
Deep Fundamental Matrix Estimation without
Correspondences

Omid Poursaeed*1,2, Guandao Yang*1, Aditya Prakash*3, Qiuren Fang1, Hanqing
Jiang1, Bharath Hariharan1, and Serge Belongie1,2

1 Cornell University
2 Cornell Tech

3 Indian Institute of Technology Roorkee

Abstract. Estimating fundamental matrices is a classic problem in computer
vision. Traditional methods rely heavily on the correctness of estimated key-point
correspondences, which can be noisy and unreliable. As a result, it is difficult for
these methods to handle image pairs with large occlusion or significantly different
camera poses. In this paper, we propose novel neural network architectures to
estimate fundamental matrices in an end-to-end manner without relying on point
correspondences. New modules and layers are introduced in order to preserve
mathematical properties of the fundamental matrix as a homogeneous rank-2
matrix with seven degrees of freedom. We analyze performance of the proposed
models using various metrics on the KITTI dataset, and show that they achieve
competitive performance with traditional methods without the need for extracting
correspondences.
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The Fundamental matrix (F-matrix) contains rich information relating two stereo images.
The ability to estimate fundamental matrices is essential for many computer vision
applications such as camera calibration and localization, image rectification, depth
estimation and 3D reconstruction. The current approach to this problem is based on
detecting and matching local feature points, and using the obtained correspondences
to compute the fundamental matrix by solving an optimization problem about the
epipolar constraints [27,16]. The performance of such methods is highly dependent
on the accuracy of the local feature matches, which are based on algorithms such as
SIFT [28]. However, these methods are not always reliable, especially when there is
occlusion, large translation or rotation between images of the scene.

In this paper, we propose end-to-end trainable convolutional neural networks for
F-matrix estimation that do not rely on key-point correspondences. The main challenge
of directly regressing the entries of the F-matrix is to preserve its mathematical prop-
erties as a homogeneous rank-2 matrix with seven degrees of freedom. We propose a
reconstruction module and a normalization layer (Sec. 2.2) to address this challenge.
We demonstrate that by using these layers, we can accurately estimate the fundamental
matrix, while a simple regression approach does not yield good results. Our detailed
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network architectures are presented in Sec. 2. Empirical experiments are performed on
the KITTI dataset [13] in Sec. 3. The results indicate that we can achieve competitive
results with traditional methods without relying on correspondences.

1 Background and Related Work

1.1 Fundamental Matrix and Epipolar Geometry

When two cameras view the same 3D scene from different viewpoints, geometric
relations among the 3D points and their projections onto the 2D plane lead to constraints
on the image points. This intrinsic projective geometry is referred to as the epipolar
geometry, and is encapsulated by the fundamental matrix F. This matrix only depends
on the cameras’ internal parameters and their relative pose, and can be computed as:

F = K2
−T [t]×RK1

−1 (1)

where K1 and K2 represent camera intrinsics, and R and [t]× are the relative camera
rotation and translation respectively [16]. More specifically:

Ki =

f−1i 0 cx
0 f−1i cy
0 0 1

 (2)

t× =

 0 −tz ty
tz 0 −tx
−ty tx 0

 (3)

R = Rx(rx)Ry(ry)Rz(rz) (4)

in which (cx, cy)
T is the principal point of the camera, fi is the focal length of camera

i = 1, 2, and tx, ty and tz are the relative displacements along the x, y and z axes
respectively. R is the rotation matrix which can be decomposed into rotations along x, y
and z axes. We assume that the principal point is in the middle of the image plane.

While the fundamental matrix is independent of the scene structure, it can be com-
puted from correspondences of projected scene points alone, without requiring knowl-
edge of the cameras’ internal parameters or relative pose. If p and q are matching points
in two stereo images, the fundamental matrix F satisfies the equation:

qTFp = 0 (5)

Writing p = (x, y, 1)T and q = (x′, y′, 1)T and F = [fij ], equation 5 can be written as:

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0. (6)

Let f represent the 9-vector made up of the entries of F. Then equation 6 can be written
as:

(x′x, x′y, x′, y′x, y′y, y′, x, y, 1)f = 0 (7)
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A set of linear equations can be obtained from n point correspondences:

Af =


x′1x1 x′1y1 x

′
1 y
′
1x1 y′1y1 y

′
1 x1 y1 1

...
...

