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Abstract. A large number of studies analyse object detection and pose
estimation at visual level in 2D, discussing the effects of challenges such
as occlusion, clutter, texture, etc., on the performances of the methods,
which work in the context of RGB modality. Interpreting the depth data,
the study in this paper presents thorough multi-modal analyses. It dis-
cusses the above-mentioned challenges for full 6D object pose estimation
in RGB-D images comparing the performances of several 6D detectors in
order to answer the following questions: What is the current position of
the computer vision community for maintaining “automation” in robotic
manipulation? What next steps should the community take for improving
“autonomy” in robotics while handling objects? Our findings include : (i)
reasonably accurate results are obtained on textured-objects at varying
viewpoints with cluttered backgrounds. (ii) Heavy existence of occlusion
and clutter severely affects the detectors, and similar-looking distractors
is the biggest challenge in recovering instances’ 6D. (iii) Template-based
methods and random forest-based learning algorithms underlie object
detection and 6D pose estimation. Recent paradigm is to learn deep
discriminative feature representations and to adopt CNNs taking RGB
images as input. (iv) Depending on the availability of large-scale 6D an-
notated depth datasets, feature representations can be learnt on these
datasets, and then the learnt representations can be customized for the
6D problem.

1 Introduction

Object detection and pose estimation is an important problem in the realm of
computer vision, for which a large number of solutions have been proposed. One
line of the solutions is based on visual perception in RGB channel. Existing eval-
uation studies [17, 18] addressing this line of the solutions discuss the effects of
challenges, such as occlusion, clutter, texture, etc, on the performances of the
methods, which are mainly evaluated on large-scale datasets, e.g., ImageNet [21],
PASCAL [22]. These studies have made important inferences for generalized ob-
ject detection, however, the discussions have been restricted to visual level in
2D, since the interested methods are designed to work in the context of RGB
modality.

Increasing ubiquity of Kinect-like RGB-D sensors has prompted an interest in
full 6D object pose estimation. Interpreting the depth data, state-of-the-art ap-
proaches for object detection and 6D pose estimation [7,10,11] report improved
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Fig. 1: Benchmarks collected mainly differ from the point of challenges that they in-
volve. Row-wise, the 1st benchmark concerns texture-less objects at varying viewpoint
with cluttered background, the 2nd is interested in multi-instance, the 3rd has scenes
with severely occluded objects, the 4th reflects the challenges found in bin-picking
scenarios, and the 5th is related to similar-looking distractors.

results tackling the aforesaid challenges in 6D. This improvement is of great
importance to many higher level tasks, e.g., scene interpretation, augmented re-
ality, and particularly, to robotic manipulation.

Robotic manipulators that pick and place the goods from conveyors, shelves,
pallets, etc., can facilitate several processes comprised within logistics systems,
e.g., warehousing, material handling, packaging. Amazon Picking Challenge (APC)
[3] is an important example demonstrating the promising role of robotic manip-
ulation for the facilitation of such processes. APC integrates many tasks, such as
mapping, motion planning, grasping, object manipulation, etc., with the goal of
“autonomously” moving items by robotic systems from a warehouse shelf into a
tote [2,4]. Regarding the “automated” handling of items by robots, accurate ob-
ject detection and 6D pose estimation is an important task that when successfully
performed improves the autonomy of the manipulation. Within this context, we
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ask the following questions. What is the current position of the computer vision
community for maintaining automation in robotic manipulation, with respect
to the accuracy of the 6D detectors introduced? What next steps should the
community take for improving the autonomy in robotics while handling objects?
We aim at answering these questions performing multi-modal analyses for object
detection and 6D pose estimation where we compare state-of-the-art baselines
regarding the challenges involved in the interested datasets.

