an edge has a weight of 1. To simplify the notation we will often write w(e)
to mean the weight of an edge e. Let T be the set of all time stamps.

3 An edge may have several time stamps.
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A rank assignment r : V × T → N is a function mapping a vertex and a time
stamp to an integer; the value r(u; t) represents the rank of a vertex u at a time
point t.

Our next step is to penalize backward edges in a ranking r. In order to do
so, consider an edge e = (u, v, w, t). We define the penalty as

p(e; r) = w ×max(0, r(u; t)− r(v; t) + 1) .

This penalty is equal to 0 whenever r(v; t) > r(u; t), if r(v; t) = r(u; t), then the
p(e; r) = w, and the penalty increases as the difference r(u; t)− r(v; t) increases.

We are now ready to define the cost of a ranking.

Definition 1. Assume an input graph G = (V,E) and a rank assignment r. We
define a score for r to be

q(r,G) =
∑

e∈E

p(e; r) .

Static ranking: Before defining the main optimization problems, let us first
consider the optimization problem where we do not allow the ranking to vary
over time.

Problem 1 (agony). Given a graph G = (V,E), an integer k, find a ranking r
minimizing q(r,G), such that 0 ≤ r(v; t) ≤ k − 1 and r(v; t) = r(v; s), for every
v ∈ V and t, s ∈ T .

Note that agony does not use any temporal information, in fact, the exact
optimization problem can be defined on a graph where we have stripped the edges
of their time stamps. This problem can be solved exactly in polynomial time,
as demonstrated by Tatti [16]. We should also point out that k is an optional
parameter, and the optimization problem makes sense even if we set k = ∞.

Dynamic ranking: We are now ready to define our main problems. The
main idea here is to allow the rank assignment to vary over time. However,
we should penalize or constrain the variation of a ranking. Here, we consider 2
variants for imposing such a penalty.

In order to define the first variant, we need a concept of fluctuation, which
is the sum of differences between the consecutive ranks of a given vertex.

Definition 2. Let r be a rank assignment. Assume that T , the set of all time
stamps, is ordered, T = t1, . . . , tℓ. The fluctuation of a rank for a single vertex
u is defined as

fluc(u; r) =

ℓ−1
∑

i=1

|r(u, ti+1)− r(u, ti)| .

Note that if r(u, t) is a constant for a fixed u, then fluc(u; r) = 0. We can now
define our first optimization problem.
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Problem 2 (fluc-agony). Given a graph G = (V,E), an integer k, and a
penalty parameter λ, find a rank assignment r minimizing

q(r,G) + λ
∑

v∈V

fluc(v; r) ,

such that 0 ≤ r(v; t) ≤ k − 1 for every v ∈ V and t ∈ T .

The parameter λ controls how much emphasis we would like to put in con-
straining fluc: If we set λ = 0, then the fluc term is completely ignored, and we
allow the rank to vary freely as a function of time. In fact, solving fluc-agony

reduces to taking snapshots of G at each time stamp in T , and applying agony

to these snapshots individually. On the other hand, if we set λ to be a very large
number, then this forces fluc(v; r) = 0, that is the ranking is constant over time.
This reduces fluc-agony to the static ranking problem, agony.

In our second variant, we limit how many times we allow the rank to change.
More specifically, we allow the rank to change only once.

Definition 3. We say that a rank assignment r is a rank segmentation if each
u changes its rank r(u; t) at most once. That is, there are functions r1(u), r2(u)
and τ(v) such that

r(u; t) =

{

r1(u), t < τ(u),

r2(u), t ≥ τ(u) .

This leads to the following optimization problem.

Problem 3 ( seg-agony). Given a graph G = (V,E) and an integer k, find a
rank segmentation r minimizing q(r;G) such that 0 ≤ r(v; t) ≤ k − 1 for every
v ∈ V and t ∈ T .

Note that the obvious extension of this problem is to allow rank to change ℓ
times, where ℓ > 1. However, in this paper we focus specifically on the ℓ = 1 case
as this problem yields an intriguing algorithmic approach, given in Section 5.

3 Generalized static agony

In order to solve the dynamic ranking problems, we need to consider a minor
extension of the static ranking problem.

To that end, we define a static graph H = (W,A) to be the graph, where
W is a set of vertices and A is a collection of directed edges (u, v, c, b), where
u, v ∈ V , c is a positive—possibly infinite—weight, and b is an integer, negative
or positive.