...
...

...
...

...
...

...
x′nxn x

′
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′
n y
′
nxn y

′
nyn y

′
n xn yn 1

 f = 0 (8)

Various methods have been proposed for estimating fundamental matrices based on
equation 8. The simplest method is the eight-point algorithm which was proposed by
Longuet-Higgins [27]. Using (at least) 8 point correspondences, it computes a (least-
squares) solution to equation 8. It enforces the rank-2 constraint using Singular Value
Decomposition (SVD), and finds a matrix with the minimum Frobenius distance to the
computed (rank-3) solution. Hartley [17] proposed a normalized version of the eight-
point algorithm which achieves improved results and better stability. The algorithm
involves translation and scaling of the points in the image before formulating the linear
equation 8.

The Algebraic Minimization algorithm uses a different procedure for enforcing the
rank-2 constraint. It tries to minimize the algebraic error A‖f‖ subject to‖f‖ = 1. It
uses the fact that we can write the singular fundamental matrix as F = M[e]× where
M is a non-singular matrix and [e]× is a skew-symmetric matrix with e corresponding
to the epipole in the first image. This equation can be written as f = Em, where f and
m are vectors comprised of entries of F and M, and E is a 9× 9 matrix comprised of
elements of [e]×. Then the minimization problem becomes:

minimize ‖AEm‖ subject to ‖Em‖ = 1 (9)

To solve this optimization problem, we can start from an initial estimate of F and set e
as the generator of the right null space of F. Then we can iteratively update e and F to
minimize the algebraic error. More details are given in [16].

The Gold Standard geometric algorithm assumes that the noise in image point
measurements obeys a Gaussian distribution. It tries to find the Maximum Likelihood
estimate of the fundamental matrix which minimizes the geometric distance∑

i

d(pi, p̂i)
2 + d(qi, q̂i)

2 (10)

in which pi and qi are true correspondences satisfying equation 5, and p̂i and q̂i are the
estimated correspondences.

Another algorithm uses RANSAC [11] to compute the fundamental matrix. It com-
putes interest points in each image, and finds correspondences based on proximity
and similarity of their intensity neighborhood. In each iteration, it randomly samples
7 correspondences and computes the F-matrix based on them. It then calculates the
re-projection error for each correspondence, and counts the number of inliers for which
the error is less than a specified threshold. After sufficient number of iterations, it
chooses the F-matrix with the largest number of inliers. A generalization of RANSAC
is MLESAC [40], which adopts the same sampling strategy as RANSAC to generate
putative solutions, but chooses the solution that maximizes the likelihood rather than
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just the number of inliers. MAPSAC [39] (Maximum A Posteriori SAmple Consensus)
improves MLESAC by being more robust against noise and outliers including Bayesian
probabilities in minimization. A global search genetic algorithm combined with a local
search hill climbing algorithm is proposed in [45] to optimize MAPSAC algorithm for
estimating fundamental matrices. [42] proposes an algorithm to cope with the problem
of fundamental matrix estimation for binocular vision system used in wild field. It first
acquires the edge points using Canny edge detector, and then gets the pre-matched points
by the GMM-based point set registration algorithm. It then computes the fundamental
matrix using the RANSAC algorithm. [10] proposes to use adaptive penalty methods for
valid estimation of Essential matrices as a product of translation and rotation matrices.
A new technique for calculating the fundamental matrix combined with feature lines
is introduced in [49]. The interested reader is referred to [1] for a survey of various
methods for estimating the F-matrix.

1.2 Deep Learning for Multi-view Geometry

Deep neural networks have achieved state-of-the-art performance on tasks such as
image recognition [24,18,38,37], semantic segmentation [26,3,43,47], object detec-
tion [14,35,34], scene understanding [23,48,32] and generative modeling [15,33,19,44,31]
in the last few years. Recently, there has been a surge of interest in using deep learning for
classic geometric problems in Computer Vision. A method for estimating relative camera
pose using convolutional neural networks is presented in [29]. It uses a simple convolu-
tional network with spatial pyramid pooling and fully connected layers to compute the
relative rotation and translation of the camera. An approach for camera re-localization is
presented in [25] which localizes a given query image by using a convolutional neural
network for first retrieving similar database images and then predicting the relative pose
between the query and the database images with known poses. The camera location for
the query image is obtained via triangulation from two relative translation estimates
using a RANSAC-based approach. [41] uses a deep convolutional neural network to
directly estimate the focal length of the camera using only raw pixel intensities as input
features. [2] proposes two strategies for differentiating the RANSAC algorithm: using a
soft argmax operator, and probabilistic selection. [12] leverages deep neural networks
for 6-DOF tracking of rigid objects.