Direct comparison of the baselines is difficult, since they are tested on sam-
ples which are collected at non-identical scenarios by using RGB-D sensors
with different characteristics. Additionally, different evaluation criteria are uti-
lized for performance measure. In order to address such difficulties, we fol-
low a threefold strategy: we firstly collect five representative object datasets
[5, 7, 10, 11, 34] (see Fig. 1). Then, we investigate 10 state-of-the-art detectors
[5,7,8,10–12,37,39,41,45] on the collected datasets under uniform scoring crite-
ria of the Average Distance (AD) metric. We further extend our investigations
comparing 2 of the detectors [7, 11], which are our own implementations, using
the Visible Surface Discrepancy (VSD) protocol. We offer a number of insights
for the next steps to be taken, for improving the autonomy in robotics. To sum-
marize, our main contributions are as follows:

– This is the first time, the current position of the field is analysed regarding
object detection and 6D pose estimation.

– We collect five representative publicly available datasets. In total, there are
approximately 50 different object classes. We investigate ten classes of the
state-of-the-art 6D detectors on the collected datasets under uniform scoring
criteria.

– We discuss baselines’ strength and weakness with respect to the challenges
involved in the interested RGB-D datasets. We identify the next steps for
improving the robustness of the detectors, and for improving the autonomy
in robotic applications, consequently.

2 Related Work

Methods producing 2D bounding box hypotheses in color images [24–33] form
one line of the solutions for object detection and pose estimation. Evaluation
studies interested in this line of the solutions mainly analyse the performances
of the methods regarding the challenges involved within the datasets [21, 22],
on which the methods have been tested. In [16], the effect of different context
sources, such as geographic context, object spatial support, etc., on object de-
tection is examined. Hoiem et al. [17] evaluate the performances of several base-
lines on PASCAL dataset particularly analysing the reasons why false positives
are hypothesised. Since there are less number of object categories in PASCAL
dataset, Russakovsky et al. [18] use ImageNet in order to do meta-analysis, and
to examine the influences of color, texture, etc., on the performances of object
detectors. Torralba et al. [19] compares several datasets regarding the involved
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Table 1: Datasets collected: each dataset shows different characteristics mainly from the
challenge point of view (VP: viewpoint, O: occlusion, C: clutter, SO: severe occlusion,
SC: severe clutter, MI: multiple instance, SLD: similar looking distractors, BP: bin
picking).

Dataset Challenge # Obj. Classes Modality # Total Frame Obj. Dist. [mm]

LINEMOD VP + C + TL 15 RGB-D 15770 600-1200
MULT-I VP + C + TL + O + MI 6 RGB-D 2067 600-1200
OCC VP + C + TL + SO 8 RGB-D 9209 600-1200
BIN-P VP + SC + SO + MI + BP 2 RGB-D 180 600-1200
T-LESS VP + C + TL + O + MI + SLD 30 RGB-D 10080 600-1200

samples, cross-dataset generalization, and relative data bias, etc. Recently pub-
lished retrospective evaluation [23] and benchmarking [20] studies perform the
most comprehensive analyses on 2D object localization and category detection,
by examining the PASCAL Visual Object Classes (VOC) Challenge, and the
ImageNet Large Scale Visual Recognition Challenge, respectively. These studies
introduce important implications for generalized object detection, however, the
discussions are restricted to visual level in 2D, since the concerned methods are
engineered for color images. In this study, we target to go beyond visual percep-
tion and extend the discussions on existing challenges to 6D, interpreting depth
data.

3 Datasets

Every dataset used in this study is composed of several object classes, for each
of which a set of RGB-D test images are provided with ground truth 6D object
poses. The collected datasets mainly differ from the point of the challenges that
they involve (see Table 1).

Viewpoint (VP) + Clutter (C). Every dataset involves the test scenes
in which objects of interest are located at varying viewpoints and cluttered back-
grounds.

VP + C + Texture-less (TL). Test scenes in the LINEMOD [11] dataset
involve texture-less objects at varying viewpoints with cluttered backgrounds.
There are 15 objects, for each of which more than 1100 real images are recorded.
The sequences provide views from 0 - 360 degree around the object, 0 - 90 de-
gree tilt rotation, ∓45 degree in-plane rotation, and 650 mm - 1150 mm object
distance.