Problem 4 (gen-agony). Given a static graph H = (W,A) find a function
r : W → Z minimizing

∑

(u,v,c,b)∈A

max(c× (r(u)− r(v) + b), 0) .
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Note that c in (u, v, c, b) may be infinite. This implies that if the solution has
a finite score, then r(u) + b ≤ r(v).4

We can formulate the static ranking problem, agony, as an instance of gen-
agony: Assume a graph G = (V,E), and a(n optional) cardinality constraint k.
Define a graph H = (W,A) as follows. The vertex set W consists of the vertices
V and two additional vertices α and ω. For each edge (u, v, w, t) ∈ E, add an
edge (u, v, c = w, b = 1) to A. If there are multiple edges from u to v, then
we can group them and combine the weights. This guarantees that the sum in
gen-agony corresponds exactly to the cost function in agony. If k is given,
then add edges (α, u, c = ∞, b = 0) and (u, ω, c = ∞, b = 0) for each u ∈ V .
Finally, add (ω, α, c = ∞, b = 1 − k). This guarantees that the for the optimal
solution we must have r(α) ≤ r(u) ≤ r(ω) ≤ r(α) + k − 1, so now the ranking
defined r(u; t) = r(u) − r(α) satisfies the constraints by agony.

Example 1. Consider a temporal network given in Figure 1a. The corresponding
graph H is given in Figure 1b.

u

v

t = 0

1

u

v

t = 1

1

u

v

t = 2

1

(a) Toy network, G

u v
2, 1

1, 1

α

ω

∞, 0 ∞, 0

∞, 0 ∞, 0

∞, 1 − k

(b) H for agony

u0

v0

1
,
1

u1

v1

1
,
1

u2

v2

1
,
1

λ, 0 λ, 0

λ, 0 λ, 0

λ, 0λ, 0

λ, 0λ, 0

(c) H for fluc-agony

Fig. 1: Graph G, and the corresponding graphs H used in agony and fluc-

agony. In (b), the edges with omitted parameters have c = ∞ and b = 0. In
(c), vertices α and ω, and the adjacent edges, are omitted.

As argued by Tatti [16], gen-agony is a dual problem of capacitated circu-
lation, a classic variant of a max-flow optimization problem. This problem can

be solved using an algorithm by Orlin [13] in O
(

|A|2 log |W |
)

time. In practice,

the running time is faster.

4 Solving fluc-agony

In this section we provide a polynomial solution for fluc-agony by mapping
the problem to an instance of gen-agony.

Assume that we are given a temporal graph G = (V,E), a parameter λ and
a(n optional) constraint on the number of levels, k.

4 Here we adopt 0×∞ = 0, when dealing with the case r(u)− r(v) + b = 0.
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We will create a static graph H = (W,A) for which solving gen-agony is
equivalent of solving fluc-agony for G. First we define W : for each vertex
v ∈ V and a time stamp t ∈ T such that there is an edge adjacent to v at time
t, add a vertex vt to W . Add also two vertices α and ω. The edges A consists of
three groups A1, A2 and A3:
(i) For each edge e = (u, v, w, t) ∈ E, add an edge (ut, vt, c = w, b = 1).
(ii) Let vt, vs ∈ W such that s > t and there is no vo ∈ W with t < o < s,
that is vt and vs are ’consecutive’ vertices corresponding to v. Add an edge
(vt, vs, c = λ, b = 0), also add an edge (vs, vt, c = λ, b = 0).
(iii) Assume that k is given. Connect each vertex ut to ω with b = 0 and weight
c = ∞. Connect α to each vertex ut with b = 0 and weight c = ∞. Connect ω
to α with b = 1 − k and c = ∞. This essentially forces r(α) ≤ r(ut) ≤ r(ω) ≤
r(α) + k − 1.

Example 2. Consider a temporal graph in Figure 1a. The corresponding graph,
without α and ω, is given in Figure 1c.

Let r be the rank assignment for H with a finite cost, and define a rank
assignment for G, r′(v; t) = r(vt). The penalty of edges in A1 is equal to q(r′, G)
while the penalty of edges in A2 is equal to λ

∑

v∈V fluc(v, r′). The edges in A3

force r′ to honor the constraint k, otherwise q(r,H) = ∞. This leads to the
following proposition.

Proposition 1. Let r be the solution of gen-agony for H. Then r′(v; t) =
r(vt)− r(α) solves fluc-agony for G.

We conclude with the running time analysis. Assume G with n vertices and
m edges. A vertex vt ∈ W implies that there is an edge (u, v, w, t) ∈ E. Thus,
|W | ∈ O(m). Similarly, |A1| + |A2| + |A3| ∈ O(m). Thus, solving gen-agony

for H can be done in O
(

m2 logm
)

time.

5 Computing seg-agony

In this section we focus on seg-agony. Unlike the previous problem, seg-agony
is very hard to solve (see Appendix for the proof).

Proposition 2. Discovering whether there is a rank segmentation with a 0 score
is an NP-complete problem.

This result not only states that the problem is hard to solve exactly but it
is also very hard to approximate: there is no polynomial-time algorithm with a
multiplicative approximation guarantee, unless NP = P.

5.1 Iterative approach

Since we cannot solve the problem exactly, we have to consider a heuristic ap-
proach. Note that the rank assignment of a single vertex is characterized by 3



Dynamic hierarchies in temporal directed networks 7

values: a change point, the rank before the change point, and the rank after the
change point. This leads to the following iterative algorithm: (i) fix a change
point for each vertex, and find the optimal ranks before and after the change
point, (ii) fix the ranks for each vertex, and find the optimal change point.
Repeat until convergence.

