
Efficient texture retrieval using multiscale local
extrema descriptors and covariance embedding

Minh-Tan Pham
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Abstract. We present an efficient method for texture retrieval using
multiscale feature extraction and embedding based on the local extrema
keypoints. The idea is to first represent each texture image by its local
maximum and local minimum pixels. The image is then divided into reg-
ular overlapping blocks and each one is characterized by a feature vector
constructed from the radiometric, geometric and structural information
of its local extrema. All feature vectors are finally embedded into a covari-
ance matrix which will be exploited for dissimilarity measurement within
retrieval task. Thanks to the method’s simplicity, multiscale scheme can
be easily implemented to improve its scale-space representation capacity.
We argue that our handcrafted features are easy to implement, fast to run
but can provide very competitive performance compared to handcrafted
and CNN-based learned descriptors from the literature. In particular,
the proposed framework provides highly competitive retrieval rate for
several texture databases including 94.95% for MIT Vistex, 79.87% for
Stex, 76.15% for Outex TC-00013 and 89.74% for USPtex.

Keywords: texture retrieval, handcrafted features, local extrema, fea-
ture covariance matrix

1 Introduction

Content-based image retrieval (CBIR) has been always drawing attention from
researchers working on image analysis and pattern recognition within computer
vision field. Texture, i.e. a powerful image feature involving repeated patterns
which can be recognized by human vision, plays a significant role in most of
CBIR systems. Constructing efficient texture descriptors to characterize the im-
age becomes one of the key components which have been focused in most research
works related to texture image retrieval [1,2,3].

From the literature, a great number of multiscale texture analysis methods
using probabilistic approach have been developed to tackle retrieval task. In
[4], the authors proposed to model the spatial dependence of pyramidal discrete
wavelet transform (DWT) coefficients using the generalized Gaussian distribu-
tions (GGD) and the dissimilarity measure between images was derived based
on the Kullback-Leibler divergences (KLD) between GGD models. Sharing the
similar principle, multiscale coefficients yielded by the discrete cosine transform
(DCT), the dual-tree complex wavelet transform (DT-CWT), the Gabor Wavelet
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(GW), etc. were modeled by different statistical models such as GGD, the mul-
tivariate Gaussian mixture models (MGMM), Gaussian copula (GC), Student-t
copula (StC), or other distributions like Gamma, Rayleigh, Weibull, Laplace,
etc. to perform texture-based image retrieval [5,6,7,8,9,10,11]. However, one of
the main drawbacks of these techniques is the their expensive computational
time which has been observed an discussed in several papers [8,9,10].

Other systems which have provided effective CBIR performance include the
local pattern-based framework and the block truncation coding (BTC)-based
approach. The local binary patterns (LBP) were first embedded in a multires-
olution and rotation invariant scheme for texture classification in [12]. Inspired
from this work, many studies have been developed for texture retrieval such
as the local maximum edge binary patterns (LMEBP) [13], local ternary pat-
terns (LTP) [14], local tetra patterns (LTrP) [15], local tri-directional patterns
(LTriDP) [16], local neighborhood difference pattern (LNDP) [17], etc. These
descriptors, in particular LTrP and LTRiDP, can provide good retrieval rate.
However, due to the fact that they work on grayscale images, their performance
on natural textures is limited without using color information. To overcome this
issue, recent schemes have proposed to incorporate these local patterns with color
features. Some techniques can be mentioned here are the joint histogram of color
and local extrema patterns (LEP+colorhist) [18], the local oppugnant color tex-
ture pattern (LOCTP) [19], the local extrema co-occurrence pattern (LECoP)
[20], LBPC for color images [21]. Beside that, many studies have also developed
different BTC-based frameworks, e.g. the ordered-dither BTC (ODBTC) [22,23],
the error diffusion BTC (EDBTC) [24] and the dot-diffused BTC (DDBTC)
[25], which have provided competitive retrieval performance. Within these ap-
proaches, an image is divided into multiple non-overlapping blocks and each one
is compressed into the so-called color quantizer and bitmap image. Then, a fea-
ture descriptor is constructed using the color histogram and color co-occurrence
features combined with the bit pattern feature (including edge, shape, texture
information) of the image. These features are extracted from the above color
quantizer and bitmap image to tackle CBIR task.