VP + C + TL + Occlusion (O) + Multiple Instance (MI). Occlu-
sion is one of the main challenges that makes the datasets more difficult for the
task of object detection and 6D pose estimation. In addition to close and far
range 2D and 3D clutter, testing sequences of the Multiple-Instance (MULT-I)
dataset [7] contain foreground occlusions and multiple object instances. In total,
there are approximately 2000 real images of 6 different objects, which are lo-
cated at the range of 600 mm - 1200 mm. The testing images are sampled to
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produce sequences that are uniformly distributed in the pose space by [0◦−360◦],
[−80◦ − 80◦], and [−70◦ − 70◦] in the yaw, roll, and pitch angles, respectively.

VP + C + TL + Severe Occlusion (SO). Occlusion, clutter, texture-
less objects, and change in viewpoint are the most well-known challenges that
could successfully be dealt with the state-of-the-art 6D object detectors. How-
ever, heavy existence of these challenges severely degrades the performance of
6D object detectors. Occlusion (OCC) dataset [10] is one of the most difficult
datasets in which one can observe up to 70−80% occluded objects. OCC includes
the extended ground truth annotations of LINEMOD: in each test scene of the
LINEMOD [11] dataset, various objects are present, but only ground truth poses
for one object are given. Brachmann et al. [10] form OCC considering the images
of one scene (benchvise) and annotating the poses of 8 additional objects.

VP + SC + SO + MI + Bin Picking (BP). In bin-picking scenarios,
multiple instances of the objects of interest are arbitrarily stocked in a bin, and
hence, the objects are inherently subjected to severe occlusion and severe clut-
ter. Bin-Picking (BIN-P) dataset [5] is created to reflect such challenges found
in industrial settings. It includes 183 test images of 2 textured objects under
varying viewpoints.

VP + C + TL + O + MI + Similar Looking Distractors (SLD).
Similar-looking distractor(s) along with similar looking object classes involved
in the datasets strongly confuse recognition systems causing a lack of discrimina-
tive selection of shape features. Unlike the above-mentioned datasets and their
corresponding challenges, the T-LESS [34] dataset particularly focuses on this
problem. The RGB-D images of the objects located on a table are captured at
different viewpoints covering 360 degrees rotation, and various object arrange-
ments generate occlusion. Out-of-training objects, similar looking distractors
(planar surfaces), and similar looking objects cause 6 DoF methods to produce
many false positives, particularly affecting the depth modality features. T-LESS
has 30 texture-less industry-relevant objects, and 20 different test scenes, each
of which consists of 504 test images.

4 Baselines

State-of-the-art baselines for 6D object pose estimation address the challenges
studied in Sect. 3, however, the architectures used differ between the baselines.
In this section, we analyse 6D object pose estimators architecture-wise.

Template-based. Template-based approaches, matching global descriptors
of objects to the scene, are one of the most widely used approaches for ob-
ject detection tasks, since they do not require time-consuming training effort.
Linemod [11], being at the forefront of object detection research, estimates clut-
tered object’s 6D pose using color gradients and surface normals. It is im-
proved by discriminative learning in [13]. Fast directional chamfer matching
(FDCM) [36] is used in robotics applications.

Point-to-point. Point-to-point techniques build point-pair features for sparse
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representations of the test and the model point sets. Drost et al. [37] propose cre-
ate a global model description based on oriented point pair features and match
that model locally using a fast voting scheme. Its further improved in [39] mak-
ing the method more robust across clutter and sensor noise.

Conventional Learning-based. These methods are in need of training
sessions where training samples along with the ground truth annotations are
learnt. Latent-class Hough forests [7, 46], employing one-class learning, utilize
surface normals and color gradients features in a part-based approach in or-
der to provide robustness across occlusion. The random forest based method
in [10] encodes contextual information of the objects with simple depth and
RGB pixels, and improves the confidence of a pose hypothesis using a Ransac-
like algorithm. An analysis-by-synthesis approach [14] and an uncertainty-driven
methodology [8] are build upon random forests, using the architecture provided
in [10]. The method based on random forests presented in [9] formulates the
recognition problem globally and derives occlusion aware features computing a
set of principal curvature ratios for all pixels in depth images. The depth-based
architectures in [6, 40] present iterative Hough forests that initially estimate
coarse 6D pose of an object, and then iteratively refine the confidence of the
estimation due to the extraction of more discriminative control point descrip-
tors [44].