More formally, we need to solve the following two sub-problems iteratively.

Problem 5 (change2ranks). Given a graph G = (V,E) and a function τ map-
ping a vertex to a time stamp, find r1 : V → N and r2 : V → N mapping a
vertex to an integer, such that the rank assignment r defined as

r(v; t) =

{

r1(v), t < τ(v),

r2(v), t ≥ τ(v)

minimizes q(r;G).

Problem 6 (ranks2change). Given a graph G = (V,E) and two functions
r1 : V → N and r2 : V → N mapping a vertex to an integer, find a rank
segmentation r minimizing q(r;G) such that there is a function τ such that

r(v; t) =

{

r1(v), t < τ(v),

r2(v), t ≥ τ(v) .

Surprisingly, we can solve both sub-problems exactly as we see in the next
two subsections. This implies that during the iteration the score will always
decrease. We still need a starting point for our iteration. Here, we initialize the
change point of a vertex v as the median time stamp of v.

5.2 Solving change2ranks

We begin by solving the easier of the two sub-problems.
Assume that we are given a temporal network G = (V,E) and a function

τ : V → T . We will map change2ranks to gen-agony. In order to do so, we
define a graph H = (W,A). The vertex set W consists of two copies of V ; for
each vertex v ∈ V , we create two vertices v1 and v2, we also add vertices α and
ω to enforce the constraint k. For each edge e = (u, v, w, t) ∈ E, we introduce
an edge (ui, vj , c = w, b = 1) to A, where

i =

{

1 if t < τ(u),

2 if t ≥ τ(u),
and j =

{

1 if t < τ(v),

2 if t ≥ τ(v) .

Finally, like before, we add (α, v, c = ∞, b = 0), (v, ω, c = ∞, b = 0) and
(ω, α, c = ∞, b = 1− k) to enforce the constraint k.

We will denote this graph by G(τ).

Example 3. Consider the toy graph given in Figure 1a. Assume τ(u) = 1 and
τ(v) = 2. The resulting graph G(τ) is given in Figure 2a.
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The following proposition shows that optimizing agony for H is equivalent
of solving change2ranks. We omit the proof as it is trivial.

Proposition 3. Let r be a ranking for H. Define r′ as

r′(v; t) =

{

r(v1)− r(α), t < τ(v),

r(v2)− r(α), t ≥ τ(v) .

Then q(r′, G) = q(r,H). Reversely, given a ranking r′ satisfying conditions
of change2ranks, define a ranking r for G by setting r(vi) = ri(v). Then
q(r′, G) = q(r,H).

We conclude with the running time analysis. Assume G with n vertices and
m edges. We have at most 2n+ 2 vertices in W and |A| ∈ O(m). Thus, solving
change2ranks for H can be done in O

(

m2 logn
)

time.

5.3 Solving ranks2change

Our next step is to solve the opposite problem, where we are given the two
alternative ranks for each vertex, and we need to find the change points. Luckily,
we can solve this problem in polynomial time. To solve the problem we map it
to gen-agony, however unlike in previous problems, the construction will be
quite different.

Assume that we are given a graph G = (V,E), and the two functions r1 and
r2. To simplify the following definitions, let us first define

rmin(v) = min(r1(v), r2(v)) and rmax (v) = max(r1(v), r2(v)) .

Assume an edge e = (u, v, w, t) ∈ E. A solution to ranks2change must use
ranks given by r1 and r2, that is the rank of u is either rmin(u) or rmax (u),
and the rank of v is either rmin(v) or rmax (v), depending where we mark the
change point for u and v. This means that there are only 4 possible values for
the penalty of e. They are

p00(e) = w ×max(0, rmin(u)− rmin(v) + 1),

p10(e) = w ×max(0, rmax (u)− rmin(v) + 1),

p01(e) = w ×max(0, rmin(u)− rmax (v) + 1),

p11(e) = w ×max(0, rmax (u)− rmax (v) + 1) .

Among these penalties, p01(e) is the smallest, and ideally we would pay only
p01(e) for each edge. This is rarely possible, so we need to design a method that
takes other penalties into account.

Next we define a static graphH = (W,A) that will eventually solve ranks2change.
For each vertex v ∈ V and a time stamp t ∈ T such that there is an edge ad-
jacent to v at time t, add a vertex vt to W . Add also two additional vertices α
and ω. We will define the edges A in groups. The first two sets of edges in A
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essentially force r(ut) = 0, 1, and that the ranking is monotonic as a function
of t. Consequenty, there will be at most only one time stamp for each vertex u,
where the ranking changes. This will be the eventual change point for u. The
edges are:

(i) Connect each vertex ut to ω with b = 0 and weight c = ∞. Connect α to
each vertex ut with b = 0 and weight c = ∞. Connect ω to α with b = −1 and
c = ∞. Connect α to ω with b = 1 and c = ∞. This forces r(α) ≤ r(ut) ≤
r(ω) = r(α) + 1.