Last but not least, not focusing on developing handcrafted descriptors as all
above systems, learned descriptors extracted from convolution neural networks
(CNNs) have been recently applied to image retrieval task [26,27]. An end-to-end
CNN framework can learn and extract multilevel discriminative image features
which are extremely effective for various computer vision tasks including recog-
nition and retrieval [26]. In practice, instead of defining and training their own
CNNs from scratch, people tend to exploit pre-trained CNNs (on a very large
dataset such as ImageNet [28]) as feature extractors. Recent studies have shown
the effective performance of CNN learned features w.r.t. traditional handcrafted
descriptors applied to image classification and retrieval [29,30].

In this work, we continue the traditional approach of handcrafted feature
designing by introducing a powerful retrieval framework using multiscale local
extrema descriptors and covariance embedding. Here, we inherit the idea of using
local extrema pixels for texture description and retrieval from [31] but provide



a simpler and faster feature extraction algorithm which can be easily integrated
into a multiscale scheme. Due to the fact that natural images usually involve
a variety of local textures and structures which do not appear homogeneous
within the entire image, an approach taking into account local features becomes
relevant. Also, a multiscale approach could help to provide a better scale-space
representation capacity to deal with complex textures. Within our approach, a
set of local maximum and local minimum pixels (in terms of intensity) is first
detected to represent each texture image. Then, to extract local descriptors, the
image is divided into regular overlapping blocks of equal size and each block is
characterized by a feature vector constructed using the radiometric (i.e. color),
geometric ans structural information of its local extrema. The descriptor of each
block is named SLED, i.e. simple local extrema descriptor. Thus, the input image
is encoded by a set of SLED vectors which are then embedded into a feature co-
variance matrix. Moreover, thanks to the simplicity of the approach, we propose
to upsample and downsample each image to perform the algorithm at different
scales. Finally, we exploit the geometric-based riemannian distance [32] between
covariance matrices for dissimilarity measurement within retrieval task. Our ex-
periments show that the proposed framework can provide highly competitive
performance for several popular texture databases compared against both state-
of-the-art handcrafted and learned descriptors. In the rest of this paper, Section
2 describes the proposed retrieval framework including the details of SLED fea-
ture extraction, covariance embedding and multiscale scheme. We then present
our experiments conducted on four popular texture databases in Section 3 and
Section 4 finally concludes the paper with some potential developments.

2 Proposed texture retrieval framework

2.1 Texture representation using local extrema pixels

The idea of using the local extrema (i.e. local max and local min pixels) for tex-
ture analysis was introduced in [33,34] for texture segmentation in very high reso-
lution images and also exploited in [31,35] for texture image retrieval. Regarding
to this point of view, a texture is formed by a certain spatial distribution of pix-
els holding some illumination (i.e. intensity) variations. Hence, different textures
are reflected by different types of pixel’s spatial arrangements and radiometric
variations. These meaningful properties can be approximately captured by the
local extrema detected from the image. Hence, these local keypoints are relevant
for texture representation and description [36,37,38].

The detection of local extrema from a grayscale image is quite simple and fast.
Using a sliding window, the center pixel (at each sliding position) is supposed
to be a local maximum (resp. local minimum) if it has the highest (resp. lowest)
intensity value. Hence, by only fixing a w×w window size, the local extrema are
detected by scanning the image only once. To deal with color images, there are
different ways to detect local extrema (i.e. detecting from the grayscale version,
using the union or intersection of extrema subsets detected from each color
channel, etc.). For simplicity, we propose to detect local extrema from grayscale



(a) Leaves.0016 (b) Fabric.0017

(c) Water.0005 (d) Buildings.0009

Fig. 1. Illustration: spatial distribution and arrangement of local max pixels (red)
and local min pixels (green) within 4 different textures from the MIT Vistex database
[39]. These local extrema are detected using a 5 × 5 search window.

version of color images in this paper. To illustrate the capacity of the local
extrema of representing and characterizing different texture contents, Fig. 1
shows their spatial apperance within 4 different textures of the MIT Vistex
database [39]. Each 128 × 128 color texture (at the bottom) is first converted
to a grayscale image (in the middle). On the top, we display for each one a
3-D surface model using the grayscale image intensity as the surface height. The
local maxima (in red) and local minima (in green) are detected using a 5 × 5
sliding window. Some green points may be unseen since they are obscured by the
surface. We observe that these extrema contain rich information that represent
each texture content. Therefore, extracting and encoding their radiometric (or
color) and geometric features could provide a promising texture description tool.

