
HAL Id: hal-01893905
https://inria.hal.science/hal-01893905

Submitted on 7 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis and Improvement of an Authentication Scheme
in Incremental Cryptography

Louiza Khati, Damien Vergnaud

To cite this version:
Louiza Khati, Damien Vergnaud. Analysis and Improvement of an Authentication Scheme in Incre-
mental Cryptography. SAC 2018 - 25th International Conference on Selected Areas in Cryptography,
Aug 2018, Calgary, Canada. pp.50-70, �10.1007/978-3-030-10970-7_3�. �hal-01893905�

https://inria.hal.science/hal-01893905
https://hal.archives-ouvertes.fr

Analysis and Improvement of an Authentication
Scheme in Incremental Cryptography

Louiza Khati1,2 and Damien Vergnaud3,4

1 Département d’informatique de l’ENS
École normale supérieure, CNRS, PSL Research University

Paris, France
2 ANSSI, Paris, France

3 Sorbonne Université, CNRS
LIP6, Équipe Almasty, Paris, France

4 Institut Universitaire de France, Paris, France

Abstract. Introduced in cryptography by Bellare, Goldreich and Gold-
wasser in 1994, incrementality is an attractive feature that enables to
update efficiently a cryptographic output like a ciphertext, a signature
or an authentication tag after modifying the corresponding input. This
property is very valuable in large scale systems where gigabytes of data
are continuously processed (e.g. in cloud storage). Adding cryptographic
operations on such systems can decrease dramatically their performance
and incrementality is an interesting solution to have security at a reduced
cost.
We focus on the so-called XOR-scheme, the first incremental authentica-
tion construction proposed by Bellare, Goldreich and Goldwasser, and the
only strongly incremental scheme (i.e. incremental regarding insert and
delete update operations at any position in a document). Surprisingly, we
found a simple attack on this construction that breaks the basic security
claimed by the authors in 1994 with only one authentication query (not
necessarily chosen). Our analysis gives different ways to fix the scheme;
some of these patches are discussed in this paper and we provide a security
proof for one of them.

1 Introduction

Bellare, Goldreich and Goldwasser initiate the study on incremental cryptography
in [3] and then refined it in [4]. Cryptographic incremental constructions are
meant to provide efficient updates compared to classical algorithms. Usually, the
result of a cryptographic algorithm (such as encryption or authentication) over a
document has to be re-computed entirely if any change is applied to the document
(and this regardless of the modification size). Incremental cryptography enables
to update a signature, a message authentication code (MAC) or a ciphertext in
time proportional to the number of modifications applied to the corresponding
document. This attractive feature leads to build many incremental cryptographic
primitives such as encryption schemes [4, 2, 1], signature [3, 9, 16], MACs [4, 9,
14], hash functions [11, 6] and authenticated encryption constructions [8, 2, 18].

2

An algorithm is incremental regarding specific update operations such as
inserting, deleting or replacing a data block inside a document. A desirable
incremental algorithm should support all these operations for any positions: it
should be possible to insert, delete or replace a data block of the document for
all positions without breaking the security of the cryptographic algorithm. Most
known algorithms only support replacement of data blocks and the algorithms that
support insertion, deletion and replacement1 are deemed strongly incremental.

Virus protection is the first application of incremental cryptography quoted
in the seminal paper [3]. They consider the usage scenario where processor
accesses files on a remote host and a virus can alter these files. A simple idea
is to compute authentication tags for all files with a key stored securely by
the processor and any modification by a virus will be detected by verifying the
corresponding tag. Knowing that these files will be updated often enough, using
an incremental authentication algorithm preserves the processor by performing a
lighter computation.

Bellare et al. also introduced in [3] the corresponding security notions. In the
basic security model, the adversary can obtain a valid authentication tag for any
message it wanted (as in classical MAC security) and it can also update (with
the supported update operations) valid pairs message/tag. This is a first security
level but it is reasonable to consider a stronger adversary that can alter files
and tags before applying update operations; it corresponds to the tamper-proof
security notion introduced in [3].

Nowadays this use case can be extended to the “digital world”. Large amount
of data [10, 15] are processed every day by different services like cloud services,
distributed networks and distributed storage. It is clear that all these data require
integrity and/or privacy at a low computational cost otherwise going through
gigabytes of data for minor changes without incremental primitives is really
demanding in term of time and energy. A concrete example is the Cloud Bigtable
by Google [7] that stores petabytes of data across thousands of commodity servers.
This Bigtable has a particular data structure that links a unique index number
to each block. In this case an incremental hashing that supports replacement
and insertion operations is suitable as mentioned in [15]. A more critical usage
is storage services in mobile cloud computing where a mobile client device is
in addition limited in term of energy consumption. To solve this issue, Itani,
Kayssi and Chehab provide an energy-efficient protocol in [13] that guarantee
data integrity based on incremental MACs. Another use case is sensor networks
and more specifically environmental sensors [12, 15]: several sensors are deployed
at different physical positions and they record continuously data. At some point,
all the data ends up in a big public database that has to be publicly checkable.
The database is updated (insertion operation mainly) at a high frequency and if
the hash value over all the database is entirely re-computed for each insertion
it will be very consuming. All these use cases are examples among many others.
Incremental cryptography is clearly an area to explore to solve practical issues.

1 Actually supporting insertion and deletion is sufficient as replacement can be obtain
by combining these two update operations.

3

For now incrementality is mainly investigated for hashing and signing even if
it was also considered for encryption in [3, 2]. It is not surprising regarding all the
practical use cases that need incremental authenticated constructions. Recently,
the CAESAR2 competition stimulates research on authenticated encryption
algorithm. Sasaki and Yasuda analysed several candidates and found that none of
them performs incrementality. That is why they designed their own authenticated
encryption mode with associated data [18] based on existing constructions. This
new mode is incremental for the replace, insert and delete operations, but the
insert and delete operations of this mode concern only the last block of the
authenticated data or the last block of the message (and it remains open to
design a strongly incremental authenticated encryption algorithm).

Actually, as far as we know, the only authentication scheme that is strongly
incremental is the XOR-scheme designed by Bellare, Goldreich and Goldwasser
in [4] (cf. Figure 2). This strong property comes with a cost: only basic security is
claimed in [3] and this algorithm needs to generate and store a lot of randomness.
The MAC operation generates a random value for each data block and these
random values are necessary for the verification and the update operations. The
XOR-scheme is based on a pseudo-random function (PRF) and a pseudo-random
permutation (PRP) and the incremental algorithms for (single block) insert and
delete operations require only two applications of the underlying PRF and two
applications of the underlying PRP. The XOR-scheme relies on the concept of
pair block chaining (which was later used in [11] which involves taking each pair
of two consecutive blocks of a message and feeding them into a pseudo-random
function before chaining all the outputs of the PRF into the final hash. This
scheme extends another scheme, called the randomized XOR-scheme, from [5]
which is incremental only for replacement. Even if they share a similar name,
these two algorithms are different: the randomized XOR-scheme is not based on
a pair block chaining structure and requires actually much less randomness. To
distinguish the two schemes, in this paper, we will call this second scheme the
unchained XOR-scheme.