Deep learning. Current paradigm in the community is to learn deep dis-
criminative feature representations. Wohlhart et al. [15] utilize a CNN structure
to learn discriminative descriptors and then pass the learnt descriptors to a
Nearest Neighbor classifier in order to find the closest object pose. Although
promising, this method has one main limitation, which is the requirement of
background images during training along with the ones holistic foreground, thus
making its performance dataset-specific. The studies in [5, 12] learn deep repre-
sentation of parts in an unsupervised fashion only from foreground images using
auto-encoder architectures. The features extracted in the course of the test are
fed into a Hough forest in [5], and into a codebook of pre-computed synthetic
local object patches in [12] in order to hypothesise object 6D pose. While [15]
focuses on learning feature embeddings based on metric learning with triplet
comparisons, Balntas et al. [47] further examine the effects of using object poses
as guidance to learning robust features for 3D object pose estimation in order
to handle symmetry issue.

More recent methods adopt CNNs for 6D pose estimation, taking RGB im-
ages as inputs [45]. BB8 [42] and Tekin et al. [43] perform corner-point regression
followed by PnP for 6D pose estimation. Typically employed is a computation-
ally expensive post processing step such as iterative closest point (ICP) or a
verification network [41].



Recovering 6D Object Pose: A Review and Multi-modal Analysis 7

5 Evaluation Metrics

Several evaluation metrics are proposed for measuring the performance of a 6D
detector. Average Distance (AD) [11] outputs the score ω that calculates the
distance between ground truth and estimated poses of a test object using its
model. Hypotheses ensuring the following inequality is considered as correct:

ω ≤ zωΦ (1)

where Φ is the diameter of the 3D model of the test object, and zω is a con-
stant that determines the coarseness of an hypothesis which is assigned as cor-
rect. Translational and rotational error function [1], being independent from the
models of objects, measures the correctness of an hypothesis according to the
followings: i) L2 norm between the ground truth and estimated translations, ii)
the angle computed from the axis-angle representation of ground truth and es-
timated rotation matrices.

Visible Surface Discrepancy (VSD) has recently been proposed to eliminate
ambiguities arising from object symmetries and occlusions [35]. The model of
an object of interest is rendered at both ground truth and estimated poses, and
their depth maps are intersected with the test image itself in order to compute
the visibility masks. Comparing the generated masks, the score normalized in
[0− 1] determines whether an estimation is correct, according to the pre-defined
thresholds.

In this study, we employ a twofold evaluation strategy for the 6D detectors
using both AD and VSD metrics: i) Recall. The hypotheses on the test images of
every object are ranked, and the hypothesis with the highest weight is selected
as the estimated 6D pose. Recall value is calculated comparing the number of
correctly estimated poses and the number of the test images of the interested
object. ii) F1 scores. Unlike recall, all hypotheses are taken into account, and F1
score, the harmonic mean of precision and recall values, is presented.

6 Multi-modal Analyses

We analyse ten baselines on the datasets with respect to both challenges and the
architectures. Two of the baselines [7,11] are our own implementations. The color
gradients and surface normal features, presented in [11], are computed using the
built-in functions and classes provided by OpenCV. The features in Latent-Class
Hough Forest (LCHF) [7] are the part-based version of the features introduced
in [11]. Hence, we inherit the classes given by OpenCV in order to generate part-
based features used in LCHF. We train each method for the objects of interest by
ourselves, and using the learnt classifiers, we test those on all datasets. Note that,
the methods use only foreground samples during training/template generation.
In this section, “LINEMOD” refers to the dataset, whilst “Linemod” is used to
indicate the baseline itself.
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Table 2: Methods’ performance are depicted object-wise based on recall values com-
puted using the Average Distance (AD) evaluation protocol.