2.2 Simple local extrema descriptor (SLED)

Given an input texture image, after detecting the local extrema using a w × w
sliding window, the next step is to divide the image into N overlapping blocks



of size W × W and then extract the simple local extrema descriptor (SLED)
feature vector from each block. The generation of SLED vector is summarized in
Fig. 2. From each image block Bi, i = 1 . . . N , we first separate the local maxima
set Smax

i and the local minima set Smin
i , and then extract the color, spatial and

gradient features of local keypoints to form their description vectors.

Fig. 2. Generation of SLED feature vector for each image block.

In details, below are the features extracted from Smax
i , the feature generation

for Smin
i is similar.

+ Mean and variance of each color channel:

µmax
i,color =

1

|Smax
i |

∑
(x,y)∈Smax

i

Icolor(x, y), (1)

σ2max
i,color =

1

|Smax
i |

∑
(x,y)∈Smax

i

(Icolor(x, y)− µmax
i,color)

2, (2)

where color ∈ {red, green,blue} represents each of the 3 color components;
(x, y) is the pixel position on the image grid and |Smax

i | is the cardinality of
the set Smax

i .
+ Mean and variance of spatial distances from each local maximum to the

center of Bi:

µmax
i,spatial =

1

|Smax
i |

∑
(x,y)∈Smax

i

di(x, y), (3)

σ2max
i,spatial =

1

|Smax
i |

∑
(x,y)∈Smax

i

(di(x, y)− µmax
i,spatial)

2, (4)

where di(x, y) is the spatial distance from the pixel (x, y) to the center of
block Bi on the image plane.



+ Mean and variance of gradient magnitudes:

µmax
i,grad =

1

|Smax
i |

∑
(x,y)∈Smax

i

∇I(x, y), (5)

σ2max
i,grad =

1

|Smax
i |

∑
(x,y)∈Smax

i

(∇I(x, y)− µmax
i,grad)2, (6)

where ∇I is the gradient magnitude image obtained by applying the Sobel
filter on the gray-scale version of the image.

All of these features are integrated into the feature vector fmax
i ∈ R10, which

encodes the color (i.e. three channels), spatial and structural features of the local
maxima inside the block Bi:

fmax
i =

[
µmax
i,color, σ

2max
i,color, µ

max
i,spatial, σ

2max
i,spatial, µ

max
i,grad, σ

2max
i,grad

]
∈ R10. (7)

The generation of fmin
i from the local min set Smin

i is similar. Now, let fSLED
i

be the SLED feature vector generated for block Bi, we finally define:

fSLED
i =

[
fmax
i , fmin

i

]
∈ R20. (8)

The proposed feature vector fSLED
i enables us to characterize the local tex-

tures of each image block Bi by understanding how local maxima and local
minima are distributed and arranged, and how they capture color information
as well as structural properties (given by gradient features). The extraction of
our handcrafted SLED is quite simple and fast. We observe that it is also fea-
sible to add other features to create more complex feature vector as proposed
in [31]. However, we argue that by using covariance embedding and performing
multiscale framework (described in the next section), the simple and fast SLED
already provides very competitive retrieval performance.

2.3 Covariance embedding and multiscale framework

The previous section has described the generation of SLED vector for each block
of the image. Once all feature vectors are extracted to characterize all image
blocks, they are embedded into a covariance matrix as shown in Fig. 3. Given
a set of N SLED feature vectors fSLED

i , i = 1 . . . N , the embedded covariance
matrix is estimated as follow:

CSLED =
1

N

N∑
i=1

(fSLED
i − µSLED)(fSLED

i − µSLED)T , (9)

where µSLED = 1
N

∑N
i=1 f

SLED
i is the estimated mean feature vector.

Last but not least, thanks to the simplicity of the proposed SLED extraction
and embedding strategy, we also propose a multi-scale framework as in Fig. 4.



Fig. 3. Proposed method to extract SLED feature vectors from all image overlapping
blocks and embed them into a covariance matrix.

Here, each input image will be upsampled and downsampled with the scale factor
of 3/2 and 2/3, respectively, using the bicubic interpolation approach. Then, the
proposed scheme in Fig. 3 is applied to these two rescaled images and the original
one to generate three covariance matrices. It should be noted that the number of
rescaled images as well as scaling factors can be chosen differently. Here, without
loss of genarality, we fix the number of scales to 3 and scale factors to 2/3, 1
and 3/2 for all implementations in the paper. To this end, due to the fact that
covariance matrices possess a postitive semi-definite structure and do not lie on
the Euclidean space, we finally exploit the geometric-based riemannian distance
for dissimilarity measurement within retrieval task. This metric has been proved
to be relevant and effective for covariance descriptors in the literature [32].