[5] presents a deep convolutional neural network for estimating the relative ho-
mography between a pair of images. A more complicated algorithm is proposed in [8]
which contains a hierarchy of twin convolutional regression networks to estimate the
homography between a pair of images. [7] introduces two deep convolutional neural
networks, MagicPoint and MagicWarp. MagicPoint extracts salient 2D points from a
single image. MagicWarp operates on pairs of point images (outputs of MagicPoint),
and estimates the homography that relates the inputs. [30] proposes an unsupervised
learning algorithm that trains a deep convolutional neural network to estimate planar
homographies. A self-supervised framework for training interest point detectors and
descriptors is presented in [6]. A convolutional neural network architecture for geometric
matching is proposed in [36]. It uses feature extraction networks with shared weights
and a matching network which matches the descriptors. The output of the matching
network is passed through a regression network which outputs the parameters of the
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Conv2

Conv1

Max-Pool Image Features

Position Features

Concat

Fig. 1. Single-Stream Architecture. Stereo images are concatenated and passed to a convolutional
neural network. Position features can be used to indicate where the final activations come from
with respect to the full-size image.

geometric transformation. [22] presents a model which takes a set of images and their
corresponding camera parameters as input and directly infers the 3D model.

2 Network Architecture

We leverage deep neural networks for estimating the fundamental matrix directly from
a pair of stereo images. Each network consists of a feature extractor to obtain features
from the images and a regression network to compute the entries of the F-matrix from
the features.

2.1 Feature Extraction

We consider two different architectures for feature extraction. In the first architecture,
we concatenate the images across the channel dimension, and pass the result to a neural
network to extract features. Figure 1 illustrates the network structure. We use two
convolutional layers, each followed by ReLU and Batch Normalization [20]. We use
128 filters of size 3× 3 in the first convolutional layer and 128 filters of size 1× 1 in
the second layer. We limit the number of pooling layers to one in order not to lose the
spatial structure in the images.

Location Aware Pooling. As discussed in Sec. 1, the F-matrix is highly dependent on
the relative location of corresponding points in the images. However, down-sampling
layers such as Max Pooling discard the location information. In order to retain this
information, we keep all the indices of where the activations come from in the max-
pooling layers. At the end of the network, we append the position of final features with
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Fig. 2. Siamese Architecture. Images are first passed to two streams with shared weights. The
resulting features are concatenated and passed to the single-stream network as in figure 1. Position
features can be used with respect to the concatenated features.

respect to the full-size image. Each location is indexed with an integer in [1, h× w × c]
normalized to be within the range [0, 1], in which h, w and c are the height, width and
channel dimensions of the image respectively. In this way, each feature has a position
index indicating from where it comes from. This helps the network to retain the location
information and to provide more accurate estimates of the F-matrix.

The second architecture is shown in figure 2. We first process each of the input images
in a separate stream using an architecture similar to the Universal Correspondence Net-
work (UCN) [4]. Unlike the UCN architecture, we do not use Spatial Transformers [21]
in these streams since they can remove part of the information needed for estimating
relative camera rotation and translation. The resulting features from these streams are
then concatenated, and passed to a single-stream network similar to figure 1. We can use
position features in the single-stream network as discussed previously. These features
capture the position of final features the with respect to the concatenated features at the
end of the two streams. We refer to this architecture as ‘Siamese’. As we show in Sec. 3,
this network outperforms the Single-Stream one. We also consider using only the UCN
without the single-stream network. The results, however, are not competitive with the
Siamese architecture.

