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Abstract. In-depth scene descriptions and question answering tasks
have greatly increased the scope of today’s definition of scene under-
standing. While such tasks are in principle open ended, current formu-
lations primarily focus on describing only the current state of the scenes
under consideration. In contrast, in this paper, we focus on the future
states of the scenes which are also conditioned on actions. We posit this
as a question answering task, where an answer has to be given about a
future scene state, given observations of the current scene, and a ques-
tion that includes a hypothetical action. Our solution is a hybrid model
which integrates a physics engine into a question answering architecture
in order to anticipate future scene states resulting from object-object
interactions caused by an action. We demonstrate first results on this
challenging new problem and compare to baselines, where we outper-
form fully data-driven end-to-end learning approaches.

Keywords: Scene understanding, Visual Turing Test, Visual question
answering, Intuitive physics

1 Introduction

While traditional scene understanding involves deriving bottom-up scene rep-
resentations such as object bounding boxes and segmentation, in recent years
alternative approaches such as scene captioning and question answering have
become increasingly popular. These do not strive for a particular type of rep-
resentation of the input scene, but rather formulate an alternative task that
requires a more holistic scene understanding. Such approaches have been very
successful and have shown great advances in extracting the semantic scene con-
tent by deriving captions and answers about diverse scene elements.

Beyond the estimation of the “status quo” of a visual scene, recent deep
learning approaches have shown improved capabilities of forecasting scenes into
the future. This is particularly useful for autonomous agents (e.g., robots or

* These authors contributed equally to this work.
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driving assistants) that have to plan ahead and act safely in dynamically chang-
ing environments. Recent approaches show extrapolation of complete videos [1],
edge information [2] or object trajectories [3,4]. However, with increasing time
horizons and complexity of the scenes, such quantitative predictions become in-
creasingly difficult. In addition, extrapolation of complete image data might be
wasteful and overly difficult to achieve.

Furthermore, current work on anticipation and forecasting is typically not in-
teractive, meaning that the agent is acting purely as a passive observer. However,
in many real-world applications, an agent is faced with the task of evaluating
multiple different potential actions that will cause diverse outcomes. The future
is therefore often conditioned on the actions of the agent which is not handled
by the state-of-the-art methods.

Therefore, we argue for a qualitative prediction of the future conditioned
on an action. We phrase this as the Answering Visual What-If Questions task,
where the answer is conditioned on an observation and question including a
hypothetical action. This formulation allows us to evaluate a model’s forecasting
abilities conditioned on a hypothetical action, and at the same time allows for
sparse representation of the future where not all details of the scene or object
interactions have to be fully modeled.

We provide the first investigation of this challenging problem in a table top
scenario where a set of objects is placed in a challenging configuration and dif-
ferent actions can be taken. Dependent on the action, the objects will interact
according to the physics of the scene and will cause a certain outcome in terms
of object trajectories. The task is to describe the outcome with respect to the
action. In order to address this problem we couple the question answering ap-
proach with a physics engine — resulting in a hybrid model. While several parts
of the method, such as inferring the action from the question and predicting
the answer, are data-driven, the core aspect of our model that predicts future
outcomes is model-based (using a physics engine).

The contributions of this paper are as follows:

— We define a new challenge called Visual What-If Question answering (WIQ)
that brings together question answering with anticipation.

— We propose the first dataset for the WIQ task based on table-top interactions
between multiple objects called TIWIQ.

— We propose the first hybrid model that uses a physics engine together with
a question answering architecture.

2 Related Work

Learning Physics and Future Predictions: Coping with the physical world
by predicting how objects interact with each other using rules of physics is
among the pillars of human intelligence. This type of intuitive understanding of
physics, often referred to as “intuitive physics” [5], is also becoming of interest to
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machine learning researchers. The “NeuroAnimator” is among the first learning-
based architectures trained to simulate physical dynamics based on observations
of physics-based models [6]. Although the “NeuroAnimator” is mainly motivated
by efficiency, others have realized that learning-based architectures may be key
components to learn the whole spectrum of physical reasoning that humans pos-
sess. For instance, [7] argues that a cognitive mechanism responsible for physical
reasoning may resemble an engine that simulates complex interactions between
different physical objects, and can be implemented by “graph neural networks”
[8,9] or by an engineered physics engine [10]. In this work, our hybrid model also
uses a physics engine, but unlike [10] we are less interested in inferring latent
physics properties of two objects from videos, but rather in a forward model of
physics for the purpose of answering questions. A complementary line of research
has shown that convolutional neural networks (CNN) are capable to some extent
of physical reasoning such as stability prediction [3,11,12], or future frame syn-
thesis from RGB-D input [13, 1, 2] or even static images [14, 4]. These approaches
to physical intelligence focus on testing this understanding either by trying to
extrapolate sensory data into the future (predicting video frames) or by inferring
individual properties (predicting stability or physics properties). In contrast, we
propose to achieve qualitative physical understanding, where we want the model
to have general understanding of physical processes but not necessarily the abil-
ity to make precise prediction.