Method ch. ape bvise cam can cat dril duck box glue hpunch iron lamp phone AVER

Kehl et al [12] RGB-D 96.9 94.1 97.7 95.2 97.4 96.2 97.3 99.9 78.6 96.8 98.7 96.2 92.8 95.2

LCHF [7] RGB-D 84 95 72 74 91 92 91 48 55 89 72 90 69 78.6

Linemod [11] RGB-D 95.8 98.7 97.5 95.4 99.3 93.6 95.9 99.8 91.8 95.9 97.5 97.7 93.3 96.3

Drost et al [37] D 86.5 70.7 78.6 80.2 85.4 87.3 46 97 57.2 77.4 84.9 93.3 80.7 78.9

Kehl et al [41] RGB 65 80 78 86 70 73 66 100 100 49 78 73 79 76.7

(a) LINEMOD dataset

Method ch. camera cup joystick juice milk shampoo AVER

LCHF [7] RGB-D 52.5 99.8 98.3 99.3 92.7 97.2 90

Linemod [11] RGB-D 18.3 99.2 85 51.6 72.2 53.1 63.2

(b) MULT-I dataset

Method ch. ape can cat dril duck box glue hpunch AVER

Xiang et al. [45] RGB-D 76.2 87.4 52.2 90.3 77.7 72.2 76.7 91.4 78

LCHF [7] RGB-D 48.0 79.0 38.0 83.0 64.0 11.0 32.0 69.0 53

Hinters et al. [39] RGB-D 81.4 94.7 55.2 86.0 79.7 65.5 52.1 95.5 76.3

Linemod [11] RGB-D 21.0 31.0 14.0 37.0 42.0 21.0 5.0 35.0 25.8

Xiang et al. [45] RGB 9.6 45.2 0.93 41.4 19.6 22.0 38.5 22.1 25

(c) OCC dataset

Method ch. cup juice AVER

LCHF [7] RGB-D 90.0 89.0 90

Brach et al. [10] RGB-D 89.4 87.6 89

Linemod [11] RGB-D 88.0 40.0 64

(d) BIN-P dataset

6.1 Analyses Based on Average Distance

Utilizing the AD metric, we compare the chosen baselines along with the chal-
lenges, i) regarding the recall values that each baseline generates on every dataset,
ii) regarding the F1 scores. The coefficient zω is 0.10, and in case we use different
thresholds, we will specifically indicate in the related parts.

Recall-only Discussions Recall-only discussions are based on the numbers
provided in Table 2, and Fig. 2.

Clutter, Viewpoint, Texture-less objects. Highest recall values are ob-
tained on the LINEMOD dataset (see Fig. 2 (a)), meaning that the state-of-the-
art methods for 6D object pose estimation can successfully handle the challenges,
clutter, varying viewpoint, and texture-less objects. LCHF, detecting more than
half of the objects with over 80% accuracy, worst performs on “box” and “glue”
(see Table 2a), since these objects have planar surfaces, which confuses the fea-
tures extracted in depth channel (example images are given in Fig. 2 (b)).

Occlusion. In addition to the challenges involved in LINEMOD, occlusion is
introduced in MULT-I. Linemod’s performance decreases, since occlusion affects
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Fig. 2: (a) Success of each baseline on every dataset is shown, recall values are computed
using the Average Distance (AD) metric. (b)-(h) challenges encountered during test
are exemplified (green renderings are hypotheses, and the red ones are ground truths).

holistic feature representations in color and depth channels. LCHF performs bet-
ter on this dataset than Linemod. Since LCHF is trained using the parts coming
from positive training images, it can easily handle occlusion, using the informa-
tion acquired from occlusion-free parts of the target objects. However, LCHF
degrades on “camera”. In comparison with the other objects in the dataset,
“camera” has relatively smaller dimensions. In most of the test images, there
are non-negligible amount of missing depth pixels (Fig. 2 (c)) along the bor-
ders of this object, and thus confusing the features extracted in depth channel.
In such cases, LCHF is liable to detect similar-looking out of training objects
and generate many false positives (see Fig. 2 (d)). The hypotheses produced by
LCHF for “joystick” are all considered as false positive (Fig. 2 (e)). When we
re-evaluate the recall that LCHF produces on the “joystick” object setting zω
to the value of 0.15, we observe 89% accuracy.