(ii) Let vt, vs ∈ W such that s > t and there is no vo ∈ W with t < o < s.
If r2(v) ≥ r1(v), then connect vt to vs with b = 0 and c = ∞. This forces
r(vs) ≥ r(vt). If r2(v) < r1(v), then connect vs to vt with b = 0 and c = ∞. This
forces r(vs) ≤ r(vt).

For notational simplicity, let us assume that r(α) = 0. The idea is then that
once we have obtained the ranking for H , we can define the ranking for G as

r′(v; t) = rmin(v) + (rmax (v)− rmin(v))r(vt) .

Our next step is to define the edges that correspond to the penalties in the
original graph. We will show later in Appendix that the agony of r′ is equal to
P1 + P2 + P3 + const , where

P1 =
∑

vt|r(vt)=0

∑

e=(u,v,w,t)∈E

p00(e)− p01(e),

P2 =
∑

ut|r(ut)=1

∑

e=(u,v,w,t)∈E

p11(e)− p01(e),

P3 =
∑

e=(u,v,w,t)∈E

r(vt)=0,r(ut)=1

p10(e)− p00(e)− p11(e) + p01(e) .

Let us first define the edges that lead to these penalties .

(i) Connect ω to each vertex vt with b = 0 and weight

c =
∑

e=(u,v,w,t)∈E

p00(e)− p01(e) .

In the sum v and t are fixed, and correspond to vt. This edge penalizes vertices
with r(vt) = 0 with a weight of c. Summing these penalties yields P1.

(ii) Connect each vertex ut to α with b = 0 and weight

c =
∑

e=(u,v,w,t)∈E

p11(e)− p01(e) .

In the sum u and t are fixed, and correspond to ut. This edge penalizes vertices
with r(ut) = 1 with a weight of c. Summing these penalties yields P2.
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(iii) For each edge e = (u, v, w, t) ∈ E, connect ut and vt with b = 0 and

c = p10(e)− p00(e)− p11(e) + p01(e) .

This edge penalizes cases when r(ut) = 1 and r(vt) = 0, and constitute P3.

We will denote the resulting H by G(r1, r2).

Example 4. Consider the toy graph given in Figure 1a. Assume that the rank
assignments are r1(u) = 0, r1(v) = 1, r2(u) = 2, r2(v) = 3. The resulting graph
G(r1, r2) is given in Figure 2b. The optimal ranking for G(r1, r2) assigns 0 to α,
u0, v0, and v1; the rank for the remaining vertices is 1.

u1 v1 u2 v2
1, 1 1, 1 1, 1

α

ω

(a) G(τ )

u0

v0

2, 0

u1

v1

0, 0

u2

v2

2, 0

α

ω

2, 02, 0

(b) G(r1, r2)

Fig. 2: Graphs used for solving seg-agony. In both figures, the edges with omit-
ted parameters have c = ∞ and b = 0. For clarity, we omit edges between α and
ω in both figures, in addition, in (b) we omit parameters for the edges (x, α) and
(ω, x) with c = 0.

Before we show the connection between the ranks in G and H = G(r1, r2),
we first need to show that the edge weights are non-negative. This is needed to
guarantee that we can find the optimal ranking of H using gen-agony.

Proposition 4. The weights of edges in H are non-negative.

The proof is given in Appendix.
We will state our main result: we can obtain the solution for ranks2change

using the optimal ranking for H ; see Appendix for the proof.

Proposition 5. Let r be the optimal ranking for H. Then

r′(v; t) = rmin(v) + (rmax (v)− rmin(v))(r(vt)− r(α))

solves ranks2change.

We conclude this section with the running time analysis. Assume G with n
vertices and m edges. A vertex vt ∈ W implies that there is an edge (u, v, w, t) ∈
E. Thus, |W | ∈ O(m). Similarly, |A| ∈ O(m). Thus, solving ranks2change for
H can be done in O

(

m2 logm
)

time.
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6 Related work

Perhaps the most classic way of ranking objects based on pair-wise interactions
is Elo rating proposed by Elo [3], used to rank chess players. A similar approach
was proposed by Jameson et al. [8] to model animal dominance.

Maiya and Berger-Wolf [11] proposed discovering directed trees from weighted
graphs such that parent vertices tend to dominate the children. A hierarchy is
evaluated by a statistical model where the probability of an edge is high between
a parent and a child. A good hierarchy is then found by a greedy heuristic.

Penalizing edges using agony was first considered by Gupte et al. [6], and a
faster algorithm was proposed by Tatti [15]. The setup was further extended to
handle the weighted edges, which was not possible with the existing methods,
by Tatti [16], as well to be able to limit the number of distinct ranks (parameter
k in the problem definitions).