Visual Question Answering (Visual QA): This is a recently introduced re-
search area [15, 16] that attempts to build and understand if machines can learn
to explain the surrounding environment only based on questions and answers.
Since then, the community has seen a proliferation of various datasets [17-23],
including the most popular VQA [24], as well as numerous methods [15, 18, 25—
29]. Although most of the questions involve static scenes, and are either related
to objects, attributes, or activities, there are some that require understanding
of physics at the “intuitive level”. Consider even such seemingly simple question
as “What is on the table?”. To interpret this question, understanding of “on” is
needed, and this involves physical forces such as gravity. In spite of the existence
of such questions in the aforementioned datasets, due to lack of interactions, it
is hardly possible the learnt models can really understand them, and likely they
only rely on visual correlations. In our work, through the interactions, and ex-
ploitation of physics, we can train architectures that, we hypothesize, can model
physical interactions between objects.

Simulations and Machine Learning: Since it is difficult to generate realistic
data that includes complex physical interactions, most approaches either rely
on short videos with limited exposition to physics [13,1,2] or on synthetically
generated data [8,9, 12, 30]. This problem of lacking good realistic environments
with rich physical interactions also governs the research on reinforcement learn-
ing [31], where the community often relies on game-like environments [32-35].
Since there is no publicly available realistic environment that has rich enough
physical interactions that we are interested in, we build a dataset consisting of
3D scenes, with physical interactions, and with realistically textured objects.
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3 Visual What-If Questions (WIQ) Task

While Visual QA evaluates the scene understanding of a passive agent, this is
not sufficient for an active agent that needs to anticipate the consequences of
its actions and communicate about them. To study this aspect of scene under-
standing, we propose the task of answering “what-if” questions pertaining to a
visual scene. The agent is shown an input scene with multiple objects and is
given a hypothetical action description. It then has to describe what happens to
different objects in the scene, given that it performs the specified action. This
amounts to answering questions of the form “If I perform action A, what hap-
pens to object X?”. To answer such questions the agent has to parse the natural
language description of the action to infer the action type and target object on
which the action is applied, along with the corresponding parameters such as
the initial force. Then the agent needs to anticipate the consequences of this ac-
tion on different objects in the scene, and finally verbalize its predictions. This
combines the challenges involved in the standard VQA task [24] with intuitive
physics [8] and the future state anticipation tasks [36].

3.1 Table-top Interaction Visual What-If Questions (TIWIQ)
Dataset

Existing Visual QA datasets [15, 18, 24] focus on static scenes, whereas datasets
commonly used in future prediction tasks such as CityScapes [37] involve a pas-
sive observer (future states are not conditioned on the agent’s action). Since we
are interested in the question answering task involving “physical intelligence”,
we collect a new table-top interaction visual what-if questions (TIWIQ) dataset.
This dataset has synthetic table-top scenes, with pairs of action descriptions and
ground-truth descriptions of the outcomes of the specified action. We stick to
synthetic scenes and a physics simulation engine to build this dataset as it pro-
vides physics, and enables controlled experimentation.

Scenes: To obtain the TIWIQ dataset we instantiate random table-top scenes in
a physics engine, simulate actions on these scenes and collect human annotations
describing the actions and the consequences. Each training sample in the TIWIQ
dataset contains a table-top scene with five objects, each randomly placed upon
the table. The five objects are chosen from eight items from the YCB Object
Dataset [38]: a foam brick, a cheez-it box, a chocolate pudding box, a mustard
bottle, a banana, a softball, a ground coffee can, and a screwdriver.