Fig. 4. Proposed multi-scale framework.



3 Experimental study

3.1 Texture databases

Four popular texture databases including the MIT Vistex [39], the Salzburg Tex-
ture (Stex) [40], the Outex TC-00013 [41] and the USPtex [42] were exploited to
conduct our experiments. Vistex is one of the most widely used texture databases
for performance evalution and comparative study in the CBIR field. It consists
of 640 texture images (i.e. 40 classes × 16 images per class) of size 128 × 128
pixels. Being much larger, the Stex database is a collection of 476 texture classes
captured in the area around Salzburg, Austria under real-word conditions. As for
Vistex, each class includes 16 images of 128×128 pixels, hence the total number
of images from the database is 7616. The third dataset, the Outex TC-00013
[41], is a collection of heterogeneous materials such as paper, fabric, wool, stone,
etc. It comprises 68 texture classes and each one includes 20 image samples of
128× 128 pixels. Finally, the USPtex database [42] includes 191 classes of both
natural scene (road, vegetation, cloud, etc.) and materials (seeds, rice, tissues,
etc.). Each class consists of 12 image samples of 128 × 128 pixels. Fig. 5 shows
some examples of each texture database and Table 1 provides a summary of
their information.

(a) Vistex [39] (c) Outex [41]

(b) Stex [40] (d) USPtex [42]

Fig. 5. Four image databases used in the experimental study.



Table 1. Number of total images (Nt), number of classes (Nc) and number of relevant
images (NR) per class within the 4 experimental texture databases.

Vistex Stex Outex USPtex

Nt 640 7616 1380 2292

Nc 40 476 68 191

NR 16 16 20 12

3.2 Experimental setup

To perform our retrieval framework, the local extrema keypoints were detected
using a 3× 3 search window (w = 3). We recommend this small window size to
ensure a dense distribution of local extrema for different texture scenes. Next,
each texture image is divided into overlapping blocks of size 32× 32 pixels and
two consecutive blocks are 50% overlapped. Thus, for each 128× 128 image, the
number of blocks is N = 64. For multiscale framework as in Fig.4, we set 3 scales
of 2/3, 1 and 3/2 as previously mentioned. There are no other parameters to be
set, which confirms the simplicity of our proposed method.

For comparative evaluation, we compare our results to several state-of-the-art
methods in the literature including:

+ probabilistic approaches in [4,5,6,7,8,9],[43];
+ handcrafted local pattern-based descriptors such as LMEBP [13], LtrP [15],

LEP+colorhist [18], LECoP [20], ODII [22];
+ handcrafted BTC-based frameworks including DDBTC [25], ODBTC [23]

and EDBTC [24];
+ learned descriptors based on pre-trained CNNs [29,30]. For these, we ex-

ploited the AlexNet [44], VGG-16 and VGG-19 [45] pre-trained on ImageNet
database [28] as feature extractors. We used the 4096-D feature vector from
the FC7 layer (also followed by a ReLu layer) and the L1 distance for dis-
similarity measure as recommended in [30].

+ the LED framework proposed [31] by setting equivalent parameters to our
algorithm. In details, we set the 3 window sizes for keypoint extraction (ω1),
local extrema detection (ω2) and LED generation (W ) to 9 × 9, 3 × 3 and
36× 36, respectively.

For evaluation criteria, the average retrieval rate (ARR) is adopted. Let Nt,
NR be the total number of images in the database and the number of relevant
images for each query, and for each query image q, let nq(K) be the number of
correctly retrieved images among the K retrieved ones (i.e. K best matches).
ARR in terms of number of retrieved images (K) is given by:

ARR(K) =
1

Nt ×NR

Nt∑
q=1

nq(K)

∣∣∣∣
K≥NR

(10)

We note that K is generally set to be greater than or equal to NR. By
setting K equal to NR, ARR becomes the primary benchmark considered by



most studies to evaluate and compare the performance of different CBIR systems.
All of ARR results shown in this paper were produced by setting K = NR.

