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Abstract

Image caption generation systems are typically evaluated against ref-
erence outputs. We show that it is possible to predict output quality
without generating the captions, based on the probability assigned by the
neural model to the reference captions. Such pre-gen metrics are strongly
correlated to standard evaluation metrics.

1 Introduction

Automatic metrics for image description generation (IDG) compare c, a gener-
ated caption, to a set of reference sentences, R1...Rn. We therefore refer to these
as post-gen(eration) metrics. In most neural IDG architectures generation is
performed by an algorithm such as beam search that samples the vocabulary
at every timestep, selecting a likely next word after a given sentence prefix (ac-
cording to the neural network) and attaching it to the end of the prefix, and
repeating this procedure until the entire caption is produced. Given that the
output thus generated is evaluated against a gold standard, post-gen metrics
actually evaluate the neural network’s ability to predict the words in the ref-
erence captions given an image. Unfortunately, generating sentences is a time
consuming process due to the fact that every word in a sentence requires its own
forward pass through the neural network. This means that generating a 20-word
sentence requires calling the neural network 20 times. As an indicative example,
it takes 20.8 minutes to generate captions for every image in the MSCOCO test
set on a standard hardware setup (GeForce GTX 760) using a beam width of
just 1.

Our question is whether a system’s performance can be assessed prior to
the generation step, by exploiting the fact that the output is ultimately based
on this core sampling mechanism. We envisage a scenario in which a neural

∗This publication will appear in the Proceedings of the First Workshop on Shortcomings
in Vision and Language (2018). DOI to be inserted later.
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caption generator is evaluated based on the extent to which its estimated softmax
probabilities over the vocabulary maximise the probability of the words in the
reference sentences R1...Rn. We refer to this as a pre-gen(eration) evaluation
metric, as it can be computed prior to generating any captions. A well-known
example of a pre-gen metric is language model perplexity although, as we show
below, this metric is not the best pre-gen candidate in terms of its correlation
to standard evaluation measures for IDG systems.

From a development perspective, the advantage of a pre-gen metric lies in
that all the word probabilities in a sentence are immediately available to the
network in one forward pass, whereas a post-gen metric can only be computed
following a relatively expensive process of word-by-word generation requiring
repeated calls to a neural network. To return to the earlier example, on the
same hardware setup it only takes 28 seconds to compute model perplexity.

Thus, if pre-gen metrics can be shown to correlate strongly with established
post-gen metrics, they could serve as a proxy for such metrics. This would speed
up processes requiring repeated caption quality measurement such as during
hyperparameter tuning.

Finally, from a theoretical and empirical perspective, if caption quality, as
measured by one or more post-gen metric(s), can be predicted prior to gener-
ation, this would shed further light on the underlying reasons for the observed
correlations of such metrics [14].

All code used in these experiments is publicly available.1

The rest of this paper is organised as follows; background on metrics is cov-
ered in section 2, the methodology and experimental setup in section 3, and the
results are given in section 4; the paper is concluded in section 5.

2 Background: Post-gen metrics for image cap-
tioning

In IDG, automatic metrics originally developed for Machine Translation or Sum-
marisation, such as BLEU [21], ROUGE [18], and METEOR [2], were initially
adopted, followed by metrics specifically designed for image description, notably
CIDEr [24] and SPICE [1]. Lately, Word Mover’s Distance (WMD) [17], origi-
nally from the document similarity community, has also been suggested for IDG
[14]. Like BLEU, ROUGE and METEOR, CIDEr makes use of n-gram simi-
larities, while WMD measures the semantic distance between texts on the basis
of word2vec [20] embeddings. All of these metrics are purely linguistically in-
formed. By contrast, SPICE computes similarity between sentences from scene
graphs [13], obtained by parsing reference sentences. This method is also lin-
guistically informed; however the intuition behind it is that the human authored
sentences should be an accurate reflection of image content.

A typical IDG experiment reports several post-gen metrics. One reason is
that the metrics correlate differently with human judgments, depending on task

1See: https://github.com/mtanti/pregen-metrics
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and dataset [3], echoing similar findings in other areas of NLP [7, 5, 6, 22, 4, 11,
10, 26]. Thus, BLEU, METEOR, and ROUGE correlate weakly [16, 12, 15] and
yield different system rankings compared to human judgments [25]. METEOR
has a reportedly higher correlation than BLEU/ROUGE [8, 9], with stronger
relationships reported for CIDEr [24] and SPICE [1]. Meta-evaluation of the
ability of metrics to discriminate between captions have also been somewhat
inconsistent [24, 14].

The extent to which post-gen metrics correlate with each other also varies,
with stronger relationships among those based on n-grams on the one hand, and
more semantically-oriented ones on the other [14], suggesting that these groups
assess complementary aspects of quality, and partially explaining their variable
relationship to human judgments in addition to variations due to dataset.

For neural IDG architectures, post-gen metrics have one fundamental prop-
erty in common: they compare reference outputs to generated sentences which
are based on sampling at each time-step from a probability distribution. Our
hypothesis is that it is possible to exploit this, using the probability distribution
itself to directly estimate the quality of captions, prior to generation.