Actions: A random action is chosen to be performed on a single random object,
simulated using the Bullet 3 [39] physics engine. The resulting trajectories are
rendered into a video of the interactions. The actions can be one of four: 1. Push
an object in a specific direction. 2. Rotate an object clockwise or anti-clockwise.
3. Remove an object from the scene. 4. Drop an object on another object.
Annotation: The objects shown in rendered videos have colored outlines, and
when questions are posed to annotators, objects are referred to by their outline
color rather than their name. This avoids the questions biasing the annotator’s
vocabulary with regard to object names.
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Human Baseline: We have also collected a human performance benchmark on
the visual what-if question answering task on the TTWIQ dataset. To obtain the
human performance baseline, the annotators were shown a static image of the
scene and a description of the action to be performed and were asked to describe
what happens to different objects in the scene. We compare the performance of
the model proposed in section 4 to this human performance benchmark.
Dataset Statistics: We have generated and annotated 15 batches of data. Each
batch has 17 examples of each action, totaling 68 examples per batch. In total,
we have 1020 annotated examples. Three batches, totaling 204 examples and
20% of the dataset, are dedicated to testing. For each scene, there are four
generated descriptions (one for each object that is not being acted on), therefore
there are 4080 (1020 * 4) annotated descriptions. However, descriptions relate to
movement or interactions between objects only around 25% of the time. This
is due to the random placement of objects sometimes resulting in scenes with
spatially separated objects, and therefore some actions having no impact on most
objects in a scene. This results in approximately 1000 movement and interaction
descriptions across the dataset. Only these annotations are used to train the
description generation model.

Vocabulary Statistics: The vocabulary of the dataset is explored by counting
the number of unique words used across the dataset (1-gram), as well as the
number of unique n-grams for values 2 to 5 (2,3,4,5-grams). This is shown in
Table 1. These statistics are reported for the action description annotations,
the action effect annotations, and the two together. It is worth noting that the
vocabulary of the action description dataset is significantly smaller than the
vocabulary of the effect description dataset. This is due to the range of actions
being specified by the design of the scenario, while the range of effects has no
such constraints.

Table 1. The size of the vocabulary for the action and effect descriptions and the whole
TIWIQ dataset, including the average sentence length and the number of unique n-
grams in each subset of the dataset.

Descriptions Length 1-gram 2-grams 3-grams 4-grams 5-grams

Action 9.63 107 323 565 757 867
Effect 7.663 110 403 724 981 1,075
All 8.582 152 619 1,171 1,653 1,895

4 Our Model

Recent advances in Deep Learning architectures have dominated Visual QA and
image captioning tasks. The dominant approach is to use end-to-end trainable
neural networks which take the inputs, e.g. image and question, and predict
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the answer. The whole model is learned purely from the data. Driven by siz-
able datasets, they have outperformed previous purely model-based approaches
e.g. relying on semantic parsing or rule-based systems [15,25]. Although latest
work has also shown early success at applying this end-to-end machine learning
paradigm to predicting future states of a scene, the time horizon remains limited
to a few frames and rich object interactions are typically not considered, or the
scenes are greatly simplified [2,9,11]. Therefore, we argue for a hybrid model.
We use a physics engine as a backbone in order to simulate outcomes of hypo-
thetical actions, but we embed the simulation into learning-based components
that drive the simulation as well as interpret its outcome in terms of a natural
language output.

4.1 Model Overview

The proposed hybrid question answering model consists of three distinct compo-
nents as shown in Fig. 1. There are two inputs to the whole model. The first is
a list of object types and their initial pose (position in 3-dimensional space, and
a 3x3 rotation matrix) in the scene. We always assume the same table position
for every case. The second input is the action description. This was provided by
human annotators, and describes some action performed on one of the objects
in the scene, for example “The robot pushes the mustard container to the left”.

Both inputs are used by a “parser” (we use a neural network as the parser)
to extract parameters of the action to be performed. This includes parsing the
action type, object to be acted upon and parameters of the action. This ex-
tracted information serves as an input to a physics engine, which then simulates
the parsed actions on the input scene to produce trajectories for each object
in the scene. While these trajectories encode everything that happened in the
simulation, they are not human readable. The description model takes these tra-
jectories as input and produces a natural language summary of the state of each
object under the influence of this action. The action parser model and descrip-
tion models are comprised of neural networks and their parameters are learned
from the data. The physics engine is model driven and has no trainable param-
eters. In the following subsections we discuss each of these components and how
they interact in more details.