2.2 Regression

A simple approach for computing the fundamental matrix from the features is to pass
them to fully-connected layers, and directly regress the nine entries of the F-Matrix. We
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Fig. 3. Different regression methods for predicting F-matrix entries from the features. The
architecture to directly regress the entries of the F-matrix is shown on the left. The network
with the reconstruction and normalization layers is shown on the right, and is able to estimate
homogeneous F-matrices with rank two and seven degrees of freedom.

can then normalize the result to achieve scale-invariance. This approach is shown in
figure 3 (left). The main issue with this approach is that the predicted matrix might not
satisfy all the mathematical properties required for a fundamental matrix as a rank-2
matrix with seven degrees of freedom. In order to address this issue, we introduce
Reconstruction and Normalization layers in the following.

F-matrix Reconstruction Layer. We consider equation 1 to reconstruct the fundamen-
tal matrix:

F̂ = K2
−T [t]×RK1

−1 (11)

we need to determine eight parameters (f1, f2, tx, ty, tz, rx, ry, rz) as shown in equa-
tions (2–4). Note that the predicted F̂ is differentiable with respect to these parameters.
Hence, we can construct a layer that takes these parameters as input, and outputs a
fundamental matrix F̂. This approach guarantees that the reconstructed matrix has rank
two. Figure 3 (right) illustrates the Reconstruction layer.

Normalization Layer. Considering that the F-matrix is scale-invariant, we also use a
Normalization layer to remove another degree of freedom for scaling. In this way, the
estimated F-matrix will have seven degrees of freedom and rank two as desired. The
common practice for normalization is to divide the F-matrix by its last entry. We call
this method ETR-Norm. However, since the last entry of the F-matrix could be close to
zero, this can result in large entries, and training can become unstable. Therefore, we
propose two alternative normalization methods.

FBN-Norm: We divide all entries of the F-matrix by its Frobenius norm, so that all the
matrices live on a 9-sphere of unit norm. Let ‖F‖F denote the Frobenius norm of matrix
F. Then the normalized fundamental matrix is:

NFBN (F) = ‖F‖−1F F (12)

ABS-Norm: We divide all entries of the F-matrix by its maximum absolute value, so
that all entries are restricted within [−1, 1] range:

NABS(F) = (max
i,j
|Fi,j |)−1F (13)
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During training, the normalized F-matrices are compared with the ground-truth
using both L1 and L2 losses. We provide empirical results to study how each of these
normalization methods influences performance and stability of training in Sec. 3.

Epipolar Parametrization Given that the F-matrix has a rank of two, an alternative
parametrization is specifying the first two columns f1 and f2 and the coefficients α and β
such that f3 = αf1+βf2. Normalization layer can still be used to achieve scale-invariance.
The coordinates of the epipole occur explicitly in this parametrization: (α, β, 1)T is
the right epipole for the F-matrix [16]. The corresponding regression architecture is
similar to figure 3, but we interpret the final eight values differently: the first six elements
represent the first two columns and the last two represent the coefficient for combining
the columns. The main disadvantage of this method is that it does not work when the
first two columns of F are linearly dependent. In this case, it is not possible to write the
third column in terms of the first two columns.

3 Experiments

To evaluate whether our models can successfully learn F-matrices, we train models with
various configurations and compare their performance based on the metrics defined in
Sec. 3.1. The baseline model (Base) uses neither position features nor the reconstruction
module. The POS model utilizes the position features on top of the Base model. Epipolar
parametrization (Sec. 2.2) is used for the EPI model. EPI+POS uses the position
features with epipolar parametrization. The REC model is the same as Base but uses the
reconstruction module. Finally, the REC+POS model uses both the position features
and the reconstruction module.

We use the KITTI dataset for training our models. The dataset has been recorded
from a moving platform while driving in and around Karlsruhe, Germany. We use 2000
images from the raw stereo data in the ‘City’ category, and split them into 1600 train,
200 validation and 200 test images. Ground truth F-matrices are obtained using the
ground-truth camera parameters. The same normalization methods are used for both
the estimated and the ground truth F-matrices. The feature extractor and the regression
network are trained jointly in an end-to-end manner.