3.3 Results and discussion

Tables 2 and 3 show the ARR performance of the proposed SLED and mutilscale
SLED (MS-SLED) on our four texutre databases compared to reference methods.
The first observation is that, most local feature-based CBIR schemes (e.g. LtrP
[15], LEP+colorhist [18], LECoP [20]) or BTC-based techniques [23,24,25] have
achieved better retrieval performance than probabilistic methods which model
the entire image using different statistical distributions [4,5,6,7,8,9]. Also, learned
descriptors based on pre-trained CNNs have yielded very competitive retrieval
rate compared to handcrafted features which prove the potential of CNN feature
extractor applied to retrieval task [29,30]. Then, more importantly, our proposed
SLED and MS-SLED frameworks have outperformed all reference methods for all
datasets. We now discuss the results of each database to validate the effectiveness
of the proposed strategy.

Table 2. Average retrieval rate (%) on the Vistex and Stex databases yielded by the
proposed method compared to reference methods.

Method Vistex Stex

GT+GGD+KLD [4] 76.57 49.30
MGG+Gaussian+KLD [6] 87.40 -
MGG+Laplace+GD [6] 91.70 71.30
Gaussian Copula+Gamma+ML [8] 89.10 69.40
Gaussian Copula+Weibull+ML [8] 89.50 70.60
Student-t Copula+GG+ML [8] 88.90 65.60
Gaussian Copula+Gabor Wavelet [10] 92.40 76.40
LMEBP [13] 87.77 -
LtrP [15] 90.02 -
LEP+colorhist [18] 82.65 59.90
DDBTC [25] 92.65 44.79
ODBTC [23] 90.67 -
EDBTC [24] 92.55 -
LECoP [20] 92.99 74.15
ODII [22] 93.23 -
CNN-AlexNet [30] 91.34 68.84
CNN-VGG16 [30] 92.97 74.92
CNN-VGG19 [30] 93.04 73.93
LED [31] 94.13 76.71
Proposed SLED 94.31 77.78
Proposed MS-SLED 94.95 79.87

The best ARR of 94.95% and 79.87% was produced for Vistex and Stex by
our MS-SLED algorithm. A gain of 0.82% and 3.16% was achieved compared to



Table 3. Average retrieval rate (%) on the Outex and USPtex databases yielded by
the proposed method compared to reference methods.

Method Outex UPStex

DDBTC (L1) [25] 61.97 63.19
DDBTC (L2) [25] 57.51 55.38
DDBTC (χ2) [25] 65.54 73.41
DDBTC (Canberra) [25] 66.82 74.97
CNN-AlexNet [30] 69.87 83.57
CNN-VGG16 [30] 72.91 85.03
CNN-VGG19 [30] 73.20 84.22
LED [31] 75.14 87.50
Proposed SLED 75.96 88.60
Proposed MS-SLED 76.15 89.74

the second-best method with original LED features in [31]. Within the proposed
strategy, the multi-scale scheme has considerable improved the ARR from the
single-scale SLED (i.e. 0.62% for Vistex and 2.09% for Stex), which confirms the
efficiency of performing multiscale feature extraction and embedding for better
texture description, as our motivation in this work. Next, another important
remark is that most of the texture classes with strong structures and local fea-
tures such as buildings, fabric categories, man-made object’s surfaces, etc. were
perfectly retrieved. Table 4 shows the per-class retrieval rate for each class of the
Vistex database. As observed, half of the classes (20/40 classes) were retrieved
with 100% accuracy (marked in bold). These classes generally consist of many
local textures and structures. Similar behavior was also remarked for Stex data.
This issue is encouraging since our motivation is to continue developing hand-
designed descriptors which represent and characterize local features better than
both handcrafted and learned descriptors from the literature.

Similarly, the proposed MS-SLED framework also provided the best ARR
for both Outex (76.15%) and USPtex data (89.74%) (with a gain of 1.01% and
2.24%, respectively), as observed in Table 3. Compared to learned descriptors
based on pretrained AlexNet, VGG-16 and VGG-19, an improvement of 2.95%
and 4.71% was adopted, which confirms the superior performance of our method
over the CNN-based counterparts. To this end, the efficiency of the proposed
framework is validated for all tested databases.