Input Action
\Push the banana towards the| T};}*"&a:)le
mustard can odels
Action Object
Action Description Parameters Physics Engine Trajectories Description Model

Parser Output

Fixed

Description
Parameters What happens to
stard can ?

Fig. 1. Overall architecture of the proposed hybrid QA model.

Input Scene
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As well as being described in this document, all models are illustrated accu-
rately in the corresponding figures. Each component in the illustrations describes
a single layer, whether it is an RNN or a fully connected layer. All details of the
layers are given in the supplementary material. This includes layer sizes, dropout,
and activation functions.

4.2 Action Description Parser

The first step in the pipeline is parsing the
exact nature of the action to be performed
Exdracting Information from the Action Description from the lllf)llt Sentence description. Thls

T model forms part of Fig. 2. It consists of
Description

three components with a total of five neu-

ral networks, shown in Fig. 3. First com-
Physics
Engine

ponent is the Action Type Model which
infers the type of the action described in
the input (push, rotate, drop or remove).
This is a recurrent neural network (RNN)
that embeds the tokenized action descrip-
tion, iterates over it using a long short-
term memory (LSTM) model, and puts
the final output of the LSTM through a
fully connected layer with softmax acti-
' vation. These outputs are treated as the
— probability that each action type was de-

I v scribed in the action descript.ion.
Descriptions [ untsinable The second component is the Acted
Generaling Descrptions [Jwpwouni Object Model, which predicts the object
in the input scene on which the described
Fig. 2. Tllustration of the interaction of action is to be performed. The structure is
subcomponents of the action descrip-  identical to the Action Type Model, with
tion parser when inferring parameters he exception that it outputs probabilities
of the action to be performed from in- ¢ o5 h class being the object to act upon.
put sentence. Finally, the third component is a set
of Action Parameter Models, which infer the exact parameters of the action
depending on the action type. Depending on the inferred action type, one of
four things happens. If the action type is a push, rotate, or drop action, then
the corresponding parameter model is called with the action description and the
input scene. If it is a remove action, no parameters need to be inferred as the

object is simply removed from the scene.

There are parameter models for three of the four actions: push, rotate, and
drop. Each of these models use recurrent networks for embedding the action
description specific to the action type.

The Push Parameter Model infers the direction of the push by outputting
a (z,y) push direction vector in its final layer. The activation for this layer is
sigmoid in order to cap both components from -1 to 1. When the physics engine
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simulates this push direction, the (z,y) components are converted into an angle,
removing the magnitude of the push.

The Rotate Parameter Model is a binary classifier which predicts whether the
rotation is clockwise or anti-clockwise, using softmax activation for classification.

The Drop Parameter Model outputs a classification of which other object the
acted object is dropped on. This also has a softmax activation for the classifica-
tion, running over all possible objects.

Each component model that has text as input requires the text to be embed-
ded. When it provided an improvement in performance, GloVe pre-trained word
embeddings[40] were used. Details on which layers used pre-trained embeddings,
including the size of the embeddings, is given in the supplementary material.

4.3 Physics Simulation

The Acted Object Model extracts the ac-
tion type, the object of interest, and the
parameters of the action. We use Bul-

let 3 [39] as a physics engine, with ob- AT;E:]EC' AT;:sfd
ject representations from the YCB Object Dlesidilgitar Dt
Dataset [38]. We use object convex de-
compositions for collision detection which [ reanesie
are calculated using VHACD, an algo- [] unrainate
rithm included in the Bullet 3 source code. [ mpuvouteut
Pushes and rotations are implemented via —
impulses.

The physics engine is initialized with e ‘ RIS
initial object poses. The engine is run for
one second of simulation time in order for Annotated Annotated Annotated
ObjeCtS to settle in. De}:glc'lig?ion De':gtrliggon Dezg:li:?ion

The inferred action is then performed
on the inferred object, and the simula-
tion is run for a total of five seconds at
a sampling rate of 300Hz. Trajectories for
each object are extracted from the simu-
lation as a list of translation and rotation
pairs, where the translation is a point in 3- Push Rotation
dimensional space and the rotation is rep- clreetion drection
resented by a 3x3 rotation matrix.