Severe Occlusion. OCC involves challenging test images where the objects
of interest are cluttered and severely occluded. The best performance on this
dataset is caught by Xiang et al. [45], and there is still room for improvement in
order to fully handle this challenge. Despite the fact that the distinctive feature
of this benchmark is the existence of “severe occlusion”, there are occlusion-free
target objects in several test images. In case the test images of a target object
include unoccluded and/or naively occluded samples (with the occlusion ratio
up to 40%−50% of the object dimensions) in addition to severely occluded sam-
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ples, methods produce relatively higher recall values (e.g. “can, driller, duck,
holepuncher”, Table 2c). On the other hand, when the target object has addi-
tionally other challenges such as planar surfaces, methods’ performance (LCHF
and Linemod) decreases (e.g. “box”, Fig. 2 (f)).

Severe Clutter. In addition to the challenges discussed above, BIN-P inher-
ently involves severe clutter, since it is designed for bin-picking scenarios, where
objects are arbitrarily stacked in a pile. According to the recall values presented
in Table 2d, LCHF and Brachmann et al. [10] perform 25% better than Linemod.
Despite having severely occluded target objects in this dataset, there are unoc-
cluded/relatively less occluded objects at the top of the bin. Since our current
analyses are based on the top hypothesis of each method, the produced success
rates show that the methods can recognize the objects located on top of the bin
with reasonable accuracy (Fig. 2 (g)).

Similar-Looking Distractors. We test both Linemod and LCHF on the
T-LESS dataset. Since most of the time the algorithms fail, we do not report
quantitative analyses, instead we discuss our observations from the experiments.
The dataset involves various object classes with strong shape and color similari-
ties. When the background color is different than that of the objects of interest,
color gradient features are successfully extracted. However, the scenes involve
multiple instances, multiple objects similar in shape and color, and hence, the
features queried exist in the scene at multiple locations. The features extracted
in depth channel are also severely affected from the lack of discriminative se-
lection of shape information. When the objects of interest have planar surfaces,
the detectors cannot easily discriminate foreground and background in depth
channel, since these objects in the dataset are relatively smaller in dimension
(see Fig. 2 (h)).

Part-based vs. Holistic approaches. Holistic methods [11, 37, 39, 41, 45]
formulate the detection problem globally. Linemod [11] represents the windows
extracted from RGB and depth images by the surface normals and color gra-
dients features. Distortions along the object borders arising from occlusion and
clutter, that is, the distortions of the color gradient and surface normal infor-
mation in the test processes, mainly degrade the performance of this detector.
Part-based methods [5,7,8, 10,12] extract parts in the given image. Despite the
fact that LCHF uses the same kinds of features as in Linemod, LCHF detects
objects extracting parts, thus making the method more robust to occlusion and
clutter.

Template-based vs. Random forest-based. Template-based methods,
i.e., Linemod, match the features extracted during test to a set of templates,
and hence, they cannot easily be generalized well to unseen ground truth annota-
tions, that is, the translation and rotation parameters in object pose estimation.
Methods based on random forests [5, 7, 8, 10] efficiently benefit the randomisa-
tion embedded in this learning tool, consequently providing good generalisation
performance on new unseen samples.

RGB-D vs. Depth. Methods utilizing both RGB and depth channels demon-
strate higher recall values than methods that are of using only depth, since RGB
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Table 3: Methods’ performance are depicted object-wise based on F1 scores computed
using the Average Distance (AD) evaluation protocol.

Method ch. ape bvise cam can cat dril duck box glue hpunch iron lamp phone AVER

Kehl et al. [12] RGB-D 0.98 0.95 0.93 0.83 0.98 0.97 0.98 1 0.74 0.98 0.91 0.98 0.85 0.93

LCHF [7] RGB-D 0.86 0.96 0.72 0.71 0.89 0.91 0.91 0.74 0.68 0.88 0.74 0.92 0.73 0.82

Linemod [11] RGB-D 0.53 0.85 0.64 0.51 0.66 0.69 0.58 0.86 0.44 0.52 0.68 0.68 0.56 0.63

Kehl et al. [41] RGB 0.76 0.97 0.92 0.93 0.89 0.97 0.80 0.94 0.76 0.72 0.98 0.93 0.92 0.88