An analysis on some incremental hash functions was provided by Phan and
Wagner [17]. They give, inter alia, patterns that could give collisions on a hash
function based on pair block chaining. Two cases are of interest for the XOR-
scheme: non-distinct blocks and cycling chaining. The first one considers repeated
blocks messages like A||B||C||B||A and B||C||B||A||B that would have the same
sum value if no randomness was used (cf. Figure 2) but as underlined by the
authors the random values appended to each message block prevents these
repetitions. The second one considers a variant of the XOR-scheme [11] where
the first and the last block are chained then some repeated patters like A||B||A
and B||A||B would have the same sum value but it not the case in the original
version from [4]. Therefore, in the present state-of-the-art, no attacks are known
against the original strongly incremental XOR-scheme proposed in [4].

2 Competition for Authenticated Encryption: Security, Applicability, and Robustness.

4

1.1 Contributions of the Paper

In this paper, we analyse the security of the original XOR-scheme construction
proposed by Bellare, Goldreich and Goldwasser in [4] and based on a chained
structure as defined in [3].

Attacks. We provide an attack that breaks the XOR-scheme basic security
claimed by the authors3. It succeeds with probability 1 using only one MAC
query. It takes advantage of the chaining structure of this scheme and some
xor function properties. This attack is very simple and it is surprising that it
remained unnoticed until now (especially since the paper [4] appeared in a major
computer science conference and was extensively quoted since 1994).

Analysis and Patched constructions. We analyse our attack and
the original XOR-scheme to find where its security breaks down. We show that
the main flaw is that the XOR-scheme does not explicitly take into account the
document length and we noticed that adding the number of data block to the
construction prevents this kind of attacks. We analyse different ways to patch
the scheme by introducing the document block length in the construction and
found that the scheme can still be weak for some options.

We propose a modified version of the XOR-scheme and prove its basic security.
Our security proof for the patched XOR-scheme uses tool from the unchained
XOR-scheme security proof [5].

Organization of the Paper. We introduce some mathematical back-
grounds, recall the security models for incremental MAC constructions and we
give a detailed description of the XOR-scheme construction in Section 2. Then
we present a general forgery attack and its analysis in Section 3. In Section 4,
we discuss different solutions to patch efficiently the scheme without making it
more complicated neither breaking the structure of the algorithm. We choose
one construction and give its detailed description. Its security proof is given in
Section 5 before the conclusion in Section 6.

2 Preliminaries

2.1 Notations

For any integer n, {0, 1}n denotes the set of bit strings of length n and we let
{0, 1}∗ denote the set of all finite-length bit strings. For two bit strings X and

Y , X||Y denotes their concatenation. For a finite set S, we use x
$←− S to denote

sampling x uniformly at random from S. For X ∈ {0, 1}∗, we use |X| to denote
the bit length of X and |X|` denotes the number of `-bit block in the bit-string
X (and in particular |X|1 = |X|).

Random functions/Random permutations. The set of all functions
{0, 1}` → {0, 1}L is denoted F`,L. A random function F is a randomly chosen

3 In [4, Theorem 3.1], Bellare, Goldreich and Goldwasser stated a security result for
their scheme but no proofs are provided in their paper.

5

function in F`,L. The set of all permutations {0, 1}` → {0, 1}` is denoted P`. A
random permutation P is a randomly chosen permutation in P`.

Pseudo-Random functions/Pseudo-Random permutations.
Given a non-empty subset K, a function family Fk: K× {0, 1}` → {0, 1}L, where
k ∈ K, is a (t, ε)-pseudo-random function (PRF) if for any algorithm A running
in a time at most t, the following holds:

|Pr[k $←− K : AFk(.) = 1]− Pr[F $←− F`,L : AF (.) = 1]| ≤ ε.

Given a non-empty subset K, a permutation family Pk: K × {0, 1}L → {0, 1}L,
where k ∈ K, is a (t, ε)-pseudo-random permutation (PRP) if for any algorithm
A running in a time at most t, the following holds:

|Pr[k $←− K : APk(.) = 1]− Pr[F $←− FL,L : AF (.) = 1]| ≤ ε.

2.2 Definitions

Syntactic Definition. We begin by describing the syntactic definition of
strongly incremental MAC algorithms. In the following, we consider authentication
of messages whose length is a multiple of an integer b (which is usually smaller
than the block length of the underlying PRF or PRP) but is obviously possible
to handle messages of arbitrary finite length using padding. A document D ∈ D
with D =

⋃∞
i=1{0, 1}ib is a sequence of n b-bit blocks, for some integer n ≥ 1

denoted D=(D1, D2, . . . , Dn) where Di is the i-th b-bit block of D.

Definition 1. A strongly incremental MAC scheme is a 5-tuple

Π = (K, MAC, V, I, D)

in which:

K is the key space. A key k is randomly chosen in the key space K. The key k
is a parameter for the MAC, V, I and D algorithms.

MAC, the MAC algorithm, is a probabilistic algorithm that takes as input k and
a document D and returns an authentication tag T .

V, the verification algorithm, is a deterministic algorithm that takes as input a
document D and a tag T and returns 1 if the tag is valid and 0 otherwise.

I, the incremental insert algorithm, is a probabilistic algorithm that takes as
input the insertion position j, the inserted block Di, the document D and a
tag T to update.

D, the incremental delete algorithm, is a probabilistic algorithm that takes as
input the suppression block position j, the document D the message block to
add D′j and a tag T to update.

with the three following correctness properties:

– (∀k ∈ K)(∀n ∈ N)(∀D ∈ {0, 1}nb)(∀T ∈ {MAC(k,D)})({V(k,D,T)} = {1})

6

– (∀k ∈ K)(∀n ∈ N)(∀D = (D1, D2, . . . , Dn) ∈ {0, 1}nb)(∀T ∈ {MAC(k,D)})
(∀j ∈ {1, . . . , n+ 1})(∀D∗ ∈ {0, 1}b)(∀T ′ ∈ {I(j,D∗, D, T)})
({V(k, (D1, . . . , Dj−1, D

∗, Dj , . . . Dn), T ′)} = {1})
– (∀k ∈ K)(∀n ∈ N)(∀D = (D1, D2, . . . , Dn) ∈ {0, 1}nb)(∀T ∈ {MAC(k,D)})

(∀j ∈ {1, . . . , n})(∀T ′ ∈ {D(j,D, T)})
({V(k, (D1, . . . , Dj−1, Dj+1, . . . Dn), T ′)} = {1})

Remark. In practice, the incremental algorithms I and D have to be more
efficient than re-computing an entire authentication tag T and cryptographers
are looking for scheme where these algorithms are constant-time (i.e. independent
of the number of b-bit blocks of the document D).