We then run a simple algorithm to
check if an object was affected by the ac-
tion. To do this, we look at the trajectory
for a single object, normalize the pose using a standard deviation and mean
estimated from the entire training data set, and then calculate the standard
deviation of both the translation and rotation, resulting in two floating point
values. We say that an object was affected by the action if either of these values
exceed a certain threshold. These thresholds were calculated by running a grid

| I

L
i
1}

Drop target

Fig. 3. Illustrations of the action pars-
ing models. Between them, only the fi-
nal fully connected (FC) layers differ.
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search over possible threshold values for either value, and picking the pair that
resulted in the best classification accuracy on the training set.

4.4 Generating Descriptions

The Description Model shown in Fig. 4 uses the trajectories from the physics
simulation to produce a one sentence summary of the effect of the action on
each object in the scene. This model is run independently for each generated
description with the following inputs: 1. The action description. 2. The object
class to describe. 3. The trajectory of the object to describe. 4. A list of other
object classes in the scene. 5. A list of other object trajectories in the scene.

The object classes are encoded as a one-hot vector, and the trajectories are
encoded as a list of points in 3-dimensional space.

At training time, ground truth trajectories are used, but when the complete
hybrid model is being evaluated, predicted trajectories are generated via physics
simulation.

The description model works in two stages. First the input trajectories of
the target object (whose state is being described) and other objects in the scene
are compared and trajectory embeddings are obtained. Then these trajectory
embeddings and action description embeddings are input to a decoder LSTM
language model, which generates the final description.

To obtain the trajectory embeddings we iterate over each of the other objects
in the scene — that is, the ones that are not currently being described. For each
object, we compute the difference between its trajectory and the trajectory of
the object to be described, at each time step. These difference vectors are then
embedded and iterated over using an LSTM. The initial state of this LSTM is
provided by embedding both of the object classes and putting them through
a fully connected layer. The final hidden state of this LSTM should encode
the interactions between the two objects. This output trajectory embedding is
concatenated with the object encodings of the two relevant objects. We find that
including these embeddings after as well as before the trajectory encoding LSTM
improves the overall model’s performance.

The input action description is encoded using an LSTM (as in earlier mod-
els, such as the action description model). A fully connected layer is used to
transform the concatenated trajectory embedding vector and the encoded input
instruction into the right dimensions and is used to initialize the hidden state of
the decoder LSTM. The input for the decoder LSTM at time ¢y is the start of
sentence token, and the input at time ¢; is the output from ¢;_1. At each step the
decoder LSTM outputs the next word and this repeats until the end of sentence
token is predicted. This process is carried out to generate a description for each
object in the scene.

4.5 Implementation Details
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We have implemented the hybrid model and all

components in Python using the Keras [41] li- o s
brary with the TensorFlow [42] backend. For the jlijectory lass

description model, custom layers were introduced
into Keras using TensorFlow. Overall runtime of
the system is 1.76s, where prediction time of the
Action Description Parser and Description Gener-

Other Object’s
Class

ation is negligible. Almost all time is spent in the 03}235
simulation part. For reproducibility and to stim- Trajectory
ulate more work on this challenge, we will release : l il st
code, models and setup. L] 2?;?;;8
Timestep
Done for each
5 Results bong doscried

We evaluate our overall hybrid approach as well
as the individual components on the proposed
dataset as well as compare to an end-to-end learn-
ing and human baseline. We provide example re-
sults and analyses that highlight the benefits of
our approach.

Passed as
initial state

. Trainable
5.1 Performance of Hybrid Model Output [ ] untrainable
Descriptions
Components P [] impuoutput

We separately evaluate the performance of the six
components of the hybrid model, using ground description model. The section
truth annotations at these intermediate stages. .tlined in a gray square is run
First, we show the performance of the action de- for every object that isn’t the
scription information extraction models (action object that is currently being
type model, acted object model, push / rotate described.