(a) LINEMOD dataset

Method ch. camera cup joystick juice milk shampoo AVER

Kehl et al. [12] RGB-D 0.38 0.97 0.89 0.87 0.46 0.91 0.75

LCHF [7] RGB-D 0.39 0.89 0.55 0.88 0.40 0.79 0.65

Drost et al. [37] D 0.41 0.87 0.28 0.60 0.26 0.65 0.51

Linemod [11] RGB-D 0.37 0.58 0.15 0.44 0.49 0.55 0.43

Kehl et al. [41] RGB 0.74 0.98 0.99 0.92 0.78 0.89 0.88

(b) MULT-I dataset

Method ch. ape can cat dril duck box glue hpunch AVER

LCHF [7] RGB-D 0.51 0.77 0.44 0.82 0.66 0.13 0.25 0.64 0.53

Linemod [11] RGB-D 0.23 0.31 0.17 0.37 0.43 0.19 0.05 0.30 0.26

Brach et al. [8] RGB - - - - - - - - 0.51

Kehl et al. [41] RGB - - - - - - - - 0.38

(c) OCC dataset

Method ch. cup juice AVER

LCHF [7] RGB-D 0.48 0.29 0.39

Doumanoglou et al. [5] RGB-D 0.36 0.29 0.33

Linemod [11] RGB-D 0.48 0.20 0.34

(d) BIN-P dataset

provides extra clues to ease the detection. This is depicted in Table 2a where
learning- and template-based methods of RGB-D perform much better than
point-to-point technique [37] of depth channel.

RGB-D vs. RGB (CNN structures). More recent paradigm is to adopt
CNNs to solve 6D object pose estimation problem taking RGB images as in-
puts [41, 45]. Methods working in the RGB channel in Table 2 are based on
CNN structure. According to the numbers presented in Table 2, RGB-based
SSD-6D [42] and RGB-D-based LCHF achieve similar performance. These re-
call values show the promising performance of CNN architectures across random
forest-based learning methods.

Robotic manipulators that pick and place the items from conveyors, shelves,
pallets, etc., need to know the pose of one item per RGB-D image, even though
there might be multiple items in its workspace. Hence our recall-only analyses
mainly target to solve the problems that could be encountered in such cases.
Based upon the analyses currently made, one can make important implications,
particularly from the point of the performances of the detectors. On the other
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Fig. 3: (a) Success of each baseline on every dataset is shown, F1 scores are computed
using the Average Distance (AD) metric. (b) Precision-recall curves of averaged F1
scores for Tejani et al. [7] and Hinterstoisser et al. [11] are shown: from left to right,
LINEMOD, MULT-I, OCC, BIN-P.

hand, recall-based analyses are not enough to illustrate which dataset is more
challenging than the others. This is especially true in crowded scenarios where
multiple instances of target objects are severely occluded and cluttered. There-
fore, in the next part, we discuss the performances of the baselines from another
aspect, regarding precision-recall curves and F1 scores, where the 6D detectors
are investigated sorting all detection scores across all images.

Precision-Recall Discussions Our precision-recall discussions are based on
the F1 scores provided in Table 3, and Fig. 3 (a).

We first analyse the performance of the methods [7,11,38,41] on the LINEMOD
dataset. On the average, Kehl et al. [38] outperforms other methods proving the
superiority of learning deep features. Despite estimating 6D in RGB images,
SSD-6D [41] exhibits the advantages of using CNN structures for 6D object
pose estimation. LCHF and Linemod demonstrate lower performance, since the
features used by these methods are manually-crafted. The comparison between
Fig. 2 (a) and Fig. 3 (a) reveals that the results produced by the methods have
approximately the same characteristics on the LINEMOD dataset, with respect
to recall and F1 scores.

The methods tested on the MULT-I dataset [7,11,37,38] utilize the geometry
information inherently provided by depth images. Despite this fact, SSD-6D [41],
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Fig. 4: Methods are evaluated based on Visible Surface Discrepancy. Samples on the
right are considered as false positive with respect to Average Distance, whilst VSD
deems correct.

estimating 6D pose only from RGB images, outperforms other methods clearly
proving the superiority of using CNNs for the 6D problem over other structures.