Security Model. The adversary A is an algorithm (i.e. an oracle probabilis-
tic Turing machine) playing in a computational security game denoted GBSMAC,V,I,D

(cf. Figure 1). A key k is picked uniformly at random in the key space of the
strongly incremental MAC and the adversary has access to all the following
oracles

– a MAC oracle: the adversary can ask to compute a MAC (for k) on any
document of its choice;

– a verifying oracle: the adversary can ask to verify (for k) the validity of
any pair document/authentication tag;

– an update oracle: the adversary can use the incremental operations (for k)
on chosen document/authentication tag pairs (in a way depending on the
security models as defined below).

At the end of each oracle query (except verification queries), the corresponding
authenticated document/authentication tag (D, r) is added to a list L and the
adversary wins the game if it outputs eventually a pair (D?, r?) /∈ L that is
accepted by the verification algorithm.

Basic Security. As defined in [3], in basic security settings the adversary
A is not allowed to do incremental operations on a couple (D,T) where the
verification algorithm V(D,T) will fail. It can only apply incremental operations
on couples (D,T) that belong to the list L. As mentioned above, to win the
security game, A must provide a forgery that is to say a document D∗ and a tag
T ∗ such that V(D∗, T ∗) returns 1 and the couple (D∗, T ∗) is not in the list L.

Remark 1. The verification V(D,T) is not applied before incremental operation
to check authenticity otherwise the low computational cost is lost. It is simply
assumed that A does not query incremental operations on altered couples. In
this paper, we focus on this basic security notion only.

Definition 2. Let Π = (K, MAC, V, I, D) be a strongly incremental MAC
scheme and let A be an adversary. Let AdvBSA,Π :=

Pr[k
$←− K;L ← {}; (D∗, T ∗)← AMACLk ,V

L
k ,I
L
k ,D
L
k : 1← VLk (D∗, T ∗) ∧ (D∗, T ∗) /∈ L].

7

Π is (λ, qm, qv, qinc; ε)-BS-secure in the basic sense if, for any adversary A
which runs in time λ, making qm queries to the MAC oracle, qv to the V oracle
and qinc valid queries to the incremental oracles (I, D) we have AdvBSA,Π < ε.

Game GBS
MAC,V,I,D

k
$←− K

L ← {}
If AMACLk ,VLk ,ILk ,DLk makes a query (D∗, T ∗) such that

- VLk (D∗, T ∗) returns 1 and
- (D∗, T ∗) /∈ L

Then Return 1 Else return 0.

Fig. 1. Game defining Basic Security (BS) for an incremental authentication scheme.

Tamper-Proof Security. As defined in [4]tamper-proof security is a
stronger security notion since the adversary A is allowed to query incremental
operation on any couple (D,T) even new couples (couples that do not belong
to L). Then A wins the security game if it provides a new couple (D∗, T ∗) such
that V(D∗, T ∗) returns 1. It was already mentioned in [4], that the XOR-scheme
does not achieve tamper-proof security and this is also the case of our modified
XOR-scheme.

2.3 Description of the XOR-scheme

The XOR-scheme (XS) as defined in [3] is an incremental authenticated algorithm
based on pair-wise chaining as shown in Figure 2. Let ` and L be two positive
integers and let b < ` be some positive integer. The XS scheme is based on a
pseudo-random function F : KF × {0, 1}2` −→ {0, 1}L and a pseudo-random
permutation P : KP ×{0, 1}L −→ {0, 1}L. The incremental algorithms for (single
block) insert and delete operations require only two applications of the underlying
PRF and two applications of the underlying PRP. The XS scheme generates an
authentication tag for a document D by repeatedly applying the PRF to pairs
of blocks – each made of a b-bit data block from the document D and an `− b
random block (pick uniformly at random and independently for each block). In
the following, for simplicity, we consider only documents whose binary length is
a multiple of b and we denote D = ({0, 1}b)∗.

• The key space XS.K is KF ×KP the Cartesian product of the key space of
the underlying PRF F and PRP P .

• The MAC algorithm XS.MAC takes as input a document D ∈ D and
outputs a tag T := (r, τ). For each document block Di, an (` − b)-bits
block ri is randomly generated. The concatenation of these values is denoted

8

Fk1 Fk1 Fk1 Fk1 Fk1

Pk2

τ

D0

r0 ||

R0

D1

r1 ||

R1

D2

r2 ||

R2

D3

r3 ||

R3

Dn−2

rn−2 ||

Rn−2

Dn−1

rn−1 ||

Rn−1

. . .

. . .

Fig. 2. Description of the XOR-scheme

Ri := Di||ri. Each couple (Ri−1, Ri) is processed by the function Fk1 and
outputs a value denoted hi then the bitwise XOR (eXclusive OR) of all the
values (denoted Σ) is processed by the permutation Pk2 to give the value τ .
• The Verification algorithm XS.V takes as inputs the document D and

a tag T := (r, τ). It re-computes the value τ from the inputs r and D. It
returns 1 if this value is equal to the input τ and 0 otherwise.
• The Insert operation XS.I enables to insert a block value in a document.

It takes as inputs the position j where the block value has to be inserted, the
previous block value Dj−1

4, the block value Dj
5, the new block value D′j

and the tag T . It outputs the new tag.
• The Delete operation XS.D enables to delete a block from the document.

It takes as inputs the position j where the block as to be deleted, the block
value to delete Dj , the previous and next block values Dj−1 and Dj+1 and
the tag T .

The update algorithms are intuitive and given in Fig. 8 (in Appendix) for
update operations at a position different from the first block position. They can be
adapted to be applied to the first block. In the original version, it is specified that
a prefix and postfix are added to the document. For a document D = D1 . . . Dn,
the authentication tag is computed on D0||D1 . . . Dn||Dn+1 where D0 and Dn+1

are specific prefix and postfix values. In this paper, this specification is not taken
into account: it does not prevent our attack and the repaired scheme is proven
secure without it.

XOR-scheme limits. Supporting insert, delete and consequently replace
operations should make the XOR-scheme very efficient in term of update time
running. The fresh random values ri generated by this scheme for each new
document block are necessary for security. But generating so much randomness

4 For the first position, there is no previous block.
5 For the last position, there is no next block.

9

is time consuming : for an n-block document D, a n(`− b)-random bits value r is
generated. Random generation also slows down the insertion operation. Another
drawback is the tag expansion: the random value r is part of the tag and needs
to be stored. For a n block document, random storage costs n(`− b) bits. Even
if today storage is not an issue, having short tags is desirable.