3 Pre-gen metrics

Given a prefix, a neural caption generator predicts the next word by sampling
from the softmax’s probabilities estimated over the vocabulary. Let R be a
reference caption of length m. Given a prefix R0...k (where R0 is the start token),
k ≤ m, a neural caption generator can be used to estimate the probability of
the next word (or the end token) in the reference caption, Rk+1. The intuition
underlying pre-gen metrics is that the higher the estimated probability of Rk+1,
for all k ≤ m, the more likely it is that the generator will approximate the
reference caption. Note that the idea is to estimate the probability of reference
captions based on a trained IDG model.

Pre-gen metrics produce a score by aggregating the word probabilities pre-
dicted by the generator for all reference captions (combined with their respective
image) over prefixes of different lengths. The way a caption generator predicts
these word probabilities is illustrated in Figure 1. To find the best way to aggre-
gate the word probabilities, we define a search space by setting options at four
different algorithmic steps which we call ‘tiers’. Each tier represents a function
and the composition of all four tiers together constitutes a pre-gen function.
We try several different options for each tier in order to find the best pre-gen
function. Figure 2 shows an example of how tiers form a pre-gen function.

Given a set of images with their corresponding reference captions, the process
starts by computing each reference caption’s individual word probabilities (given
the image) according to the model. Note that the model may not predict every
word in a reference caption as the most likely in the vocabulary.

The first tier is a filter that selects which predicted word probabilities should
be considered in the next tier. We consider three possible filters: (a) the filter
none passes all probabilities; (b) filter0 filters out the word probabilities that
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Figure 1: An example illustrating the output of a neural network that is predicting the
probability for every word in a sentence. Given a single sentence, the caption generator
will immediately output a matrix of probabilities, such that for every word position in
the sentence, the matrix contains the probabilities for every word in the vocabulary
being in that position given the image and the previous words (the first word has the
start token as a previous word). In the above example, underlined probabilities are of
the correct words being in the designated word position whilst bold probabilities are
of the word with the maximum probability in the vocabulary for the designated word
position. Note how the maximum probability is not always assigned to the correct
word and that it might do so only intermittently.

are not ranked as most probable in the vocabulary by the model, i.e are not
predicted to be maximally probable continuations of the current prefix; and (c)
prefix0 selects the longest prefix of the caption such that the model predicts all
words in the prefix as being the most likely in the vocabulary.

At the second tier, we aggregate the selected word probabilities in each ref-
erence sentence into a single score for each sentence. We define four possible
functions: (a) prob multiplies all probabilities; (b) pplx computes the perplex-
ity; (c) count counts the number of word probabilities that were selected in the
first tier; and (d) normcount normalises count by the total number of words in
the reference sentence.

The third tier aggregates the scores obtained for all reference sentences into
a single score for each image. We explore six possibilities: (a) sum; (b) mean;
(c) median; (d) geomean, the geometric mean; (e) max ; and (f) min. We also
consider (g) join, whereby all the image-sentence scores are joined into a single
list without aggregation so that they are all aggregated together in the next tier.

The fourth tier aggregates the image scores into a single dataset score, which
is the final pre-gen score of the caption generator. For this aggregation, we use
the same functions in the previous tier excluding join.

The above possibilities result in 504 unique combinations. In what follows,
we adopt the convention of denoting a pre-gen metric by the sequence of function
names that compose it, starting from tier four e.g. mean max normcount prefix0.

4



Figure 2: An example illustrating how tiers work. This illustration shows the best
pre-gen metric found: mean max normcount prefix0.

In our experiments, we compute all of these different combinations and com-
pare their predictions to standard post-gen metrics, namely METEOR, CIDEr,
SPICE, and WMD. All metrics except WMD were computed using the MSCOCO
Evaluation toolkit2. Since the toolkit does not include WMD, we created a fork
of the repository that includes it.3

3.1 Experimental setup

For our experiments, we used a variety of pre-trained neural caption generators
(36 in all) from [23].4 These models are based on four different caption generator
architectures. Each was trained and tested over three runs on Flickr8K [12],
Flickr30k [27], and MSCOCO [19]. The four architectures differ in terms of how
the CNN image encoder is combined with the RNN: init architectures use the
image vector as the initial hidden state of the RNN; pre architectures treat the
image vector as the first word of a caption; par architectures are trained on

2See: https://github.com/tylin/coco-caption
3See: https://github.com/mtanti/coco-caption
4See: https://github.com/mtanti/where-image2
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Figure 3: An example illustrating how a dataset is broken into strata in order to create
a variety of performance scores using the same neural networks and thus be able to test
the correlation between the post-gen and pre-gen metrics on many different scores.

captions where each word is coupled with an image vector at each time-step;
and merge architectures keep the image out of the the RNN entirely, merging
the image vector with the RNN hidden state in a final feedforward layer, prior
to prediction.

Since only the final trained versions of the models are available, there is a
bias towards good quality post-gen metric results. This renders the values of the
post-gen metrics rather similar and concentrated in a small range. A pre-gen
metric is useful if it makes good predictions on models of any quality not just
good ones. Rather than re-training all the models and saving the parameters
at different intervals during training, we opted to stratify the dataset on the
basis of how well each individual image is rated by the CIDEr metric. This is
illustrated in Figure 3.