An alternative to agony is a penalty that penalizes an edge (u, v) with
r(u) ≥ r(v) with a constant penalty. In such a case, optimizing the cost is
equal to feedback arc set (FAS), an APX-hard problem with a coefficient
of c = 1.3606 [2]. Moreover, there is no known constant-ratio approximation
algorithm for FAS, and the best known approximation algorithm has ratio
O(log n log logn) [4]. In addition, Tatti [16] demonstrated that minimizing agony
is NP-hard for any concave penalties while remains polynomial for any convex
penalty function.

An interesting direction for future work is to study whether the rank obtained
from minimizing agony can be applied as a feature in role mining tasks, where
the goal is to cluster vertices based on similar features [7, 12].

seg-agony essentially tries to detect a change point for each vertex. Change
point detection in general is a classic problem and has been studied extensively,
see excellent survey by Gama et al. [5]. However, these techniques cannot be
applied directly for solving seg-agony since we would need to have the ranks
for individual time points.

The difficulty of solving seg-agony stems from the fact that we allow ver-
tices to have different change points. If we require that the change point must
be the equal for all vertices, then the problem is polynomial. Moreover, we can
easily extend such a setup for having ℓ segments. Discovering change points then
becomes an instance of a classic segmentation problem which can be optimized
by a dynamic program [1].

7 Experiments

In this section we present our experimental evaluation.
Datasets and setup: We considered 5 datasets. The first 3 datasets, Men-

tion, Retweet, and Reply, obtained from SNAP repository [9], are the twitter
interaction networks related to Higgs boson discovery. The 4th dataset, Enron
consists of the email interactions between the core members of Enron. In ad-
dition, for illustrative purposes, we used a small dataset: NHL, consisting of
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National Hockey League teams during the 2015–2016 regular season. We cre-
ated an edge (x, y) if team x has scored more goals against team y in a single
game during the 2014 regular season. We assign the weight to be the difference
between the points and the time stamp to be the date the game was played. We
used hours as time stamps for Higgs datasets, days for Enron. The sizes of the
graphs are given in Table 1.

Table 1: Basic characteristics of the datasets and the experiments. The third
data column, |T |, represents the number of unique time stamps, while the last
column is the number of unique (v, t) pairs such that the vertex v is adjacent to
an edge at time t,

∣

∣

⋃

(u,v,w,t)∈E {(v, t), (u, t)}
∣

∣.

Name |V | |E| |T | |{(v, t)}|

Enron 146 105 522 964 24 921
Reply 38 683 36 395 168 54 892
Retweet 256 491 354 930 168 390 583
Mention 115 684 164 156 168 183 693
NHL 30 1 230 178 2 460

For each dataset we applied fluc-agony, seg-agony, and the static vari-
ant, agony. For fluc-agony we set λ = 1 for the Higgs datasets, λ = 2 for
NHL and Enron.

We implemented the algorithms in C++, and performed experiments using
a Linux-desktop equipped with a Opteron 2220 SE processor.5

Computational complexity: First, we consider the running times, re-
ported in Table 2. We see that even though the theoretical running time is
O
(

m2 log n
)

for fluc-agony and for a single iteration of seg-agony, the al-
gorithms perform well in practice. We are able to process graphs with 300 000
edges in 5 minutes. Naturally, seg-agony is the slowest as it requires multiple
iterations—in our experiments 3–5 rounds—to converge.

Table 2: Agony, running time, and number of unique ranks in the ranking.

score number of ranks time

Name agony fluc seg agony fluc seg agony fluc seg

Enron 57 054 21 434 50 393 6 9 7 3s 4s 26s
Reply 6 017 5 401 4 147 13 12 16 0.4s 10s 15s
Retweet 2 629 1 384 1070 23 21 18 8s 4m 5m
Mention 12 756 10 082 8 219 20 19 18 4s 1m 2m
NHL 2 090 1 414 1 883 2 4 4 0.6s 0.3s 1s

5 See https://bitbucket.org/orlyanalytics/temporalagony for the code.

https://bitbucket.org/orlyanalytics/temporalagony
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Table 3: Statistics measuring fluctuation of the resulting rankings: fluc is equal
to the fluctuation fluc(u; r) averaged over u, maxdiff is the maximum difference
between the ranks of a single vertex u, averaged over u, change is the number
of times rank is changed for a single vertex u, averaged over u. Note that fluc =
maxdiff for seg-agony as the assignment is allowed to change only once.

fluc maxdiff change

Name fluc seg fluc seg fluc seg

Enron 28.2 1 3.2 1 21.8 0.66
Reply 0.013 0.43 0.012 0.43 0.01 0.36
Retweet 0.003 0.17 0.003 0.17 0.002 0.13
Mention 0.016 0.3 0.014 0.3 0.011 0.2
NHL 2.7 0.73 1.5 0.73 2.6 0.5

Statistics of obtained rankings: Next, we look at the statistics of the
obtained rankings, given in Table 2. We first observe that the agony of the
dynamic variants is always lower than the static agony, as expected.

Let us compare the constraint statistics, given in Table 3. First, we see that
fluc-agony yields the smallest fluc in Higgs databases. seg-agony produces
smaller fluc in the other two datasets but it also produces a higher agony.