3 Forgery Attacks against the XOR-scheme

According to the basic security game described in Fig. 1, the adversary A wins
the game if it finds a new pair (D∗, T ∗) such that the verification operation
returns 1. If an adversary has access to any tag T (such that T = (r, τ)) returned
by the MAC algorithm on a document D (for example D0||D1||D2), it can forge
a different document D∗ having the same value τ . The value τ is computed as
follows:

τ = Pk2 [Fk1(D0||r0, D1||r1)⊕ Fk1(D1||r1, D2||r2)] (1)

Σ = Fk1(R0, R1)⊕ Fk1(R1, R2) = h1 ⊕ h2 (2)

A can build a document D∗ 6= D and a value r∗ such that the corresponding
Σ∗ value collides with Σ even if there is no weakness on F . A way to do so is
inserting a specific block chain in document D in order to cancel all the new
values h′i introduced by these repetitions as shown in Figure 3. It seems that
the chaining structure of the XOR-scheme should prevent this behavior because
changing or inserting a block value will affect two values hi then the tag τ will be
different. These modifications have to be compensated: the values h′i introduced
has to be canceled by xoring the same value and all the original values hi that
are deleted has to be re-introduced. We use this trick to break the claimed basic
security.

(R0, R1) (., .) (., .) (R1, R2)
↓ ↓ ↓ ↓
h1 ⊕ . . . ⊕ . . . ⊕ h2 = Σ︸ ︷︷ ︸

= 0

Fig. 3. Xor cancellation strategy in the XOR-scheme

Forgery Attack. Applying this strategy gives us an adversary AMACk1,k2

wining the game GBSMAC,V,I,D with probability 1 and that requires only 1 MACk1,k2
query.

Adversary AMACLk1,k2

1 A asks the MAC of a short document D where D = D0||D1||D2 and receives
the corresponding authentication-tag T = (r, τ).

10

(R0, R1) (R1, R2)
↓ ↓
h1 ⊕ h2 = Σ

Fig. 4. Σ computation for 3 block document

2 A builds a document D∗ from D such that D∗ = D0||D1||D2||D1||D2||D1||D2

and a value r∗ from r such that r∗ = r0||r1||r2||r1||r2||r1||r2.

(D0||r0, D1||r1) (D1||r1, D2||r2) (D2||r2, D1||r1) (D1||r1, D2||r2) (D2||r2, D1||r1) (D1||r1, D2||r2)
(R0, R1) (R1, R2) (R2, R1) (R1, R2) (R2, R1) (R1, R2)
↓ ↓ ↓ ↓ ↓ ↓
h1 ⊕ h2 ⊕ ��h

′
2 ⊕ ��h2 ⊕ ��h

′
2 ⊕ ��h2 = Σ

Fig. 5. Attack on the XOR-scheme

The document D∗ is different from D but it has the same value τ . The
documentD∗ given in Figure 5 is an example of a forgery and many other examples
can be given. To be more general, for any x ∈ {0, 1}b, any x′ ∈ {0, 1}(`−b) and
for any valid pair (D,T) such that D = D0 . . . Di||Di+1 . . . Dn, many forgeries
(D∗, (r∗, τ)) can be built by inserting the specific block chain Di||x||Di||x in D
(and the corresponding random value chain ri||x′||ri||x′ in r for any x′) such
that:

D∗ = D0 . . . Di−1|| Di||x||Di||x||Di︸ ︷︷ ︸ ||Di+1 . . . Dn

r∗ = r0 . . . ri−1|| ri||x′||ri||x′||ri||︸ ︷︷ ︸ ri+1 . . . rn.

A variant of this forgery is to insert only a repeated document block Di (and ri)
is the following:

D∗ = D0 . . . Di−1|| Di||Di||Di︸ ︷︷ ︸ ||Di+1 . . . Dn.

r∗ = r0 . . . ri−1|| ri||ri||ri||︸ ︷︷ ︸ ri+1 . . . rn.

A more powerful forgery can be built from (D,T) by inserting any values x and
y in D (and any values x′ and y′ in r) such that:

D∗ = D0 . . . Di−1|| Di||x||y||x||y||x||Di||x||Di︸ ︷︷ ︸ ||Di+1 . . . Dn.

r∗ = r0 . . . ri−1|| ri||x′||y′||x′||y′||x′ri||x′||ri||︸ ︷︷ ︸ ri+1 . . . rn.

For all these attacks, the underbraced chains can be repeated many times. These
three attacks are some of the possible attacks, following this canceling strategy,
some exotic chains can be inserted in order to ends with a value τ that corresponds
to a legitimate tag. A first observation is that all these attacks are performed by
inserting blocks and providing a forgery D∗ that has the same length that the
original one looks impossible or at least harder.

11

4 Modification of the XOR-scheme

The previous section described an attack that breaks the basic security of the
XOR-scheme by producing a document D∗ using a MAC query (D,T) where
τ = τ∗ and |D|b 6= |D∗|b. All the forgeries D∗ produced are longer that the
original document D. One can notice that if the adversary A is only allowed
to MAC and verify documents that have the same length n then the attack
presented in Section 3 will fail. A first naive idea is to force all documents to
have the same length (documents that are too small can be padded in the MAC
algorithm) but this solution is not realistic and the incremental property will
be lost. A natural way to fix this flaw is to use the document length n for the
computation of the value τ in order to make it size dependent. The size can be
expressed according to any units: number of bits, bytes, blocks. Choosing the
number of blocks n is sufficient. A postfix block containing the number of blocks
n can be added at the end of the document then the computation of the value Σ
will become:

Σ = Fk1(D0||r0, D1||r1)⊕ Fk1(D1||r1, D2||r2)⊕ · · · ⊕ Fk1(Dn−1||rn−1, rn||n)

Fk1 Fk1 Fk1 Fk1 Fk2

τ

nD0 D1 D2 D3 Dn−1

h1 h2 h3 h4 hn

r0 ||

R0

r1 ||

R1

r2 ||

R2

r3 ||

R3

rn−1 ||

Rn−1

rn ||

Rn

. . .

. . .

Fig. 6. Description of the fixed XOR-scheme

The last block works as a mask for each value τ : incremental operation will
refresh the last random value rn in order to have a different mask value for
any modification. As a consequence, the pseudo-random permutation P is not
necessary anymore (τ = Σ), it is removed in the modified scheme (Figure 6).
This version of the XOR-scheme is proven in Section 5.