3.1 Evaluation Metrics

We use the following metrics to measure how well the F-matrix satisfies the epipolar
constraint (equation 5) according to the held out correspondences:

EPI-ABS (Epipolar Constraint with Absolute Value):

MEPI−ABS(F, p, q) =
∑
i

|qTi Fpi| (14)

EPI-SQR (Epipolar Constraint with Squared Value):

MEPI−SQR(F, p, q) =
∑
i

(qTi Fpi)
2 (15)
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Siamese Network Single-stream Network
Normalization Models EPI-ABS EPI-SQR Models EPI-ABS EPI-SQR
ETR-Norm Base 3.77 27.16 Base 4.43 34.34

POS 4.05 21.90 POS 2.47 9.79
EPI 0.52 0.28 EPI 1.00 0.99
EPI + POS 0.88 1.02 EPI + POS 1.00 1.00
REC 0.56 0.45 REC 0.99 0.99
REC + POS 0.97 0.98 REC + POS 1.00 0.99
8-point 1.91 152.83 8-point 1.91 152.83
LeMedS 1.09 25.50 LeMedS 1.09 25.50
RANSAC 0.60 3.85 RANSAC 0.60 3.85
Ground-truth 0.05 0.004 Ground-truth 0.05 0.004

FBN-Norm Base 1.44 2.58 Base 2.45 9.99
POS 1.97 5.66 POS 2.78 8.55
EPI 0.07 0.01 EPI 0.91 0.91
EPI + POS 0.06 0.005 EPI + POS 0.67 0.58
REC 0.92 1.11 REC 0.78 1.24
REC + POS 0.43 0.44 REC + POS 0.87 0.81
8-point 1.06 11.7 8-point 1.06 11.7
LeMedS 0.39 0.68 LeMedS 0.39 0.68
RANSAC 0.27 0.21 RANSAC 0.27 0.21
Ground-truth 0.05 0.004 Ground-truth 0.05 0.004

ABS-Norm Base 4.76 30.63 Base 3.55 18.04
POS 3.74 22.59 POS 2.87 10.4
EPI 0.18 0.06 EPI 0.92 1.94
EPI + POS 0.12 0.03 EPI + POS 0.82 0.77
REC 0.22 0.06 REC 0.77 0.99
REC + POS 0.28 0.10 REC + POS 0.87 0.81
8-point 1.17 15.4 8-point 1.17 15.4
LeMedS 0.72 3.88 LeMedS 0.72 3.88
RANSAC 0.33 0.39 RANSAC 0.33 0.39
Ground-truth 0.05 0.004 Ground-truth 0.05 0.004

Table 1. Results for Siamese and Single-stream networks on the KITTI dataset. Traditional
methods such as 8-point, LeMedS and RANSAC are compared with different variants of our
proposed model. Various normalization methods and evaluation metrics are considered.

The first metric is equivalent to the Algebraic Distance mentioned in [9]. We evaluate
the metrics based on high-confidence key-point correspondences: we select the key-
points for which the Symmetric Epipolar Distance based on the ground-truth F-matrix
is less than 2 [16]. This ensures that the point is no more than one pixel away from the
corresponding epipolar line.
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4 Results and Discussion

Results are shown in Table 1. We compare our method with 8-point, LeMedS and
RANSAC algorithms [46]. On average, 60 pairs of keypoints are used per image. As we
can observe, the reconstruction module is highly effective, and without it the network is
unable to recover accurate fundamental matrices. The position features are also helpful in
decreasing the error. The Siamese network outperforms the Single-Stream architecture,
and can achieve errors comparable to the ground truth. This shows that the two streams
used to process each of the input images are indeed useful. Note that the networks are
trained end-to-end without the need for extracting point correspondences between the
images, yet they are able to achieve competitive results with classic algorithms. The
epipolar parametrization generally outperforms the other methods. During the inference
time, we just need to pass the images to the feature extraction and regression networks
to estimate the fundamental matrices.

5 Conclusion and Future Work

We present novel deep neural networks for estimating fundamental matrices from a
pair of stereo images. Our networks can be trained end-to-end without the need for
extracting point correspondences. We consider two different network architectures for
computing features from the images, and show that the best result is obtained when we
first process images in two streams, and then concatenate the features and pass the result
to a single-stream network. We show that the simple approach of directly regressing
the nine entries of the fundamental matrix does not yield good results. Therefore, a
reconstruction module is introduced as a differentiable layer to estimate the parameters
of the fundamental matrix. Two different parametrizations of the F-matrix are considered:
one based on the camera parameters, and the other based on the epipolar parametrization.
We also demonstrate that position features can be used to further improve the estimation.
This is due to the sensitivity of fundamental matrices to the location of points in the
input images. In the future, we plan to extend the results to other datasets, and explore
other parametrizations of the fundamental matrix.
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