/ drop parameter model) in table 2. We created

simple support vector machine (SVM) baselines

in order to benchmark the more powerful neural

models. The input to these SVMs is a vector of word counts for every word in the
data vocabulary. We find that in all cases bar one, the neural models significantly
outperform SVMs, as shown in Table 2. The exception is the rotation parameter
model, which is outperformed by 5.8%. The performance for the rotation param-
eter model is particularly poor due to noisy annotations in the cases of rotation
actions. Through looking at a small subset of the rotation action annotations,
we have found that 30-40% of the annotations are mislabeled in some way —
either giving the wrong rotational direction, or annotated as a push action.

To compare the push parameter model with a classification network, we dis-
cretize the angle inferred by the neural model into eight directions (e.g. left,
top-left, up). The SVM also classifies to one of those eight directions, allowing
us to compare the performance of these two models.

Fig. 4. An illustration of the
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5.2 Quantifying the Hybrid Model Performance

We will now quantify the performance
of the proposed hybrid model and
baselines on the test set.

Metrics: To measure the descrip-
tion performance we use the stan-

Table 2. Comparing classification accuracy
of neural network based and SVM based
models on different tasks.

dard metrics used in evaluating im- Task NN SVM
age captioning models such as BLEU, Action T 97.5% 97%
CIDEr, ROUGE and a custom metric AZt:?inOgjiit 94;% 0 90%(?
COM (“Correct Objects Mentioned”) Push Parameters 90%  44%

that we fiesigne.d for this specific pr(?b- Rotation Parameters 68%  72%
lem. This metric searches the descrip- Dropb Parameters 920% 36%
) i . p Parameters () 0
tions for different object names, creat-
ing a list of objects mentioned in the
text. This is done for both the prediction and the ground truth. The COM metric
is computed as the intersection over union of these two sets. The upper-bound
for COM is 1, and occurs when all correct objects are mentioned in all pre-
dictions for a scene. Image captioning metrics such as BLEU focus on overall
n-gram matching of the generated description with the ground truth, regard-
less of the importance of each word, whereas COM directly measures how well
models identify the acting objects in a scene.
Hybrid Model Compared to Baselines: We compare the performance of
the hybrid model against three other baselines on the test set. The first is a
pure data-driven model, an end-to-end trainable neural network illustrated in
figure 5. The inputs to this network are the input action description, the initial
scene, and the object to describe. The action description is embedded and then
run through an LSTM and the final output of this LSTM is taken. Each class
and pose in the initial scene is flattened into a vector, and each of these is put
through a fully connected layer and summed together. The object to describe is
encoded as a one-hot vector and passed through a fully connected layer. Each of
these encodings are concatenated together and treated as input for the decoder
LSTM, which generates a description for the specified object class.
Human Baseline and “Upper Bound”: The second set of descriptions is
from a human baseline, mentioned in section 3.1. Human annotators were shown
the input scene and action description, but not the video of the action taking
place. They were asked to describe what happens to each object. This simulates
the same task tackled by the hybrid, and pure data-driven models. Finally, the
third baseline is obtained by feeding the ground-truth trajectories to the descrip-
tion model. This represents an upper-bound on the hybrid model performance.
Discussion: We find that the hybrid model outperforms the data-driven model
in all metrics, with an increase of 15.4% in the BLEU metric, and an increase of
20.5% in the COM metric, as illustrated in table 3. This provides evidence for
incorporating a physics engine for solving physics based anticipation problems
over a pure data-driven approach. The performance of the hybrid model is close
to its upper-bound description model and this gap comes from the cases where
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Other Other Described Action ] ranetie
Object's Object's Object's Description | [ | untrainable
Pose Class Class D Input/Output

Done for each
object that isn't
being described

Output
Descriptions

Fig. 5. Illustration of the data-driven model.

the action parsing model failed. However, there is still a gap in performance in
terms of the COM metric between the proposed hybrid model and the human
benchmark, indicating the scope for future improvements.

Human Baseline Discussion: Under most metrics, the hybrid model out-
performs the human baseline. However, this is misleading: the human baseline
contains high-quality annotations, and under domain-specific metrics such as
COM, is evaluated with a near-perfect score (0.953). Its large error in BLUE,
CIDEr, and ROUGE results from the differing vocabularies between the human
baseline and the ground truth. For this reason, comparison between the hybrid
model and the human baseline is difficult to achieve using these metrics; a similar
problem is common in the image captioning domain.

Table 3. Comparison of description generating models. Best values between the hybrid
model and data-driven model are highlighted. This shows that the hybrid model exceeds
the data-driven model and even the human baseline in some metrics.