We grouped images into the best and worst halves on the basis of the CIDEr
score (since CIDEr is the post-gen metric that best correlates with the other
post-gen metrics [14]) of their sentences as generated by a model. This creates
two datasets, one where the model performs well and one where the model
performs badly. We stratified the dataset into different numbers of equal parts
and not just two, namely: 1 (whole), 2, 3, 4 and 5, resulting in a 15-fold increase
over the original 36 averaged results and more importantly, over a wide dynamic
range in CIDEr scores, which we required to study the correlation in between
pre- and post-gen metrics.

4 Results

We evaluate the correlation between pre- and post-gen metrics using the Coeffi-
cient of Determination, or R2, defined as the square of the Pearson correlation
coefficient. The reason for this is twofold. First, R2 reflects the magnitude of a
correlation, irrespective of whether it is positive or negative (the pre-gen metrics
based on perplexity would be expected to be negatively correlated with post-gen
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metrics). Second, given a linear model in which a pre-gen metric is used to pre-
dict the value on a post-gen metric, R2 indicates the proportion of the variance
in the latter that the pre-gen metric predicts.

As a baseline, we show the scatter plot for the relationship between language
model perplexity and the post-gen metrics in Figure 4. In terms of the descrip-
tion in the previous section, perplexity is defined as geomean join pplx none.
As can be seen, perplexity performs somewhat poorly on low scoring captions.
Our question is whether a better pre-gen metric can be found.

(a) cider (b) spice

(c) meteor (d) wmd

Figure 4: Relationship between perplexity and post-gen metrics by dataset and archi-
tecture. The overall correlation has an R2 of 0.76. (Best viewed in colour.)

For each of the 4 post-gen metrics, we identified the top 5 best correlated pre-
gen metrics, based on the R2 value computed over all the data (i.e. aggregating
scores across architectures and datasets). The top 4 pre-gen metrics were the
same for all post-gen metrics, namely:

1. mean max normcount prefix0 ;

2. mean mean normcount prefix0 ;

3. mean join normcount prefix0 ;

4. mean sum normcount prefix0
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Figure 5: Overall R2 between the 4 post-gen metrics and their 5 most highly correlated
pre-gen metrics. Scores average over architectures and datasets.

Note that all the best performing metrics are based on the variable prefix0.
This is not surprising since when generating a sentence, it is probably the word
with the maximum probability in the vocabulary which gets selected as a next
word in a prefix. Hence if the most probable next word is an incorrect one then
it will likely send the rest of the caption generation process off the rails as it will
misinform the next words as well. Hence, prefix0 is a measure of how likely this
is to happen.

On the other hand, the fifth most highly correlated pre-gen metric differed
for each post-gen metric, as follows:

• CIDER: mean min count filter0 ;

• METEOR: mean mean count prefix0 ;

• SPICE: geomean min pplx filter0 ;

• WMD: mean join count prefix0

Figure 5 displays the correlation between these pre-gen metrics and the post-
gen scores. Note that all R2 scores are above 0.8, indicating a very strong
correlation.5 The top 4 scores have R2 ≥ 0.9.

To investigate the relationship between pre- and post-gen metrics more closely,
we focus on the best pre-gen metric (that is, mean max normcount prefix0 ) and
consider its relationship to each post-gen metric individually. This is shown in
Figure 6. Irrespective of architecture and/or dataset, we observe a broadly lin-
ear relationship, despite some evidence of non-linearity at the lower ends of the

5All correlations are significant at p < 0.001.
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(a) cider (b) spice

(c) meteor (d) wmd

Figure 6: Best pre-gen metric (mean max normcount prefix0 ) vs post-gen metrics.
The overall correlation has an R2 of 0.94. (Best viewed in colour.)

scale, especially for CIDEr and WMD. This supports the hypothesis made at the
outset, namely, that it is possible to predict the quality of captions, as measured
by a standard metric, by considering the probability of the reference captions in
the test set, without the need to generate the captions themselves.

5 Discussion and conclusion

We have introduced and defined the concept of pre-gen metrics and described a
methodology to search for useful variants of these metrics. Our results show that
pre-gen metrics closely approximate a variety of standard evaluation measures.

These results can be attributed to the fact that neural captioning models
share core assumptions about the sampling mechanisms that underlie genera-
tion, and that standard evaluation metrics ultimately assess the output of this
sampling process. Thus, it is possible to predict the quality of the output, as
measured by a post-gen metric, using the probability distribution that a trained
model predicts over prefixes of varying length in the reference captions. The
practical implication is that pre-gen metrics can act as quick and efficient eval-
uation proxies during development. The theoretical implication is that the cor-
relations among standard evaluation metrics reported in the literature are due,
at least in part, to core sampling mechanisms shared by most neural generation
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architectures.
In future work, we plan to experiment with tuning captioning models using

pre-gen metrics. We also wish to compare pre-gen metrics directly to human
judgments.
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