The last random block value rn (concatenated with the document length n)
is necessary otherwise the corresponding hn value can be canceled. The following
attack is an example:

1. A asks the MAC of a document D = D0||D1 and receives the tag T1 =
(r0||r1, τ1).

2. A asks to delete the first block of D by with the delete query D(0, ., D0, D1, τ1)
and receives T2 = (r1, τ2).

12

3. A asks to insert the block D′0 at the first position of the resulting document
with the query I(0, D1, ., D

′
0, τ2) and receives T3 = (r′0||r1, τ3).

4. A asks to insert the block D2 at the position 2 of the original document D
with the query I(2, ., D1, D2, τ1) and receives T4 = (r0||r1||r2, τ4).

5. A builds the document D∗ = D′0||D1||D2 and the tag T ∗ = (r′0||r1||r2, τ1 ⊕
τ3 ⊕ τ4).

The couple (D∗, r∗) is a forge: it is not in the list L of tagged document and it
has a valid tag. To avoid such attacks, for incremental operations the last random
block (concatenated with the document length) need to be always refreshed. To
be sure that none of the previous attack will not be practical, an independent
key is used to process the last couple (Rn−1, Rn). That way, it would be hard for
an adversary to make a forgery from a linear combination of tagged documents.

Complexity. The modified XOR-scheme is slightly slower than the original
one. For the MAC and the incremental algorithms the P call is removed but a
call to the function Fk2 is added as shown in Figure 7. The delete D and insert I
operations are slightly slower because of the last block update: the last value Ri
depending on the document length has to be removed and the a new value R′i
with the new document length n′ is added.

Functions scheme (`− b)-bits Generation F P xor

MAC XS n n− 1 1 n− 1
M-XS n+ 1 (n− 1) + 1 0 n

V XS 0 n− 1 1 n− 1
M-XS 0 (n− 1) + 1 0 n

D XS 0 3 2 3
M-XS 1 5 0 5

I XS 1 3 2 3
M-XS 2 5 0 5

Fig. 7. Complexity: XOR-scheme (XS) and Modified XOR-scheme (M-XS)

Other Solutions. In the original XOR-scheme (Fig. 2), the document
length can be added differently in the algorithm (but still with a random value
rn):

1 Before the last operation Pk2(Σ), an intermediate operation Fk3(rn||n,Σ) can
be added such that τ = Pk2 [Fk3(rn||n,Σ)].

2 The block length can be processed individually as a last block such that
τ = Pk2 [Fk3(rn||n)⊕Σ].

5 Security Proof

The security proof follows the proof strategy used in [5] for proving the unchained
XOR-scheme.

13

Information theoretic case. As in [5], we first consider the case where
the two underlying PRFs Fk1 and Fk2 are replaced by two truly random functions
F1 and F2 from {0, 1}2` to {0, 1}L. We consider an unbounded adversary and the
following theorem claims the security of this modified scheme in the information
theoretic case. More precisely, it provides an absolute bound on the success of
the adversary in terms of the number of oracle queries it makes.

Theorem 1. Let F2`,L be the family of random functions with input length 2`
and output length L. Let A be any (computationally unbounded) adversary, in
the basic security settings, making a (qm, qv, qinc)-attack against the modified
XOR-scheme with two functions picked uniformly at random from F2`,L. The
probability that A is successful is at most

q2 · 2b−` + qv · (t2 · 2b−` + ·2−L).

where q = qm + qinc and t denotes the maximal block-length of the documents
authenticated in the security game.

Remark. The modified XOR-Scheme is not tamper-proof secure.

Proof (Theorem 1 (Sketch.)). The proof follows closely the proof from [5]. The
main difference is that we use two different random functions in the modified
scheme and that we need the following simple lemma to prove that some specific
matrix (close to the one used in [5]) is full-rank. For the reader familiar with [5],
we use similar notations in the following.

Lemma 1. Let X be some finite set and let n ∈ N. Let (R0, R1, . . . , Rn) ∈ Xn+1

with Ri 6= Rj for all i 6= j then if there exists (R∗0, R
∗
1, . . . , R

∗
n) ∈ Xn+1 such that

{(R0, R1), (R1, R2), . . . (Rn−1, Rn)} = {(R∗0, R∗1), (R∗1, R
∗
2), . . . (R∗n−1, R

∗
n)}

then for all i ∈ {0, . . . , n}, Ri = R∗i .

Proof (Lemma 1). This lemma can be easily proved by induction over n. Let
us denote Sn the first set {(R0, R1), (R1, R2), . . . (Rn−1, Rn)} where all Ri are
distinct. In particular, the set Sn contains exactly n different couples. One can
notice that the first member of each couple is the second member of the previous
couple except the first and the last couples. In others words a value Ri appears
in two couples: once as a first member and once as a second member except the
first one R0 and the last one Rn.
The case n = 1 is trivial. We consider the case n = 2 that provides greater clarity.
Let assume that it exists (R∗0, R

∗
1, R

∗
2) ∈ X3 such that

{(R0, R1), (R1, R2)} = {(R∗0, R∗1), (R∗1, R
∗
2)}

and #{R0, R1, R2} = 3. As there are exactly two couples in each set, we have
the following two cases:

14

– case 1: (R0, R1) = (R∗0, R
∗
1) and (R1, R2) = (R∗1, R

∗
2) then in this case, we

get R0 = R∗0, R1 = R∗1, R2 = R∗2;
– case 2: (R0, R1) = (R∗1, R

∗
2) and (R1, R2) = (R∗0, R

∗
1). The first equality

implies R∗1 = R0 and the second equality implies R∗1 = R2 and thus R0 = R2

which contradicts the statement R0 6= R2.

Suppose now that Lemma 1 holds for all integers k ≤ n− 1 for some n ∈ N∗.
We will show that it holds for n.

Let us suppose that there exists (R∗0, R
∗
1, . . . , R

∗
n) ∈ Xn+1 such that Sn = S∗n

where S∗n is the set {(R∗0, R∗1), (R∗1, R
∗
2), . . . (R∗n−1, R

∗
n)}. Again, as all the values

Ri are different in Sn then the n couples are different. The equality of these two
sets Sn and S∗n implies that they contain exactly the same n couples and that in
each set a couple appears only once. We have the following two cases:

– case 1: (Rn−1, Rn) = (R∗n−1, R
∗
n) and Sn−1 = S∗n−1. From the induction

hypothesis, for all i ∈ {0, . . . , n− 1}, Ri = R∗i .
– case 2: (Rn−1, Rn) 6= (R∗n−1, R

∗
n) Then there exists i ∈ {0, . . . , n− 1} such

that (Rn−1, Rn) = (R∗i−1, R
∗
i). It implies R∗i = Rn and according to the

structure of these sets, there is a couple in S∗n that has a first member equal
to R∗i = Rn) and it has to be the case in Sn. But as mentioned above, Rn is
a value that appears only in one couple of Sn and we get a contradiction.

ut

We will use this lemma with X = {0, 1}` at the end of the proof to show that
different messages of the same block-length involve different input pairs for the
underlying PRF F1.