Interestingly enough, fluc-agony yields a surprisingly low average number
of change points for Higgs datasets. The low average is mainly due to most
resulting ranks being constant, and only a minority of vertices changing ranks
over time. However, this minority changes its rank more often than just once.

Agony vs fluctuation: The parameter λ of fluc-agony provides a flexi-
ble way of controlling the fluctuation: smaller values of λ leads to smaller agony
but larger fluctuation while larger values of λ leads to larger agony but smaller
fluctuation. This can be seen in Table 2, where relatively large λ forces small
fluctuation for the Higgs datasets, while relatively small λ allows variation and
a low agony for Enron dataset. This flexibility comes at a cost: we need to have
a sensible way of selecting λ. One approach to select this value is to study the
joint behavior of the agony and the fluctuation as we vary λ. This is demon-
strated in Figure 3 for Enron data, where we scatter plot the agony versus the
average fluctuation, and vary λ. We see that agony decreases steeply as we allow
some fluctuation over time but the obtained benefits decrease as we allow more
variation.

Use case: Finally, let us look on the rankings by seg-agony of NHL given
in Figure 4. We limit the number of possible rank levels to k = 3.

The results are sensible: the top teams are playoff teams while the bottom
teams have a significant losing record. Let us highlight some change points that
reflect significant changes in teams: for example, the collapse of Montreal Cana-
diens (MTL) from the top rank to the bottom rank coincides with the injury
of their star goaltender. Similarly, the rise of the Pittsburgh Penguins (PIT)
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Fig. 3: Agony plotted against fluc of the optimal ranking for fluc-agony by
varying the parameter λ (Enron).

Ranking before the change:

1. mtl win bos min dal flo wsh

2. van nyr chi sj tor col pit nsh stl tbl det nj nyi

3. cal lak ott buf car edm phi cbj ari ana

Ranking after the change:

1. nyr sj lak pit nsh stl tbl phi ana wsh

2. cal chi bos ott buf min dal car cbj det ari nj nyi flo

3. van mtl tor win col edm

Change points:
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Fig. 4: Rank segmentations for NHL with k = 3. The bottom figure shows only
the teams whose rank changed. The y-axis is used only to reduce the clutter.

from the middle rank to the top rank reflects firing of the head coach as well as
retooling their strategy, Penguins eventually won the Stanley Cup.

8 Concluding remarks

In this paper we propose a problem of discovering a dynamic hierarchy in a
directed temporal network. To that end, we propose two different optimization
problems: fluc-agony and seg-agony. These problems vary in the way we
control the variation of the rank of single vertices. We show that fluc-agony

can be solved in polynomial time while seg-agony is NP-hard. We also devel-
oped an iterative heuristic for seg-agony. Our experimental validation showed
that the algorithms are practical, and the obtained rankings are sensible.
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fluc-agony is the more flexible of the two methods as the parameter λ
allows user to smoothly control how much rank is allowed to vary. This comes
at a price as the user is required to select an appropriate λ. One way to select λ
is to vary the parameter and monitor the trade-off between the agony and the
fluctuation. An interesting variant of fluc-agony—and potential future line
of work—is to minimize agony while requiring that the fluctuation should not
increase over some given threshold.

The relation between seg-agony and the sub-problems ranks2change and
change2ranks is intriguing: while the joint problem seg-agony is NP-hard
not only the sub-problems are solvable in polynomial time, they are solved with
the same mechanism.

A straightforward extension for seg-agony is to allow more than just one
change point, that is, in such a case we are asked to partition the time line of
each vertex into ℓ segments. However, we can no longer apply the same iterative
algorithm. More specifically, the solver for ranks2change relies on the fact
that we need to make only one change. Developing a solver that can handle the
more general case is an interesting direction for future work.
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A Proofs of the propositions

A.1 Proof of Proposition 4

To prove the proposition, we need the following lemma.

Lemma 1. Assume that we are given three numbers a, b, and d with a, b ≥ 0.
Define

h(x, y) = max(ax− by + d, 0), where x, y ∈ {0, 1} .

Then h(1, 1)− h(0, 1) ≤ h(1, 0)− h(0, 0).

Proof. Straightforward calculation leads to

h(1, 1)− h(0, 1) = min(a, h(1, 1)) and h(1, 0)− h(0, 0) = min(a, h(1, 0)) .

Since b ≥ 0, it follows that h(1, 1) ≤ h(1, 0), making the left equality smaller. ⊓⊔

Proof (of Proposition 4). The inequality rmax (u) ≥ rmin(u) implies p11−p01 ≥ 0,
and so the weights of the edges (ut, α) are non-negative. Similarly, p00−p01 ≥ 0,
and so the weights of the edges (ω, ut) are non-negative.