Model BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE COM

Description Model 0.280  0.439  0.345 0.203 0.133 1.118 0.421 0.671
Human Baseline 0.191 0.207 0.192 0.186 0.181 1.849  0.209 0.953
Hybrid Model 0.262 0.407 0.322 0.184 0.134 1.118 0.396 0.640
Data-Driven Model 0.227  0.375 0.282 0.154  0.099 0.896 0.376 0.531

5.3 Qualitative analysis

We provide qualitative examples and analysis in table 5. In these examples, the
hybrid model can be seen generating more specific and accurate descriptions of
the results of actions compared to the data-driven model. There are three main
failure cases of the data-driven model.
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The first of these is shown in row 1 of table 5. In this example, the hybrid
model correctly predicts the object which hits the foam (in this case the screw-
driver) while the data-driven approach predicts that a different object in the
scene will hit the foam. Accuracy is lost here due to the data-driven model not
being able to reliably infer the object that interacted with the subject object.
Our hybrid model performs better in this case, presumably because it was able
to use the trajectories from the physics engine to infer the correct object.

The second main failure case is shown in row 2. Both models are correct but
the hybrid model gives a more precise description, stating correctly which object
hit the mustard container. The data-driven model gives a more vague description
by not stating the acting object and just describing the movement.

The third failure case is shown in row 3. Often, the data-driven model pro-
duces a description where both the object being acted on and the object affecting
it are the same. This could be due to the data-driven model making the best
guess it can — if it knows that the class “screw driver” appears in the text but
does not know what the other object could be, and it knows that the sentence
should reference two objects, then it may choose to mention “screw driver” twice
in the sentence. This failure case, although more prevalent in the data-driven
model, shows up in the hybrid model too as seen in row 4 of table 5.

There is a failure case unique to the hybrid model. The data-driven model
was trained only on cases where the action did have an effect on the object.
However, the hybrid model has to infer whether there was an effect. This results
in some cases where the hybrid model misclassifies the object as “not moving”
and generates the “nothing” description. An example of this case is shown in
row 5 of table 5.

5.4 Ablation Analysis

We also analyze the error introduced by the different components within the
hybrid model. We do this by introducing, one-by-one, the ground truth values
for a particular component instead of the predicted values. The results of this
are shown in table 4. We can see that introducing the ground-truth for whether
an object moved provides the biggest increase in performance, implying that the
hybrid model loses a lot of accuracy when predicting whether an object moved.
Conversely, we can also see that the Action Type and Acted Object models
introduce relatively small amounts of error, suggesting they correctly model the
ground truth.

6 Conclusion

We have proposed a new task that combines scene understanding with anticipa-
tion of future scene states. We argue that this type of “physical intelligence” is a
key competence of an agent that is interacting with an environment and tries to
evaluate different alternatives. In contrast to prior work on quantitative predic-
tions of future states, here, we focus on a qualitative prediction that describes
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Table 4. Comparison of how the performance of the hybrid model improves when
cumulatively adding truth values for each of the components.

Model BLEU CIDEr ROUGE COM
All Predictions: 0.262 1.118 0.396 0.640
With True Action Type: 0.264 1.126 0.398 0.644
...and True Acted Object: 0.265 1.129 0.400  0.646
...and True Action Parameters: 0.272 1.153 0.406 0.662
...and True Trajectories: 0.268 1.086 0.401 0.645

...and True Object Acted On: 0.283 1.133 0.424  0.673

the outcome for a certain object with a natural language utterance. Owing to
such a formulation, we can train and evaluate our agent on long-term future
anticipation, where the model can easily ignore irrelevant details of the scene or
the interactions. This contrasts with future frame synthesis where all the details
have to be correctly modeled.

Due to the lack of suitable datasets, we introduced the first dataset and an
evaluation protocol for this challenging task. Our proposed model is the first that
combines a question answering architecture with a physics engine and verbalizes
different outcomes dependent on the visual and language input. In particular,
our hybrid model outperforms a purely data-driven Deep Learning baseline. We
believe that such hybrid models that combine a complex simulation engine with
data-driven components represent an exciting avenue for further research as they
allow for generalization, scalability and improved performance in challenging
scenarios with a high combinatorial complexity.
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