Since the adversary A is computationally unbounded we may assume without
loss of generality that it is deterministic. The probabilistic choices in A’s attack
on the scheme are thus the initial choice of F1 and F2 of the random functions
in F2`,L and the choices of random coins made by the authentication oracles in
the security game. We assume (again without loss of generality) that A makes
exactly q = qs + qinc authentication queries (either as a direct MAC query or as
an update query using the insert or the delete oracle). As in [5], there is no loss of
generality to assume that A makes all its authentication queries and then makes
exactly one verify query (for its purported forgery). We prove that in this case
the probability of the event (denoted Succ) A’s forgery is valid is upper-bounded
by

q2 · 2b−` + t2 · 2b−` + 2−L.

and using a classical argument (see e.g. [5]) we get the claimed bound for general
adversaries.

We consider the simple case where all the random coins used in the last block
of each authenticated document are different. Note that in all authentication
queries (from a fresh MAC query or an update query), this random block is
picked uniformly at random and independently of the previous blocks. To analyze
the probability of this event (denoted Distinct), we can therefore use the following
simple lemma:

15

Lemma 2 ([5, Fact A.1]). Let P (m, t) denote the probability of at least one
collision in the experiment of throwing t balls, independently at random, into m
buckets. Then P (m, t) ≤ t2/m.

We thus have

Pr[Succ] = Pr[Succ|Distinct] · Pr[Distinct] + Pr[Succ|Distinct] · Pr[Distinct]

≤ Pr[Succ|Distinct] + Pr[Distinct]

≤ Pr[Succ|Distinct] + P (2b−`, q)

≤ Pr[Succ|Distinct] + q2 · 2b−`.

and it remains to upper-bound Pr[Succ|Distinct].
Let us fix a particular sequence of q documents D1, . . . , Dq (each made of

at most t blocks of b bits) corresponding to all documents authenticated in the
security game by some authentication queries (either as a direct MAC query or
as an update query using the insert or the delete oracle). We also fix r1, . . . , rq

some bit-strings possibly used as random values in the modified XOR-scheme for
these documents (i.e. ri consists in 1 ≤ ti ≤ t blocks of `− b bits if Di is made
of ti blocks of b bits) and we assume that the last blocks of all of them are all
different. Finally we fix τ1, . . . , τ q some possible corresponding tags in {0, 1}L
for these documents. We consider only bit-strings (D1, . . . , Dq), (r1, . . . , rq) and
(τ1, . . . , τ q) for which the probability that there exists two functions F1 and F2

such that T i = (ri, τ i) is a valid MAC for Di (for all i ∈ {1, . . . , q}) for F1 and
F2 is non-zero.

We will compute the probability of the event that A’s forgery is valid con-
ditioned on the event that the authentication queries made by A are on the
documents D1, . . . , Dq, use the random coins (r1, . . . , rq) and result in the tags
(τ1, . . . , τ q). More precisely, we will show that this probability is upper-bounded by
t2 ·2b−`+2−L (and since the bit-strings (D1, . . . , Dq), (r1, . . . , rq) and (τ1, . . . , τ q)
are arbitrary, we will get the result by standard conditioning arguments).

We consider a possible forgery output by A and we denote Dq+1 the corre-
sponding document, rq+1 the used randomness and τ q+1 the tag. It is worth noting
that the pair (Dq+1, rq+1) is different from all pairs (Di, ri) for all i ∈ {1, . . . , q}
(since otherwise, this is not an actual forgery) but we cannot assume that the last
block of rq+1 is different from the last blocks of all previous random values ri

for all i ∈ {1, . . . , q} (since A may choose it arbitrarily and it can reuse a value
obtained in a previous authentication query).

For i ∈ {1, . . . , q + 1}, we denote Di
j for all j ∈ {1, . . . , ti}, the j-th block of

the document Di and similarly rij for all j ∈ {1, . . . , ti + 1}, the j-th block of the

randomness ri. As in [5], we consider the matrix B with q + 1 rows and 22`+1

columns over F2 = {0, 1} where the entry in row i ∈ {1, . . . , q + 1} and column
j ∈ {1, . . . , 22`+1} is defined as follows:

– for j ∈ {1, . . . , 22`}, the entry is equal to 1 if j is the index of the 2`-bit string
(Di

ti ||r
i
ti ||ti||r

i
ti+1) in lexicographic order (and 0 otherwise).

16

– for j ∈ {22` + 1, . . . , 22`+1}, the entry is equal to 1 if j − 22` is the index
of the 2`-bit string (Di

k||rik||Di
k+1||rik+1) in lexicographic order for some

k ∈ {1, . . . , ti − 1} (and 0 otherwise).

In other words, the matrix B contains a 1 on the row i for i ∈ {1, . . . , q + 1}
only at positions corresponding to bit-strings of length 2` used as inputs to the
random functions F1 and F2 in the modified XOR-scheme (where the left part
consisting of the first 22` columns of the matrix corresponds to the unique input
of F2 and the right part corresponds to all inputs to F1).

We have the following lemma:

Lemma 3. The matrix B has full rank with probability at least 1− t2 · 2b−`.

Proof (Lemma 3). The proof is similar to the proof of [5, Lemma A.3]. If the pair
(tq+1, r

q+1
tq+1+1) is different from all (ti, r

i
ti+1) for i ∈ {1, . . . , q}, then the matrix

B is in echelon form (in its left part) and is thus trivially of full rank.
Otherwise, we assume that rq+1

tq+1+1 is equal to some riti+1 and if tq+1 = ti (the
last block of randomness of A’s forgery is equal to the last block of randomness
of the i-th authenticated message and the block-length of these two messages
are equal). It is worth noting that there exists only one index i ∈ {1, . . . , q} such
that this is the case (since we assume that these last blocks of randomness are
all different). For this i-th document, the random blocks rij for j ∈ {1, . . . , ti}
are all different with probability at least 1− t2i · 2b−` ≥ 1− t2 · 2b−` by Lemma 2.
Since the pair (Dq+1, rq+1) is different from (Di, ri) and since the pairs (Di

k, r
i
k)

are all different for k ∈ {1, . . . , ti} (with probability at least 1− t2 · 2b−`), we can
apply Lemma 1 to the sets (of the same length ti = tq+1):{

Di
1||ri1||Di

2||ri2, Di
2||ri2||Di

3||ri3, . . . , Di
ti−1||r

i
ti−1||D

i
ti ||r

i
ti

}
and{
Dq+1

1 ||rq+1
1 ||Dq+1

2 ||rq+1
2 , Dq+1

2 ||rq+1
2 ||Dq+1

3 ||rq+1
3 , . . . , Dq+1

ti−1||r
q+1
ti−1||D

q+1
ti ||r

q+1
ti

}
.