Assume edge (ut, vt, c, 0), let a = rmax (u)− rmin(u), b = rmax (v) − rmin(v),
d = 1 + rmin(u) − rmin(v). Since a, b ≥ 0, Lemma 1 states that c = p10(u, v) −
p00(u, v)− p11(u, v) + p01(u, v) ≥ 0. ⊓⊔

A.2 Proof of Proposition 5

Define F , a mapping transforming a ranking for H to a ranking for G, as

F (r) = rmin(v) + (rmax (v)− rmin(v))(r(vt)− r(α)) .

Let R be the set of rankings for H with q(r,H) < ∞. To prove the propo-
sition, we show (i) that the scores of r ∈ R and F (r) differ only by a constant,
and (ii) {F (r) | r ∈ R} correspond to the valid rankings for ranks2change.
These two results will immediately prove the Proposition 5.

Lemma 2. For r ∈ R, q(r,H) = q(F (r), G) + const.

Proof. Let r ∈ R. We can safely assume that r(α) = 0. Since edges (u, v, c, b) ∈ A
with c = ∞ guarantee r(v) ≤ b + r(u), we have 0 = r(α) ≤ r(vt) ≤ r(ω) = 1.

Let us split edges in E in four groups E00, E01, E10, E11: an edge e =
(u, v, w, t) belongs to Exy if r(ut) = x and r(vt) = y. Define Cxy =

∑

e∈Exy
pxy(e).

Then
q(F (r), G) = C00 + C01 + C10 + C11 .

The cost q(r,H) consists of three parts. The first part is caused by the edges
(ω, vt) s.t. r(vt) = 0, and it is equal to

P1 =
∑

vt|r(vt)=0

∑

e=(u,v,w,t)∈E

p00(u, v)− p01(u, v)

=
∑

e∈E00∪E10

p00(e)− p01(e) .
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The second part is caused by edges (ut, α) for which r(ut) = 1, and it is equal
to

P2 =
∑

ut|r(ut)=1

∑

e=(u,v,w,t)∈E

p11(u, v)− p01(u, v)

=
∑

e∈E11∪E10

p11(e)− p01(e) .

The final part consists of edges between ut and vt for which r(ut) = 1 and
r(vt) = 0, and it is equal to

P3 =
∑

e∈E10

p10(e)− p00(e)− p11(e) + p01(e) .

Write Z =
∑

e∈E p01(e). Combining these leads us

P1 + P2 + P3 = C00 + C11 + C10 −
∑

e∈E\E01

p01(e)

= C00 + C11 + C10 + C01 − Z

= q(F (r), G) − Z,

where Z does not depend on r. ⊓⊔

Lemma 3. r′ is a valid solution for ranks2change if and only if there is
r ∈ R with r′ = F (r).

Proof. Let r ∈ R, and let r′ = F (r). We can safely assume that r(α) = 0.
Since edges (u, v, c, b) ∈ A with c = ∞ guarantee r(v) ≤ b + r(u), we have
0 = r(α) ≤ r(vt) ≤ r(ω) = 1. Consequently, r′(v; t) = r1(v) or r′(v; t) = r2(v).
Assume r1(v) < r2(v). Then r(vt) is increasing,

r(vt) =

{

1 t ≤ τ

0 t > τ

for some τ . Also, rmin(v) = r1(v) and rmax (v) = r2(v). So

r′(v; t) =

{

r1(v) t ≤ τ

r2(v) t > τ .

The case r1(v) > r2(v) is symmetric. Thus, r′ is a valid solution for ranks2change.

Assume that you are given r′, a valid solution for Problem. Define r(vt) = 1
if rmax (v) = r′(v; t), and 0 otherwise. Extend the solution by setting r(α) = 0
and r(ω) = 1. It is easy to see that for any edge (u, v, c, b) ∈ A with c = ∞ we
have r(v) ≤ b+ r(u). Thus, r ∈ R. ⊓⊔
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A.3 Proof of Proposition 2

Proof. The problem is clearly in NP. We will use 3SAT to prove the hardness.
Assume that we are given an instance of 3SAT with n variables and m clauses.
We will prove the proposition in several steps.

Step 1 (graph construction): The graph consists of 3 vertex groups. The first
group consists of 2n vertices, pi and ni, where i = 1, . . . , n. The second group
consists of 3m vertices C, each vertex representing an occurrence of a literal
in a clause. For notational simplicity, we will index vertices in C by cjℓ, where
j = 1, . . . ,m and ℓ = 1, 2, 3. The third group consists of 9m vertices xjℓ, yjℓ, and
zjℓ, where j = 1, . . . ,m and ℓ = 1, 2, 3. In total, we have 3 unique time stamps,
and the edges are given in Figure 5.

pi

ni

pi

ni

pi

ni

for i = 1, . . . , n

pi

cjℓ

pi

cjℓ

if the ℓth literal in the jth clause is
the positive literal of the ith variable.

ni

cjℓ

ni

cjℓ if the ℓth literal in the jth clause is
the negative literal of the ith variable.

xj1

cj2

xj2

cj3

xj3

cj1

xj1

cj1

xj2

cj2

xj3

cj3

for j = 1, . . . ,m
ℓ = 1, . . . , 3

xjℓ

yjℓ zjℓ

t = 0

xjℓ

yjℓ zjℓ

t = 1

xjℓ

yjℓ zjℓ

t = 2

for j = 1, . . . ,m
ℓ = 1, . . . , 3

Fig. 5: Edges related to the proof of Proposition 2.