Last but not least, Table 5 provides the comparison of descriptor dimensions
within different methods. We note that our SLED involves a 20× 20 covariance
matrix estimated as (9). Since the matrix is symmetrical, it is only necessary to
store its upper or lower triangular entries. Thus, the SLED feature dimension is
calculated as 20× (20+1) = 210. For MS-SLED, we multiply this to the number
of scales and hence the length becomes 630 in our implementation. Other feature
lengths from the table are illustrated from their related papers. We observe that
the proposed SLED has lower dimension than the standard LED in [31] (i.e. 210
compared to 561) but can provide faster and better retrieval performance. To
support this remark, we show in Table 6 a comparison of computational time for



Table 4. Per-class retrieval rate (%) on the Vistex-640 database using the proposed
LED+RD method

Class Rate Class Rate Class Rate

Bark.0000 75.00 Fabric.0015 100.00 Metal.0002 100.00
Bark.0006 94.14 Fabric.0017 96.88 Misc.0002 100.00
Bark.0008 84.38 Fabric.0018 100.00 Sand.0000 100.00
Bark.0009 77.73 Flowers.0005 100.00 Stone.0001 85.55
Brick.0001 99.61 Food.0000 100.00 Stone.0004 93.75
Brick.0004 97.27 Food.0005 99.61 Terrain.0010 94.14
Brick.0005 100.00 Food.0008 100.00 Tile.0001 90.23
Buildings.0009 100.00 Grass.0001 94.53 Tile.0004 100.00
Fabric.0000 100.00 Leaves.0008 100.00 Tile.0007 100.00
Fabric.0004 78.13 Leaves.0010 100.00 Water.0005 100.00
Fabric.0007 99.61 Leaves.0011 100.00 Wood.0001 98.44
Fabric.0009 100.00 Leaves.0012 60.93 Wood.0002 88.67
Fabric.0011 100.00 Leaves.0016 90.23

ARR 94.95
Fabric.0014 100.00 Metal.0000 99.21

Table 5. Comparison of feature vector length of different methods.

Method Feature dimension

DT-CWT [4] (3 × 6 + 2) × 2=40
DT-CWT+DT-RCWT [4] 2 × (3 × 6 + 2) × 2=80
LBP [12] 256
LTP [14] 2 × 256 = 512
LMEBP [13] 8 × 512 = 4096
Gabor LMEBP [13] 3 × 4 × 512 = 6144
LEP+colorhist [18] 16 × 8 × 8 × 8 = 8192
LECoP(H18S10V256) [20] 18 + 10 + 256 = 284
LECoP(H36S20V256) [20] 36 + 20 + 256 = 312
LECoP(H72S20V256) [20] 72 + 20 + 256 = 348
ODII [22] 128+128 = 256
CNN-AlexNet [30] 4096
CNN-VGG16 [30] 4096
CNN-VGG19 [30] 4096
LED [31] 33 × (33 + 1)/2 = 561
Proposed SLED 20 × (20 + 1)/2 = 21020 × (20 + 1)/2 = 21020 × (20 + 1)/2 = 210
Proposed MS-SLED 3 × 210 = 6303 × 210 = 6303 × 210 = 630

feature extraction and dissimilarity measurement of LED and SLED. In short,
a total amount of 95.17 seconds is required by our SLED to run on the Vistex
data, thus 0.148 second per image, which is very fast. All implementations were
carried out using MATLAB 2017a on computer of 3.5GHz/16GB RAM.



Table 6. Computation time (in second) of LED and SLED feature extraction (FE) and
dissimilarity measurement (DM). Experiments were conducted on the Vistex database.

Version
FE time DM time (s) Total time

tdata timage tdata timage tdata timage

LED [31] 193.77 0.308 21.39 0.033 215.16 0.336
SLED (ours) 86.35 0.135 8.82 0.013 95.17 0.148

tdata: time for the total database ; timage: time per each image.

4 Conclusions

We have proposed a simple and fast texture image retrieval framework using
multiscale local extrema feature extraction and covariance embedding. Without
chasing the current trends of deep learning era, we continue the classical way
of designing novel handcrafted features in order to achieve highly competitive
retrieval performance compared to state-of-the-art methodologies. The detection
of local extrema as well as the extraction of their color, spatial and gradient fea-
tures are quite simple but they are effective for texture description and encoding.
We argue that the proposed MS-SLED does not require many parameters for
tuning. It is easy to implement, fast to run and feasible to extend or improve.
The best retrieval rates obtained for four texture benchmarks shown in our
experimental study have confirmed the effectiveness of the proposed strategy.
Future work can improve the performance of MS-SLED by exploiting other tex-
tural features within its construction. Also, we are now interested in integrating
SLED features into an auto-encoder framework in order to automatically learn
and encode richer information for better texture representation.
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