We thus obtain that there exist an index k ∈ {1, . . . , ti − 1} such that

(Dq+1
k ||rq+1

k ||Dq+1
k+1||r

q+1
k+1) 6= (Di

k||rik||Di
k+1||rik+1).

Therefore in this case the left part of the last row (consisting of the first 22`

columns) is identical to the left part of the i-th row but these rows differ in at
least one position in the right part of the matrix B. By elementary operations
on the rows, one can easily transform the matrix B in echelon form and it is
therefore of full rank (with probability at least 1− t2 · 2`−b). ut

To conclude the proof, one can identify the functions F1 and F2 to their vector

of values in ({0, 1}2`)L by denoting Fi(x) = (ϕ
(x)
i,1 , . . . , ϕ

(x)
i,L) for x ∈ {0, 1}2` and

i ∈ {1, 2}, where ϕi,j ∈ {0, 1}2` for i ∈ {1, 2} and j ∈ {1, . . . , L}. In this case by
construction, τ i is the authentication tag of the document Di with randomness

17

ri for all i ∈ {1, . . . , q + 1} if and only if for all j ∈ {1, . . . , L}, the j-th bit τ
(j)
i

of τi is equal to the dot product of the i-th row of the matrix B and the vector
ϕ2,i||ϕ1,i. Using the same argument as in [5], since B is of full rank, the number
of vectors satisfying this q + 1 equations is 2L times smaller than the number of
vectors satisfying only the first q equations (corresponding to the first q rows of
B), and therefore we obtained that the forgery τ q+1 output by the adversary is
valid with probability 2−L if the matrix B is full rank.

We have thus proved that, in the simplified case, the probability that A’s
forgery is valid is upper-bounded by

q2 · 2b−` + t2 · 2b−` + 2−L.

and thus the claimed bound for general adversaries. ut

Computational case. If we replace the (truly) random functions by
pseudo-random functions in the previous result, we obtain readily the following
computational security result:

Theorem 2. Let F be the family of pseudo-random functions with input length
2 · ` and output length L. Let A be any adversary making a (qm, qv, qinc)-attack
against the modified XOR-scheme with two functions picked uniformly at random
from F and running in time λ.
There exist an adversary B against the pseudo-randomness property of F that
makes q′ = q · t queries to F , runs in time λ′ = λ+O(q′(`+ L)) such that

AdvPRFB,F ≥ AdvBSA,XS − [q2 · 2b−` + qv · (t2 · 2b−` + ·2−L)].

where q = qm + qinc and t denotes the maximal block-length of the documents
authenticated in the security game.

Proof (Theorem 2). The proof is identical to the proof of [5, Theorem 4.2] and is
left to the reader. ut

6 Conclusion

We showed that the XOR-scheme as described in [3] does not provide the claimed
basic security: a forgery can be easily built from any tag by inserting specific
document block chains to a legitimate document and the corresponding random
value chains to the legitimate random value. We proposed a modified XOR-scheme
that is not vulnerable to these attacks and we proved its security in the basic sense.
Our modified XOR-scheme is the only secure strongly incremental algorithm but
unfortunately it still has some drawbacks: the randomness generation slows down
the algorithm and the tag length makes it unpractical because the random values
have to be stored. But it is definitely worth analyzing its structure in order to
improve it or to build another strongly incremental authenticated scheme (or prove
a lower bound on the length of strongly incremental MAC algorithms). Another

18

interesting open problem is to design a strongly incremental authenticated scheme
that achieves tamper-proof security.

Acknowledgments. The authors are supported in part by the French ANR
ALAMBIC Project (ANR-16-CE39-0006). The authors thank Mihir Bellare for
helpful discussions and for pointing out references.

References

1. Atighehchi, K.: Space-efficient, byte-wise incremental and perfectly private
encryption schemes. Cryptology ePrint Archive, Report 2014/104 (2014),
http://eprint.iacr.org/2014/104

2. Atighehchi, K., Muntean, T.: Towards fully incremental cryptographic schemes. In:
Chen, K., Xie, Q., Qiu, W., Li, N., Tzeng, W.G. (eds.) ASIACCS 13. pp. 505–510.
ACM Press, Hangzhou, China (May 8–10, 2013)

3. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case
of hashing and signing. In: Desmedt, Y. (ed.) CRYPTO’94. LNCS, vol. 839, pp.
216–233. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 21–25,
1994)

4. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and application
to virus protection. In: 27th ACM STOC. pp. 45–56. ACM Press, Las Vegas, NV,
USA (May 29 – Jun 1, 1995)

5. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New methods for message
authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.)
CRYPTO’95. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 27–31, 1995)

6. Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: Incre-
mentality at reduced cost. Cryptology ePrint Archive, Report 1997/001 (1997),
http://eprint.iacr.org/1997/001

7. Bershad, B.N., Mogul, J.C. (eds.): 7th Symposium on Operating Systems Design and
Implementation (OSDI ’06), November 6-8, Seattle, WA, USA. USENIX Association
(2006), https://www.usenix.org/publications/proceedings/?f[0]=im group audience
3A137

8. Buonanno, E., Katz, J., Yung, M.: Incremental unforgeable encryption. In: Matsui,
M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 109–124. Springer, Heidelberg, Germany,
Yokohama, Japan (Apr 2–4, 2002)

9. Fischlin, M.: Lower bounds for the signature size of incremental schemes. In:
38th FOCS. pp. 438–447. IEEE Computer Society Press, Miami Beach, Florida
(Oct 19–22, 1997)

10. Gantz, J., Reinsel, D.: The digital universe in 2010 : Big data, big-
ger digital shadows, and biggest growth in the far east. ems report
(2013), https://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-
2020.pdf

11. Goi, B.M., Siddiqi, M.U., Chuah, H.T.: Incremental hash function based on pair
chaining & modular arithmetic combining. In: Rangan, C.P., Ding, C. (eds.) IN-
DOCRYPT 2001. LNCS, vol. 2247, pp. 50–61. Springer, Heidelberg, Germany,
Chennai, India (Dec 16–20, 2001)

12. Hart, J.K., Martinez, K.: Environmental sensor networks: A revolution in
the earth system science? Earth-Science Reviews 78(3), 177 – 191 (2006),
http://www.sciencedirect.com/science/article/pii/S0012825206000511

19

13. Itani, W., Kayssi, A.I., Chehab, A.: Energy-efficient incremental integrity for
securing storage in mobile cloud computing. 2010 International Conference on
Energy Aware Computing pp. 1–2 (2010)

14. Micciancio, D.: Oblivious data structures: Applications to cryptography. In: 29th
ACM STOC. pp. 456–464. ACM Press, El Paso, TX, USA (May 4–6, 1997)