Step 2 (satisfiability implies zero cost solution): Assume that we have a truth
assignment that satisfies the formula. To show that there is a zero-cost rank
assignment, we will construct a change point function τ . Then we show that
solving change2ranks with this function results in a zero-cost rank assignment.
To define τ , we first set

τ(pi) = 1, τ(ni) = 2, if the ith variable is true, and

τ(pi) = 2, τ(ni) = 1, if the ith variable is false .

Moreover, we set τ(cjℓ) = 2 if the corresponding literal (taking possible negation
into account) is true, and τ(cjℓ) = 1 otherwise. Finally, we set

τ(xjℓ) = 1, τ(yjℓ) = 2, τ(zjℓ) = 2 .

Let H = G(τ). We will show that H is a DAG, which guarantees that the
rank assignment resulting from solving change2ranks yields a zero cost. For



20 N. Tatti

every vertex in v ∈ V (G), we will write v1 and v2 to refer to the corresponding
vertices in H , before and after the change point, respectively.

Assume there is a cycle D in H . Assume that the ith variable is set to true.
Then p1i is a source and cannot be a part of D. Similarly, n2

i is a sink. Since the
only outgoing edge of p2i goes to n2

i , p
2
i /∈ D. Any c1jℓ that corresponds to the

negative ith literal is also a source. These vertices and p1i are the only parents of
n1
i , so n1

i /∈ D. The case when the ith variable is false is symmetric. In summary,
D does not contain p1i , n

1
i , p

2
i , nor n

2
i . Since there are no other vertices joining

vertices corresponding to different clauses, D must be among vertices xjℓ, yjℓ,
zjℓ, cjℓ for a fixed j.

Fix j = 1, . . . ,m. y2jℓ is a source and z2jℓ is a sink, so they are outside of D.

Vertex x1
jℓ is a sink, so it is outside of D. The only outgoing edge of y1jℓ goes to

x1
jℓ, so y1jℓ /∈ D. The only outgoing edges of z1jℓ go to x1

jℓ and y1jℓ, so z1jℓ /∈ D.

Vertex c1jℓ is a sink within the subgraph corresponding to the clause, so c1jℓ /∈ D.

In summary, D may contain only c2jℓ, and x2
jℓ.

The only possible cycle is then a 6-cycle containing every x2
jℓ and c2jℓ. This

is only possible if τ(cjℓ) = 1 for ℓ = 1, 2, 3. But this is a contradiction, since jth
clause must be satisfied. Consequently, H is a DAG and solving change2ranks

for a given τ results in a rank assignment that yields a zero cost.
Step 3 (zero cost solution implies satisfiability): Assume that r is a rank

assignment inducing a zero cost. Let us write τ(v) to be the time stamp where
the rank changes (if the rank is constant, then set τ(v) = 1). We can safely
assume that τ(v) = 1, 2. Define P = {i | τ(pi) = 1} and N = {i | τ(ni) = 1}.
Note that P ∩ N = ∅ and P ∪ N = [1, n], otherwise the 1st row in Figure 5
creates a cycle. We set the variables whose indices are in P to be true, and the
variables whose indices are in N to be false.

Next, we prove that this assignment indeed solves 3SAT. We first claim that
τ(xjℓ) = 1. Assume otherwise. Then

r(yjℓ; 0) < r(xjℓ ; 0) = r(xjℓ; 1) < r(yjℓ; 1) and

r(zjℓ; 0) < r(xjℓ ; 0) = r(xjℓ; 1) < r(zjℓ; 1) .

Thus, r(zjℓ; 1) = r(zjℓ; 2) and r(yjℓ; 1) = r(yjℓ; 2). But

r(yjℓ; 2) < r(xjℓ; 2) < r(zjℓ; 2) = r(zjℓ; 1) < r(yjℓ; 1) = r(yjℓ; 2),

which is a contradiction. Consequently, r(xjℓ ; 0) 6= r(xjℓ; 1), which forces τ(xjℓ) =
1.

Fix j = 1, . . . ,m. Since r(xjℓ; 1) = r(xjℓ; 2), then there is at least one cjℓ′

for which τ(cjℓ′ ) = 2, otherwise the 4th row in Figure 5 creates a cycle. Assume
that cjℓ′ corresponds to the positive ith literal. This immediately implies that
τ(pi) = 1, otherwise the 2nd row in Figure 5 creates a cycle. By definition,
i ∈ P , so the ith variable is true and the jth clause is satisfied. Similarly, if cjℓ′
corresponds to the negative ith literal, then immediately τ(ni) = 1, so i ∈ N
and the ith variable is false and the clause is satisfied. Since this holds for every
clause, 3SAT is satisfied. ⊓⊔
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