LCHF [11] and Brachmann et al. [8] best perform on OCC with respect to
F1 scores. As this dataset involves test images where highly occluded objects
are located, the reported results depict the importance of designing part-based
solutions.

The most important difference is observed on the BIN-P dataset. While the
success rates of the detectors on this dataset are higher than 60% with respect
to the recall values (see Fig. 2 (a)), according to the presented F1 scores, their
performance are less than 40%. When we take into account all hypotheses and
the challenges particular to this dataset, which are severe occlusion and severe
clutter, we observe strong degradation in the accuracy of the detectors.

In Fig. 3 (b), we lastly report precision-recall curves of LCHF and Linemod.
Regarding these curves, one can observe that as the datasets are getting more
difficult, from the point of challenges involved, the methods produce less accu-
rate results.

6.2 Analyses Based on Visible Surface Discrepancy

The analyses presented so far have been employed using the AD metric. We con-
tinue our discussions computing the recall values using the VSD metric, which
is inherently proposed for tackling the pose-ambiguities arising from symmetry.
We set δ, τ , and t, the thresholds defined in [35], to the values of 20 mm, 100
mm, and 0.5 respectively. Figure 4 shows the accuracy of each baseline on the
LINEMOD, MULT-I, OCC, BIN-P datasets, respectively. Comparing the num-
bers in this chart, one can observe that the results from VSD are relatively lower
than that are of the AD metric. This arises mainly from the chosen parameters.
However, the characteristics of both charts are the same, that is, both methods,
according to AD and VSD, perform best on the LINEMOD dataset, whilst worst
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on OCC. On the other hand, the main advantage of the proposed metric is that
it features ambiguity-invariance: Since it is designed to evaluate the baselines
over the visible parts of the objects, it gives more robust measurements across
symmetric objects. Sample images in Fig. 4 show the hypotheses of symmetric
objects which are considered as false positive according to the AD metric, whilst
VSD accepts those as correct.

7 Discussions and Conclusions

We outline our key observations that provide guidance for future research.
From the challenges aspect, reasonably accurate results have been obtained

on textured-objects at varying viewpoints with cluttered backgrounds. In case
occlusion is introduced in the test scenes, depending on the architecture of the
baseline, good performance demonstrated. Part-based solutions can handle the
occlusion problem better than the ones global, using the information acquired
from occlusion-free parts of the target objects. However, heavy existence of oc-
clusion and clutter severely affects the detectors. It is possible that modelling
occlusion during training can improve the performance of a detector across severe
occlusion. But when occlusion is modelled, the baseline could be data-dependent.
In order to maintain the generalization capability of the baseline contextual in-
formation can additionally be utilized during the modelling. Currently, similar
looking distractors along with similar looking object classes seem the biggest
challenge in recovering instances’ 6D, since the lack of discriminative selection
of shape features strongly confuse recognition systems. One possible solution
could be considering the instances that have strong similarity in shape in a same
category. In such a case, detectors trained using the data coming from the in-
stances involved in the same category can report better detection results.

Architecture-wise, template-based methods, matching model features to the
scene, and random forest based learning algorithms, along with their good gen-
eralization performance across unseen samples, underlie object detection and 6D
pose estimation. Recent paradigm in the community is to learn deep discrimina-
tive feature representations. Despite the fact that several methods addressed 6D
pose estimation utilizing deep features [5, 12], end-to-end neural network-based
solutions for 6D object pose recovery are still not widespread. Depending on the
availability of large-scale 6D annotated depth datasets, feature representations
can be learnt on these datasets, and then the learnt representations can be cus-
tomized for the 6D problem.

These implications are related to automation in robotic systems. The im-
plications can provide guidance for robotic manipulators that pick and place
the items from conveyors, shelves, pallets, etc. Accurately detecting objects and
estimating their fine pose under uncontrolled conditions improves the grasping
capability of the manipulators. Beyond accuracy, the baselines are expected to
show real-time performance. Although the detectors we have tested cannot per-
form real-time, their run-time can be improved by utilizing APIs like OpenMP.
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