15. Mihajloska, H., Gligoroski, D., Samardjiska, S.: Reviving the idea of incre-
mental cryptography for the zettabyte era use case: Incremental hash func-
tions based on SHA-3. Cryptology ePrint Archive, Report 2015/1028 (2015),
http://eprint.iacr.org/2015/1028

16. Mironov, I., Pandey, O., Reingold, O., Segev, G.: Incremental deterministic public-
key encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 628–644. Springer, Heidelberg, Germany, Cambridge, UK (Apr 15–19,
2012)

17. Phan, R.C., Wagner, D.A.: Security considerations for incremental hash func-
tions based on pair block chaining. Computers & Security 25(2), 131–136 (2006),
https://doi.org/10.1016/j.cose.2005.12.006

18. Sasaki, Y., Yasuda, K.: A new mode of operation for incremental authenticated
encryption with associated data. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015.
LNCS, vol. 9566, pp. 397–416. Springer, Heidelberg, Germany, Sackville, NB,
Canada (Aug 12–14, 2016)

A Appendix

20

Original XOR-scheme Algorithms

Algo. MACk1,k2(D)

Σ ← 0L

n← |D|b
r0

$←− {0, 1}(`−b)

r ← r0
R0 ← (D0||r0)
For i = 1 to n− 1 do

ri
$←− {0, 1}(`−b)

r ← r||ri
Ri ← ri||Di

hi ← Fk1(Ri−1, Ri)
Σ ← Σ ⊕ hi

τ ← Pk2(Σ)
T ← (r, τ)
Return (T)

Algo. Dk1,k2(j,D, T)

n← |D|b
r ← T [0 : (n− 1)(`− b)− 1]
τ ← T [(n− 1)(`− b) :]
Rj−1 ← rj−1||Dj−1

Rj ← rj ||Dj

Rj+1 ← rj+1||Dj+1

hj ← Fk1(Rj−1, Rj)
hj+1 ← Fk1(Rj , Rj+1)
h′j ← Fk1(Rj−1, Rj+1)
Σ ← hj ⊕ hj+1 ⊕ h′j
Σ ← Σ ⊕ P−k2

(τ)

τ ← Pk2(Σ)
r ← r0 . . . rj−1||rj+1 . . . rn
T ← (r, τ)

Algo. Vk1,k2(D,T)

Σ ← 0L

n← |D|b
r ← T [0 : (n− 1)(`− b)− 1]
τ ← T [(n− 1)(`− b) :]
R0 ← r0||D0

For i = 1 to n− 1 do
Ri ← ri||Di

hi ← Fk1(Ri−1, Ri)
Σ ← Σ ⊕ hi

τ ’← Pk2(Σ)
If τ ’ = τ

Return 1
Else

Return 0

Algo. Ik1,k2(j,D′j , D,T)

n← |D|b
r ← T [0 : (n− 1)(`− b)− 1]
τ ← T [(n− 1)(`− b) :]

r′j
$←− {0, 1}(`−b)

R′j ← r′j ||D′j
Rj ← rj ||Dj

Rj−1 ← rj ||Dj−1

h′j ← Fk1(Rj−1, R
′
j)

h′j+1 ← Fk1(Rj′ , Rj)
hj ← Fk1(Rj−1, Rj)
Σ ← h′j ⊕ h′j+1 ⊕ hj

Σ ← Σ ⊕ P−k2
(τ)

τ ← Pk2(Σ)
r ← r0 . . . rj−1||r′j ||rj . . . rn
T ← (r, τ)

Fig. 8. Original XOR-scheme Algorithm

21

Modified XOR-scheme Algorithms

Algo. MACk1,k2(D)

Σ ← 0L

n← |D|b
r0

$←− {0, 1}(`−b)

r ← r0
R0 ← r0||D0

For i = 1 to n− 1 do

ri
$←− {0, 1}(`−b)

r ← r||ri
Ri ← ri||Di

hi ← Fk1(Ri−1, Ri)
Σ ← Σ ⊕ hi

rn
$←− {0, 1}(`−b)

Rn ← rn||n
hn ← Fk2(Rn−1, Rn)
τ ← Σ ⊕ hn

T ← (r, τ)

Algo. Dk1,k2(j,D, T)

n← |D|b
r ← T [0 : n(`− b)− 1]
τ ← T [n(`− b) :]
Rj−1 ← rj−1||Dj−1

Rj ← rj ||Dj

Rj+1 ← rj+1||Dj+1

hj ← Fk1(Rj−1, Rj)
hj+1 ← Fk1(Rj , Rj+1)
h′j ← Fk1(Rj−1, Rj+1)
Rn−1 ← rn−1||Dn−1

Rn ← rn||n
hn ← Fk2(Rn−1, Rn)

r′n
$←− {0, 1}(`−b)

R′n ← r′n||(n− 1)
h′n ← Fk2(Rn−1, R

′
n)

Σ ← hj ⊕ hj+1 ⊕ h′j ⊕ hn ⊕ h′n
τ ← τ ⊕Σ
r ← r0 . . . rj−1||rj+1 . . . rn−1||r′n
T ← (r, τ)

Algo. Vk1,k2(D,T)

Σ ← 0L

n← |D|b
r ← T [0 : n(`− b)− 1]
τ ← T [n(`− b) :]
R0 ← D0||r0
For i = 1 to n− 1 do
Ri ← ri||Di

hi ← Fk1(Ri−1, Ri)
Σ ← Σ ⊕ hi

Rn ← (n||rn)
hn ← Fk2(Rn−1, Rn)
τ ← Σ ⊕ hn

If τ ’ = τ
Return 1

Else
Return 0

Algo. Ik1,k2(j,Dj , Dj−1, D
′
j , Dn, T)

n← |D|b
r ← T [0 : n(`− b)− 1]
τ ← T [n(`− b) :]

r′j
$←− {0, 1}(`−b)

R′j ← r′j ||D′j
Rj ← rj ||Dj

Rj−1 ← rj ||Dj−1

Rn−1 ← rn−1||Dn−1

Rn ← rn||n
hn ← Fk2(Rn−1, Rn)

r′n+1
$←− {0, 1}(`−b)

R′n+1 ← r′n+1||(n+ 1)
h′n+1 ← Fk2(Rn−1, R

′
n+1)

h′j ← Fk1(Rj−1, R
′
j)

h′j+1 ← Fk1(Rj′ , Rj+1)
hj ← Fk1(Rj−1, Rj)
Σ ← h′j ⊕ h′j+1 ⊕ hj ⊕ hn ⊕ h′n+1

τ ← τ ⊕Σ
r ← r0 . . . rj−1||r′j ||rj . . . rn−1||r′n+1

T ← (r, τ)

Fig. 9. Modified XOR-scheme Algorithm.

